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The nanotube handedness is defined for the complete determination of the nanotube atomic structure by its
diameter and chirality. The interband electronic optical transition matrix elements are calculated and the dipole
selection rules are derived for chiral carbon nanotubes and circularly polarized light propagating along the
nanotube axis. The dipole selection rules are shown to depend on the nanotube handedness and on the helicity
of the light, and this dependence is responsible for the optical activity of carbon nanotubes, when time-reversal
symmetry is broken. The optical absorption spectra calculated for opposite light helicity or nanotube handed-
ness show circular dichroism in chiral nanotubes. The optical activity of chiral nanotubes allows the nanotube
handedness to be determined in optical experiments using circularly polarized light.
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I. INTRODUCTION

Light absorption and emission processes in single-w
carbon nanotubes~SWNTs! are governed by dipole selectio
rules1,2 and by the depolarization effect.1,3 While the depo-
larization effect implies that light polarized perpendicular
the tube axis is suppressed because of the much larger p
izability parallel to the tube axis, the dipole selection ru
only allow electronic transitions between the valence a
conduction bands withinthe samesubband of indexm for
light polarized along the tube axis. The depolarization eff
is expected to be more pronounced for metallic SWNTs
to the presence of conduction electrons. If the light polari
tion vector is perpendicular to the SWNT axis, the dipo
selection rules predict electronic transitions between two
jacent subbands1,2,4of indicesm andm61. The difference in
the dipole selection rules for the parallel and perpendicu
light polarization directions indicates different electron
transition energies, which in turn implies different resonan
conditions. Thus, the interaction with light polarized perpe
dicular to the SWNT axis can be detected, in spite of
depolarization effect, by the proper selection of the re
nance conditions, i.e., wavelength of light resonant withm
→m61 rather than withm→m transitions in a given SWNT
Resonance Raman spectroscopy~RRS! studies on isolated
SWNTs confirm the predicted optical selection rules wh
changing the light polarization vector.5

The majority of optical experiments on isolated SWN
are performed in the geometry where the SWNTs lie o
substrate (xz) and the laser beam propagates normal to
substrate (y), and thus normal to the SWNT axis (z), allow-
ing one to change the direction of the light polarization ve
tor with respect to the SWNT axis from parallel~z! to per-
pendicular (x). However, it is also possible to design th
geometry of the experiment, such that the laser beam pr
0163-1829/2004/69~20!/205402~11!/$22.50 69 2054
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gates along the SWNT axis (z). This can be achieved by
using fibers of aligned SWNTs~Ref. 6! or growing aligned
SWNTs by chemical vapor deposition in an electric field7

The light propagating along the SWNT axis~z! can be po-
larized perpendicular to the SWNT axis (x or y). While both
optical electronic transitionsm→m21 and m→m11 are
symmetry allowed for linearly polarized light (x or y), only
one of these two transitions survives in the case of circula
polarized light (x6 iy), depending on the SWNT handed
ness and on the light helicity. The left (L5x1 iy) and right
(R5x2 iy) helicity of the light corresponds to left-hande
or right-handed rotation of the polarization vector wh
looking along the direction of propagation (z), respectively.8

The SWNT handedness is defined as AL or AR, depend
on the rotation of two of the three armchair~A! chains of the
carbon atoms to the L or to the R, when looking along t
SWNT axis (z). While the absorption of the L circularly
polarized light induces the electronic transitionsm→m11
for AL handed SWNTs andm→m21 for AR handed
SWNTs, the absorption of the R circularly polarized lig
induces the transitionsm→m21 for AL handed SWNTs and
m→m11 for AR handed SWNTs. The difference in the d
pole selection rules for L and R circularly polarized lig
gives rise to optical activity~circular dichroism and circular
birefringence! of chiral SWNTs.9,10 The difference in the di-
pole selection rules for AL and AR handed SWNTs provid
a way to identify SWNT handedness in optical experime
with circularly polarized light. Alternatively, the SWNT
chirality, and thus also the SWNT handedness, can be de
mined from images of individual SWNTs taken by scanni
tunneling microscopy~Ref. 11! and TEM ~Ref. 12! tech-
niques.

In the present paper we demonstrate the possibility to
termine SWNT handedness by optical spectroscopy. The
per is organized as follows. An extended definition of SWN
©2004 The American Physical Society02-1
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FIG. 1. ~a! The graphene layer broken int
30° sectors where the chiral vector of the SWN
can be defined. Solid and dashed lines, labeled
Z and A, respectively, stand for zigzag and arm
chair achiral SWNTs, while the C1 and C2 se
tors represent chiral SWNTs of opposite hande
ness.~b! Z and A achiral SWNTs.~c! C1 and C2
chiral SWNTs, obtained from the graphene lay
in ~a!, by rolling from the front to the back.
h
e-
in
b

d
e
on
an
rk

u
ue
r

th

le

ec
n

e
he

0°

d
ss
em
Th
r

ty
e
i

-
By
e
ir

a

of
to

ter-
s
e

of

the
g
C2
ns

Fig.

to
e

the
s.
air

R
L
Ts
im-
air
re

n

Ts
ve-

rix
on
ele-
al
o-

nt
chirality and SWNT handedness is introduced in Sec. II. T
optical selection rules for circularly polarized light are d
rived from the electronic dipole transition matrix elements
Sec. III. While the same selection rules can be obtained
symmetry considerations using group theory, as discusse
Sec. IV, the matrix elements calculated in Sec. III are ess
tial for the quantitative analysis of the optical absorpti
spectra of chiral SWNTs regarding their handedness
light helicity, as presented in Sec. IV. Concluding rema
follow in Sec. V.

II. NANOTUBE HANDEDNESS

A SWNT can be considered as a graphene layer rolled
into a seamless cylinder. The nanotube structure is uniq
determined by the chiral vectorCh in the graphene laye
which spans the circumference of the SWNT.13 The chiral
vector consists of integral numbers of the unit vectorsa1 and
a2 shown in Fig. 1~a!, Ch5na11ma2. The chiral vector is
thus uniquely defined by a pair of integer numbers (n,m).
Alternatively, the chiral vector can be defined by its leng
Ch5pdt , wheredt is the tube diameter, and by its angleu
to one of the zigzag directions in the graphene layer, labe
by Z in Fig. 1~a!. The chiral angleu takes values 0 andp/6
for zigzag and armchair achiral SWNTs, when the chiral v
tor Ch is aligned along the Z and A directions in the graphe
layer, respectively@see Fig. 1~a!#.14 Values of the chiral angle
u between 0 andp/6 correspond to chiral SWNTs, when th
chiral vector is defined within the gray colored sector in t
graphene layer in Fig. 1~a!.

The chiral vector can be defined within one of twelve 3
sectors in the graphene layer shown in Fig. 1~a!. While the
gray colored sector and the five equivalent sectors labele
C1 in Fig. 1~a! correspond to SWNTs of a given handedne
the six C2 sectors, which are also equivalent between th
selves, yield SWNTs of the opposite handedness.
SWNTs of opposite handedness are related to each othe
the one-dimensional~1D! spatial inversion along the SWNT
axis. The SWNT handedness is also determined by the
of rolling of the graphene layer, either from the front of th
layer to the back, or from the back to the front, as defined
Ref. 9, so that the printed side of Fig. 1~a! becomes, respec
tively, either the outer or the inner surface of the cylinder.
specifying the type of rolling from the front to the back, w
can define SWNTs of both handedness by varying the ch
angle in the range from 0 top/3 over the two rightmost 30°
sectors in Fig. 1~a!, C1 and C2. Here, the values of the chir
angle u50, 0,u,p/6, u5p/6, andp/6,u,p/3 corre-
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spond to Z, C1, A, and C2 SWNTs, respectively. In terms
the (n,m) indices, Z, C1, A, and C2 SWNTs correspond
m50, 0,m,n, m5n, and 0,n,m, respectively. In other
words, C1 and C2 SWNTs are related to each other by in
changing theirn andm indices, i.e., the two pairs of indice
(n,m) and (m,n) correspond to two SWNTs of the sam
diameterdt and the same chiral angleu defined in the range
0,u,p/6 but of opposite handedness. The two pairs
indices become (n,m) and (n1m,2m) by selecting the
upper-right C2 sector instead of the rightmost in Fig. 1~a!.12

Z and A achiral SWNTs are shown in Fig. 1~b!, and C1
and C2 chiral SWNTs in Fig. 1~c!. While L- and R-handed
organic molecules are commonly defined according to
direction of rotation of the atomic chain when looking alon
the molecular axis, the L or R handedness of C1 and
chiral SWNTs is not so obvious. There are three A directio
and three Z directions in the graphene layer, as shown in
1~a!. In the case of a C1 chiral SWNT@see Fig. 1~c!#, two of
the three A lines are rotated to the left and the third A line
the right when looking along the SWNT axis. At the sam
time, two of the three Z lines are rotated to the right and
third Z line to the left when looking along the SWNT axi
We thus can refer to C1 chiral SWNTs either as armch
left-handed~AL ! tubes or as zigzag right-handed~ZR! tubes.
Similarly, C2 chiral SWNTs can be referred to either as A
or as ZL. Note that while chiral SWNTs can be either of A
or of AR handedness, zigzag and armchair achiral SWN
have no explicit handedness associated with them. This
plies that there are twice as many chiral SWNTs for each p
of (n,m) indices as achiral SWNTs, once the indices a
defined in the range 0<m<n. This aspect must be take
into account when analyzing the distribution of the (n,m)
indices in a SWNT sample.

III. INTERBAND OPTICAL TRANSITIONS

The optical dipole transitions in graphite and in SWN
have been recently studied regarding the electronic wa
vector dependence of their optical transition mat
elements.4,15,16In the present section, we focus on the phot
wave-vector and polarization dependence of the matrix
ments, which guides us to the optical activity of chir
SWNTs through the optical selection rules for circularly p
larized light.

The interband electronic optical transition matrix eleme
for SWNTs is given by

Mopt
r 5^C f uHopt

r uC ı&, ~1!
2-2
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INTERBAND OPTICAL TRANSITIONS IN LEFT- AND . . . PHYSICAL REVIEW B69, 205402 ~2004!
whereC ı andC f are the wave functions of the initial (ı) and
final ~f! electronic states in the valence (v) and conduction
~c! bands, andHopt

r is the optical perturbation Hamiltonia
for the absorbed (r5a) or emitted (r5e) light, expressed,
to first order, by

Hopt
r > i

e\

mc
Ar•“ ~2!

with the vector potential of the electromagnetic wave giv
by

Ar5
1

vr
AcIr

e
eY i (kr•r2vrt)Pr . ~3!

Here,vr , kr , Pr , and I r denote photon frequency, photo
wave vector, photon polarization, and light intensity, resp
tively, for the absorbed (r5a,ı5v, f 5c) or emitted (r
5e,ı5c, f 5v) light. The factorY reflects the time depen
dence of the optical field for the absorption (r5a,Y511)
or emission (r5e,Y521) of light. The wave vector of the
emitted photon iske.7ka for the backscattering and tran
mission geometries, respectively. Within the dipole appro
mation, the photon wave vectorkr is neglected in compari
son to the electronic wave vectorskı andk f . By substituting
Eq. ~3! into Eq. ~2! and then Eq.~2! into Eq. ~1!, the elec-
tronic optical transition matrix element becomes

Mopt
r 5 i

e\

mvr
A I r

ec
ei (v f2v ı2Yvr)tPr•D, ~4!

wherev 5E /\ in which E is the energy of the initial (
5ı) or final (5 f ) electronic state, andD is the dipole vec-
tor defined by

D5^C f u“uC ı&. ~5!

To obtain the matrix element of Eq.~4! we thus need to
calculate the dipole vector of Eq.~5!, which requires knowl-
edge of the electronic wave functionsC  (5ı, f or 
5v,c). To construct the electronic wave functions, we fi
define the geometrical structure of the SWNT.

The unit cell of the graphene layer is a rhombus boun
by the unit vectorsa1 anda2. Each rhombus consists of tw
inequivalent atomic sites,A and B @see Fig. 1~a!#. The
graphene unit cells can be equally represented by the h
gons of the honeycomb lattice. Yet visually more convenie
each hexagon contains six carbon atoms and each ca
atom sits among three hexagons opening multiple way
define the unit cell of hexagonal shape. In what follows,
refer to the unit cells of the graphene layer as hexagons
convenience, but we imply rhombi rather than hexago
when writing the coordinates of the atomic sites to av
multiple interpretations.

The nanotube unit cell is a cylindrical segment of leng
T5uTu, where T is the nanotube translation vector.13 The
number of nanotube unit cellsU5L/T is determined by the
nanotube lengthL. The unrolled nanotube unit cell is give
by a rectangle on the graphene layer bounded by the vec
Ch and T. This rectangle consists ofN hexagons, whereN
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52(n21nm1m2)/dR and dR is the greatest common diviso
of (2n1m) and (2m1n) for the (n,m) SWNT.13 In what
follows, we refer to the coordinates of the atomic sites of
unrolled SWNT byRhs

u , where u51, . . . ,U denotes the
nanotube unit cells,h51, . . . ,N denotes the hexagon
within the nanotube unit cell, ands5A,B denotes the atomic
sites within the hexagon.

The electronic wave functionC  (5ı, f or 5v,c) can
be written as a sum over the Bloch functionsFs (s5A,B)
for A andB carbon atoms within the hexagon,

C ~r ,k!5 (
s5A

B

Cs
~k!Fs~r ,k!. ~6!

In the tight-binding approximation, the Bloch functionsFs
(s5A,B) are expressed by the linear combinations of atom
2pz orbitalsf(r2Rhs

u ),

Fs~r ,k!5
1

AU
(
u51

U
1

AN
(
h51

N

eik•Rhs
u

f~r2Rhs
u !. ~7!

The limitations of the tight-binding approximation will b
discussed in Sec. IV. Note that the sum over indexh ~over
the N hexagons in the SWNT unit cell! must be formally
placed in the wave function of Eq.~6!. We place this sum in
the Bloch function of Eq.~7! instead, or in other words, we
sum the Bloch functions over theN hexagons in the SWNT
unit cell, within the framework of the zone-folding
approach.13 We are allowed to do so because of the equi
lence of theN hexagons in the nanotube unit cell, whic
implies that the wave-function coefficientsCs

 in Eq. ~6! are
independent of the hexagon indexh.

We now substitute the wave functions given by Eqs.~6!
and~7! into the dipole vector of Eq.~5!. This yields a sum of
the dipole matrix elements between different atomic orbit

^f(r2Rh8s8
u8 )u“uf(r2Rhs

u )& with different phase factors
and wave-function coefficientsCs8

f* Cs
ı . Because of the rathe

fast decay of the atomic orbitalsf(r ) away from the nuclei,
we can limit our consideration to the nearest-neighbor dip
matrix elements. The resulting dipole vector can then
written in the form4

D5
A3Mdip

aNU FCB
f * CA

ı (
u51

U

(
h51

N

ei (kı2k f )•RhA
u

3 (
,51

3

e2 ik f•rA
,
VrA

,

1CA
f * CB

ı (
u51

U

(
h51

N

ei (kı2k f )•RhB
u

(
,51

3

e2 ik f•rB
,
VrB

, G ,

~8!

where rA
, 5Rh,B

u, 2RhA
u and rB

, 5Rh,A
u, 2RhB

u are the vectors

pointing to the nearest-neighbor carbon atoms starting fr
the centralA atom and from the centralB atom, respectively,
numbered by the index,51, . . . ,3. Thenearest-neighbor
vectorsr s

, (s5A,B and,51, . . . ,3) areshown in Fig. 1~a!,
2-3
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where we setrB
, 52rA

, . The factorMdip in Eq. ~8! is the
dipole matrix element between the two nearest-neighbor
bon atoms defined by

^f~r2 1
2 r s

,!u“uf~r1 1
2 r s

,!&5
A3Mdipr s

,

a
, ~9!

where a50.246 nm is the lattice constant of the graphe
layer and ur s

,u5a/A35aC-C50.142 nm is the interatomic
C-C distance in the graphene layer.

The operatorV in Eq. ~8! places the nearest-neighb
vectorsr s

, on the cylindrical surface of the SWNT sidewa
Note that the operatorV is not applicable to the coordinate
of the atomic sitesRhs

u nor to the nearest-neighbor vectorsr s
,

in the exponential factors of Eq.~8!, because they are mu
tiplied by the wave vectorskı andk f which are defined in the
2D reciprocal space of the unrolled graphene layer, acc
ing to the zone-folding scheme.13 By selecting the right-
handed Cartesianxyz-coordinate system, such that th
graphene layer lies in thexy plane as shown in Fig. 1~a! and
by aligning the rolled up SWNT along thez axis, we can
write an explicit expression for the operatorV in terms of
the rotation operatorsVa (a5x,y,z) about the principal
axes,

V5Vz~Qwhs!VyS p

6
2u DVxS p

2 D . ~10!

To align the cylinder along thez axis, the rotation operato
Vx(p/2) in Eq.~10! is applied first. Then the graphene lay
in the xz plane is rotated by the operatorVy(p/62u) to
account for the SWNT chirality. Finally, the graphene lay
is rolled up into a cylinder of diameterdt around thez axis
by the operatorVz(Qwhs), wherewhs is the angular coordi-
nate of the atomic siteRhs

u on the cylindrical surface of the
nanotube, andQ indicates the type of rolling done to th
graphene layer, from the front to the back (Q511) or from
the back to the front (Q521). ThusQ511 corresponds to
AL ~ZR! andQ521 to AR ~ZL! handedness~see Sec. II!.
Using the rotation operators of Eq.~10!, the angular coordi-
nates of the atomic siteswhs and the angular shifts on th
cylindrical surface between the nearest-neighbor carbon
omsws

, become

whs5
2

dt
FVyS p

6
2u DVxS p

2 DRhs
u G• x̂,

ws
,5

2

dt
FVyS p

6
2u DVxS p

2 D r s
,G• x̂. ~11!

By substituting the operatorV of Eq. ~10! into Eq.~8!, we
can write the dipole vectorD in the form

D5
A3Mdip

aNU FCB
f * CA

ı (
u51

U

(
h51

N

ei (kı2k f )•RhA
u

dhA

1CA
f * CB

ı (
u51

U

(
h51

N

ei (kı2k f )•RhB
u

dhBG , ~12!
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wheredhA and dhB are the atomic dipole vectors for elec
tronic optical transitions from theA atom in thehth hexagon
to its neighboringB atoms, and from theB atom in thehth
hexagon to its neighboringA atoms, respectively. The atomi
dipole vectorsdhs (h51, . . . ,N ands5A,B) are given by

dhs5Vz~Qwhs!ds ,

ds5 (
,51

3

e2 ik f•rs
,
VyS p

6
2u DVxS p

2 D r s
,, ~13!

whereds (s5A,B) are the atomic dipole vectors in the un
rolled graphene layer. Note thatdB52dA* . The atomic di-
pole vectorsds defined by Eq.~13! lie in the xz plane and
therefore can be written in the formdA5(dx,0,dz) and dB

5(2dx* ,0,2dz* ). In fact, this approach ignores the curv
ture of the SWNT sidewall. Because of the curvature,
three nearest-neighbor vectorsVr s

, (,51, . . . ,3) do not lie
in the same plane when placed on the cylinder surface,
ing rise to small components of the atomic dipole vectorsdhs

in the direction normal to the SWNT sidewall. The corr
sponding smally components of the atomic dipole vectorsds

in the unrolled graphene layer are omitted for simplici
However, including these components does not affect in
way the selection rules we are here concerned with. By
plying the rotation operatorsVz(QwhA) and Vz(QwhB) to
the atomic dipole vectorsdA5(dx,0,dz) and dB5(2dx* ,0,
2dz* ) according to Eq.~13!, we obtain

dhA5„cos~whA!dx ,Q sin~whA!dx ,dz…,

dhB5„2cos~whB!dx* ,2Qsin~whB!dx* ,2dz* …. ~14!

The dipole vectorD is thus given by Eqs.~12! and ~14!,
where we only need to substitute the wave vectorsk and the
Cartesian and angular coordinates of the atomic sitesRhs

u and
fhs , respectively.

The coordinates of the atomic sites in the unroll
graphene layer can be written in the formRhs

u 5uT1Rh

1Rs where uT points to theuth unit cell, Rh to the hth
hexagon within the unit cell, andRs to thesth carbon atom
within the hexagon. TheN hexagons in the unit cell are
arranged equidistantly around the SWNT axis forming
angles of rotation 2ph/N. The two hexagons separated b
the smallest angle of rotation 2p/N are connected by the
symmetry vectorR5pa11qa2 in the unrolled graphene
layer.13 The symmetry vector appliedN times forms a spiral
of N hexagons which spans the circumference of the SW
and coversM5mp2nq unit cells,13 NR5Ch1MT. The
SWNT unit cell consists of pieces of theM spirals located
2-4
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INTERBAND OPTICAL TRANSITIONS IN LEFT- AND . . . PHYSICAL REVIEW B69, 205402 ~2004!
within a cylindrical segment of lengthT. The coordinate of
the hth hexagon in the SWNT unit cell is thus given byRh

5hR2@hM/N#T where@j# indicates the integer part ofj.
Recalling that the graphene unit cells are in fact not he
gons but rather rhombi, we immediately obtainRs52r s

1/2
@see Fig. 1~a!#. Finally, the coordinates of the atomic sites a
given byRhs

u 5uT1hR2@hM/N#T2r s
1/2. SubstitutingRhs

u

into Eq. ~11! yields the angular coordinates of the atom
sites whs52ph/N2ws

1/2, where wA
152wB

15(2/A3)
3(a/dt)cos(p/62u) is the angular shift on the cylindrica
surface between theA andB atoms of the graphene unit cel
The angular coordinates, thus obtained, define the ato
dipole vectorsdhs of Eq. ~14!. We now need to calculate th
phase factors in the dipole vectorD of Eq. ~12!.

The electronic wavevectorsk (5ı, f ) from the phase
factors of Eq. ~12! are defined within the zone-foldin
scheme,13 k5m K11kK2 /uK2u, where m  is the cutting
line index, also referred to as the subband index, or the
gular momentum in the circumferential direction of th
SWNT, andk is the 1D wave vector in the axial direction o
the SWNT. The wave vectorsK1 andK2 define the separa
tion between the adjacent cutting lines and the length of
cutting lines, respectively.13 Within the K1-extended repre-
sentation of the cutting lines,17 m  varies in the range 1
2N/2<m <N/2 and k is in the range2p/T,k<p/T.
For a SWNT of finite lengthL, the 1D wave vectork be-
comes quantized, so thatk5m K11kK2 /U, wherek is
now an integer number varying in the range 12U/2<k

<U/2. By defining the cutting line index changeDm5m f
2m ı and the wave-vector changeDk5kf2kı , we can write
the difference of the electronic wave vectors from the ph
factors of Eq. ~12! in the form kı2k f52DmK1
2DkK2 /U.

By substitutingkı2k f andRhs
u into Eq. ~12!, the summa-

tion over the indexu ~over the SWNT unit cells! can be
taken out of the squared brackets in the form(u51

U exp
@2i(DmK11DkK2 /U)•uT#. The wave vectorsK1 and K2
are defined as reciprocal-lattice unit vectors with respec
Ch and T, that is,K1•Ch5K2•T52p and K1•T5K2•Ch

50.13 The sum over the indexu then becomes(u51
U exp

@2i(2pu/U)Dk#. The latter sum is equal to zero unlessDk
50, and for such a case the sum is equal toU. We thus
obtain the selection rule for the electronic wave vector alo
the SWNT axis,Dk50 or kf5kı , in agreement with the
general property of momentum conservation. Summing
~12! over the indexh ~over the graphene unit cells! leads to
the selection rule for the cutting line indexm, as we will
show in the next paragraph.

With the help of the selection ruleDk50 derived above,
we can simplify the phase factors of Eq.~12! to the form
exp@2iDmK1•(hR2r s

1/2)#. Substituting the symmetry vec
tor NR5Ch1MT and using the relationsK1•Ch52p and
K1•T50, we obtain exp@2iDm2ph/N1iDmK1•r s

1/2#, where
K1•r s

15ws
1 according to the definition ofws

1 in Eq. ~11!. By
decomposing cos(whs) and sin(whs) of Eq. ~14! into the sums
and differences of complex exponents, the dipole vectorD of
Eq. ~12! can be written as
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Dx5
1

2
~C11S111C21S21!,

Dy5Q
1

2i
~C11S112C21S21!,

Dz5C0S0 , ~15!

where the following notation is used:

S,5
1

N (
h51

N

e2 i (Dm2,)2ph/N,

C05
A3Mdip

a
@CB

f * CA
ı dzj02CA

f * CB
ı dz* j0* #,

C615
A3Mdip

a
@CB

f * CA
ı dxj612CA

f * CB
ı dx* j61* #,

j,5ei (Dm2,)wA
1 /2. ~16!

The matrix element of Eq.~4! is proportional to the scala
product of the light polarization vectorPr (r5a,e) and the
dipole vector given by Eq.~15!. One can see from Eq.~15!

that the light polarized parallel to the SWNT axis (Pr5 ẑ)
selects the termS0 in the matrix element, while the ligh
polarized perpendicular to the SWNT axis (Pr5 x̂ or ŷ) se-
lects the termsS11 and S21. The presence of the termS,

(,50,61) in the matrix element implies the optical sele
tion rule Dm5,, or m f5m ı1,, also written asm→m1,,
sinceS,51 for Dm5, and S,50 otherwise, according to
the definition of Eq.~16!. We thus obtain the dipole selectio
rules for the optical electronic transitions,m→m for parallel
polarization~z! andm→m61 for perpendicular polarization
(x or y).1,2,4

For circularly polarized light propagating along th
SWNT axis (z), the light polarization vector is given by
Pr5(1,YL i ,0), whereL511 for L andL521 for R he-
licity of light, indicating a rotation of the optical electric
field intensityEr ~whereEriPr) to the L and to the R when
looking along the light propagation direction (z), while Y
511 for light absorption (r5a) and Y521 for light
emission (r5e). Multiplying the dipole vector of Eq.~15!
by the light polarization vectorPr5(1,YL i ,0) with conse-
quent substitution into the optical electronic transition mat
element given by Eq.~4! yields

Mopt
r 5 i

1

2

e\

mvr
A I r

ec
ei (v f2v ı2Yvr)t@~11QLY!C11S11

1~12QLY!C21S21#. ~17!

Either of the two terms in the squared brackets of Eq.~17!
vanishes, depending on the sign of the productQLY. Re-
member thatQ511 for AL ~ZR! andQ521 for AR ~ZL!
handedness of SWNTs,L511 for L and L521 for R
helicity of light, andY511 ~absorption,r5a) and Y5
21 ~emission,r5e). The presence of the termS, in Eq.
~17! indicates the selection ruleDm5,, or m→m1,, as
2-5
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discussed above. The selection rules obtained from Eq.~17!
for different SWNT handedness, for different light helicit
and for light absorption and emission processes are sum
rized in Table I. In zigzag and armchair achiral SWNT
circularly polarized light induces both electronic transitio
m→m11 andm→m21 simultaneously, since both the A
(Q511) and AR (Q521) chiral forms correspond to th
same atomic structure of achiral SWNTs. In contrast, o
one of the two electronic transitions, eitherm→m11 or m
→m21, is allowed in chiral SWNTs, depending on wheth
the light is absorbed or emitted, on the helicity of the lig
and on the handedness of the SWNT.

The matrix element given by Eq.~17! describes the tran
sition between electronic states (m ı ,kı) and (m f ,kf), where
m f5m ı21 or m ı11, according to the selection rules liste
in Table I, andkf5kı . The total electronic optical transitio
rate is given by

Wopt
r 5

1

tr
(
m ıkı

U2 i

\E0

tr
dtMopt

r U2

~18!

within first-order time-dependent perturbation theory, wh
the summation over the final states (m f ,kf) is omitted be-
cause of the aforementioned selection rules, andtr is the
electron-photon interaction time related to the frequen
broadening of lightDvr by the uncertainty principle,tr

52p/Dvr . The value ofDvr510 cm21 typical for the la-
ser beam corresponds totr50.5 ps. Integrating the time de
pendence of the matrix element in Eq.~18! yields

Wopt
r 5(

m ıkı

2p

\
uMopt

r u2F4 sin2@~v f2v ı2Yvr!tr/2#

2p\~v f2v ı2Yvr!2tr
G .

~19!

In the weak interaction limit,tr→` and the expression in
the square brackets of Eq.~19! becomes a delta function
d(Ef2Eı2Y\vr), reflecting energy conservation. Sum
ming the expression in the squared brackets over the s
(m ı ,kı) in Eq. ~19! gives the joint density of electronic state
at the resonant transition energy,Ef2Eı5Y\vr , and Eq.
~19! then becomes Fermi’s golden rule.

TABLE I. The optical selection rules for circularly polarize
light propagating along the axis of the chiral SWNT. The SWN
handedness is referred to as AL/ZR~armchair-left/zigzag-right,Q
511) and AR/ZL~armchair-right/zigzag-left,Q521). The helic-
ity of the light is referred to as L~left, L511) and R~right, L
521). The two cases for light absorption (r5a,Y511) and
light emission (r5e,Y521) are shown.

SWNT Light helicity
handedness L (L511) R (L521)

Light absorption (Y511)
AL/ZR (Q511) m→m11 m→m21
AR/ZL (Q521) m→m21 m→m11

Light emission (Y521)
AL/ZR (Q511) m→m21 m→m11
AR/ZL (Q521) m→m11 m→m21
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IV. DISCUSSION

The dipole selection rules for SWNTs predict optical ele
tronic transitionsm→m and m→m61 for light polarized
parallel and perpendicular to the SWNT axi
respectively.1,2,4 For perpendicular polarization, the optic
field gains a phase factor when the cylindrical SWNT surfa
is unrolled into the flat graphene layer,1,17 yielding a change
of electronic momentum in the unfolded 2D Brillouin zon
Dk56K1, which is equivalent to a transition to the adjace
cutting line, m→m61. The selection rulem→m61 be-
comes more specific in the case of circularly polarized lig
propagating along the axis of a chiral SWNT, eitherm→m
11 or m→m21, depending on whether the light is ab
sorbed or emitted, on the helicity of the light, as shown
Ref. 10, and on the handedness of the SWNT. All these ca
are summarized in Table I.

The same selection rules derived in Sec. III from pert
bation theory can be obtained directly from group theo
using the symmetry properties of chiral SWNTs. The to
symmetry of a chiral SWNT is expressed by the groupCN ,
whereN is the number of hexagons in the SWNT unit cell13

The electric dipole Hamiltonian given by Eq.~2! transforms
as one of the two partners of the two-dimensional repres
tationE1, depending on the light absorption or emission p
cess, on the light helicity, and on the SWNT handedne
Calculating direct products ofE1 with other irreducible rep-
resentations of groupCN yields the selection rules listed i
Table I. The selection rules are therefore independent of
tight-binding representation of the Bloch functions in Eq.~7!
and they are primarily determined by the symmetry prop
ties of chiral SWNTs. The presence of a screw axis in ch
SWNTs thus provides a possibility for the optical determin
tion of the SWNT handedness.

The symmetry properties of chiral SWNTs are inherit
from the symmetry properties of the graphene layer. T
presence of the two inequivalent atomic sites (A and B, as
shown in Fig. 1~a!! in the unit cell of the graphene laye
related to each other by the 2D spatial inversion in
graphene plane~the center of inversion is the center of
hexagon in the graphene layer!, results in two inequivalent
degeneracy points~hexagonal cornersK andK8) in the first
Brillouin zone of the graphene layer related to each other
time-reversal symmetry.13 The time-reversal symmetry an
the spatial inversion symmetry impose the following co
straints on the electronic dispersion relations in the graph
layer,E s̄(2k)5Es(k) andEs(2k)5Es(k), respectively,
where 5v,c is the band index,s5↑↓ is the spin of the
electron~wheres̄ is directed opposite tos), andk is the 2D
wave vector.

When the 2D graphene layer is rolled up into the 1
SWNT, the 2D electronic dispersion relations of th
graphene layer are folded into the 1D electronic dispers
relations of the SWNT,13 namely, the 2D wave vectork splits
into the 1D wave vectork and the cutting line indexm ~also
referred to as the subband index or the angular momentu!.
The time-reversal symmetry and the 1D spatial invers
along the SWNT axis now yieldE s̄(2m,2k)5Es(m,k)
and Es(m,2k)5Es(m,k), respectively, for zigzag and
2-6
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INTERBAND OPTICAL TRANSITIONS IN LEFT- AND . . . PHYSICAL REVIEW B69, 205402 ~2004!
armchair achiral SWNTs. For chiral SWNTs, the spatial
version symmetry is broken, as it inverts the SWNT hand
ness. Correspondingly, the electronic dispersion relation
chiral SWNTs are only constrained by time-reversal symm
try, which yieldsE s̄(2m,2k)5Es(m,k). Thus, the elec-
tronic dispersion relations in chiral SWNTs are asymme
in k with respect to the center of the 1D Brillouin zonek
50), and this asymmetry is responsible for the optical
tivity of chiral SWNTs.10,18

In fact, however, time-reversal symmetry prevents obs
vation of optical activity in chiral SWNTs. Time-reversa
symmetry requires that the interband electronic transitionm
→m11 ~near theK point in the unfolded 2D Brillouin zone!
for a given spin states has the same transition energy as t
2m→2m21 ~near theK8 point in the unfolded 2D Bril-
louin zone! for the opposite spin states̄, and vice versa. This
implies that the two different interband electronic transitio
m→m11 and m→m21 yield the same optical respons
when time-reversal symmetry is preserved. That is, no o
cal activity would be expected and the SWNT handedn
would not be distinguished by optical spectroscopy, acco
ing to the selection rules in Table I, unless time-reversal sy
metry is broken. Once time-reversal symmetry is broken,
spin-orbit interaction must be taken into account. The lat
however, is known to be weak in carbon materials, and
hereby incorporated by using thek•p perturbation method in
graphite19 and in SWNTs.20 Besides, inclusion of spin-orbi
coupling yields only small corrections to the optical activ
effects.21 The optical activity effects in chiral SWNTs ar
thus primarily determined by breaking the time-rever
symmetry.

Once the time-reversal symmetry is broken, the prese
of a screw axis in chiral SWNTs gives rise to their optic
activity through appearance of the odd-in-k terms in the elec-
tronic dispersion relations.10,18 Optical activity consists of
the circular dichroism~difference in absorption of L and R
circularly polarized light! and the circular birefringence~the
rotation of light polarization plane!, the two conjugate effects
being typical of chiral organic molecules and enantiomorp
crystals~natural optical activity!,22 as well as of homomor-
phic crystals under uniaxial stress~stress-induced optica
activity!21 and in the presence of an axial magnetic fie
~magnetically induced optical activity!.22 No optical activity,
however, is expected in SWNT bundles, since both AL a
AR handed SWNTs are equally present within the bund
assuming chiral homogeneity of the synthesis process. O
the separation of chiral SWNTs according to their hand
ness succeeds, the efficiency of such a separation ca
monitored by optical techniques, utilizing the effects of na
ral circular dichroism and natural circular birefringence. O
of the possible separation mechanisms can be related to
recently reported liquid ion exchange chromatography
DNA wrapped SWNTs,23 because of the intrinsic handedne
of the single-stranded DNA molecules.

The time-reversal symmetry is broken by the spatial in
mogeneity of the optical field along the length of the SWN
Phenomenologically, the spatial inhomogeneity of the opt
field is described24 by the third-rank tensor termg i j l in the
dielectric functione i j , given the electric displacement flu
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density Di5e i j Ej1g i j l (dEj /drl) for the optical electric-
field intensityEj . In other words, the termg i j l reflects the
dependence of the dielectric functione i j on the photon wave
vectork l , g i j l 52Y i (de i j /dk l), as follows from the vector
potential of Eq.~3!. The termg i j l is calculated in Ref. 9 for
chiral SWNTs giving rise to their natural optical activity. Th
natural optical activity is thus induced by the spatial inhom
geneity of the optical field propagating in media which la
spatial inversion symmetry.

The spatial inhomogeneity of the optical field is express
by the photon wave vectorkr (r5a,e) in Eq. ~3!. For light
propagating perpendicular to the SWNT axis,kr can be ne-
glected, since the SWNT diameterdt is much smaller than
the wavelength of lightlr , dt!lr . In contrast, the SWNT
length L is of the order oflr , L;lr , so that the optical
field is sufficiently inhomogeneous for light propagatin
along the SWNT axis. Taking into account the photon wa
vectorkr in Eq. ~8! results in the dipole vector

D5^C f ueY i kr•r
“uC ı&

5
A3

UNa FCB
f * CA

ı (
u51

U

(
h51

N

ei (kı2k f1Ykr)•RhA
u

3 (
,51

3

MA
,re2 i [k f2Y(1/2)kr] •rA

,
VrA

,

1CA
f * CB

ı (
u51

U

(
h51

N

ei (kı2k f1Ykr)•RhB
u

3 (
,51

3

MB
,re2 i [k f2Y(1/2)kr] •rB

,
VrB

, G . ~20!

Note that the photon wave vectorkr changes the electroni
optical transition matrix elements between the neare
neighbor carbon atoms, so that Eq.~9! becomes

^f~r2 1
2 r s

,!ueY i kr•r
“uf~r1 1

2 r s
,!&5

A3Ms
,rr s

,

a
. ~21!

Because the lattice constant of the graphene layea
50.246 nm is negligible compared to the wavelength
light lr , the matrix elementsMs

,r of Eq. ~21! can be con-
sidered equal to the matrix elementMdip of Eq. ~9!, Ms

,r

5Mdip . Thus, the only difference between the dipole vect
of Eqs. ~8! and ~20! is the wave-vector change from (kı

2k f) to (kı2k f1Ykr) and fromk f to (k f2Y 1
2 kr) in the

phase factors. This change reflects conservation of the e
tronic momentum along the SWNT axis,Dk5kf2kı5Ykr

5Y2p/lr , and does not affect the selection rules for t
cutting line indicesm f andm ı summarized in Table I.

We now consider the effect of the photon wave vec
(kr) on the optical absorption spectra (r5a) of chiral
SWNTs. We select the (20,10) semiconducting SWNT
diameterdt52.07 nm and chiral angleu519.1° for demon-
stration purpose. The electronic band structure for a (20,
SWNT of AL handedness is shown in Figs. 2~a! and 2~b!,
which depict, respectively, those electronic subbands wh
2-7
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are mapped to the vicinity of theK and K8 points of the
unfolded 2D Brillouin zone~see figure caption for details!.
The vertical gray lines connecting the open and solid d
showm→m61 electronic transitions for theumu544 and 45
subbands, giving rise to anEm,m6152.60 eV van Hove sin-
gularity ~VHS! in the joint density of states~JDOS!. The
open and solid dots indicatem→m11 andm→m21 elec-
tronic transitions, respectively. The transition ener
Em,m6152.60 eV is the same for both processesm→m11
andm→m21 as long as we neglect the photon wave vec
kr (r5a,e), i.e., while we assume the electronic transitio
being vertical. In fact, however, the photon wave vectorkr

changes the electronic wave vector,kf2kı5Ykr , for light
propagating along the SWNT axis. The solid and dashed
rows in Fig. 2 show the real nonvertical electronic transitio
m→m11 and m→m21, respectively, for the absorptio
(r5a) of L and R circularly polarized photon propagating
the positive direction of thez axis (kr.0). For the photon
wavelength 476 nm~2.60 eV!, the photon wave vectorkr

51.3231022 nm21 is about 200 times smaller than th
maximum electronic wave vectork5p/T52.79 nm21 at
the edge of the 1D Brillouin zone, whereT51.13 nm is the
length of the unit cell for the~20,10! SWNT. Correspond-

FIG. 2. Electronic band structure of an AL handed (20,1
SWNT in the zone-folding scheme~Ref. 13! using the nearest
neighbor tight-binding approximation and transfer integralt
52.89 eV~Ref. 25!. Only subbands in the vicinity of the~a! K and
~b! K8 points of the unfolded 2D Brillouin zone are shown, f
which the cutting line indices arem.0 andm,0, respectively. The
electronic subbands are indexed byumu547,46,48,45,49,44,50 an
are ordered according to increasing energy separation from
Fermi levelEF50. Subbandsumu545,44 are shown as black curve
and labels, while the other subbands are shown as gray cu
Open and solid dots show vertical transitionsm→m11 (m544,
245) and m→m21 (m545,244), associated with theEm,m61

52.60 eV VHS in the JDOS. Solid and dashed arrows show ac
electronic transitions involving the momentum change by the p
ton wave vector (k), which is increased by 50 times for demo
stration purpose (50k).
20540
ts
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ingly, the photon wave vectorkr in the band diagram of Fig
2 is increased by 50 times in order to observe its effect on
electronic transitionsm→m61.

The solid and dashed arrows in Fig. 2 connect the e
tronic states in the valence and conduction subbands
which these subbands have the same slope, i.e., where
VHSs appear in the JDOS. These VHSs depicted by the s
and dashed arrows in Fig. 2 differ from the VHSEm,m61

52.60 eV which involves vertical electronic transitions n
glecting the photon wave vectorkr , as shown by the open
and solid dots in Fig. 2. Let us consider them→m11 tran-
sition in the vicinity of theK point, wherem ı544 andm f

545, as shown in Fig. 2~a!. The electronic states in th
valence and conduction bands for the VHS in the JDOS
shifted by the photon wave vectorkr from the open dots, as
indicated by the solid arrow. Because the energy extrem
the valence and conduction bands appear, respectivel
wave vectors above and below the VHS wave vectors~the
open dots!, the photon wave vectorkr ~the solid arrow!
shifts the VHS wave vectors~the open dots! further away
from the energy extrema in the valence and conduct
bands. The photon wave vectorkr thus gives an increase t
the energy of the VHS in the JDOS for them→m11 tran-
sition. The same increase takes place for them→m11 tran-
sition in the vicinity of theK8 point, where transitions be
tweenm ı5245 andm f5244 contribute, as shown in Fig
2~b! by the solid arrow. In contrast, the photon wave vec
kr gives a decrease to the energy of the VHS in the JDOS
m→m21 transitions~the dashed arrows in Fig. 2!. The en-
ergy of the VHS in the JDOS for the vertical electronic tra
sitions,Em,m6152.60 eV, thus splits into two different en
ergies, slightly above and slightly below the value of 2.
eV, for them→m11 andm→m21 transitions, respectively
We thus expect to observe slightly different optical abso
tion spectra for the light of L and R helicity~circular dichro-
ism! as well as for the SWNTs of L and R handedness,
cause only one of two transitionsm→m61 is allowed in
these cases according to the optical selection rules sum
rized in Table I.

We calculated the electronic optical transition rates of E
~19! for light absorption (r5a) as a function of the light
wavelength, i.e., the optical absorption spectra, for
(20,10) SWNTs of AL and AR handedness, and for L and
helicity of the light, using light broadeningDva510 cm21

and the electronic band structure shown in Fig. 2~in the
present discussion, we consider the real photon wave ve
value, not increased by 50 times as in Fig. 2!. The optical
absorption spectra are shown in Fig. 3~a!, where the labels
AL and AR indicate the SWNT handedness, while PL a
PR denote the photon helicity. The solid and dashed cur
in Fig. 3~a! correspond to the cases of matched and m
matched SWNT handedness and light helicity, respectiv
For comparison, Fig. 3~b! shows the JDOS profile of a
(20,10) SWNT for verticalm→m61 electronic transitions
~neglecting the photon wave vectorka), where the electronic
transition energy is measured in nanometers for direct c
parison with the optical absorption spectra in Fig. 3~a!. The
spike in the JDOS profile around 476 nm is due to t
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INTERBAND OPTICAL TRANSITIONS IN LEFT- AND . . . PHYSICAL REVIEW B69, 205402 ~2004!
Em,m6152.60 eV VHS arising from four different electroni
transitions between the subbandsumu544 and 45@see tabular
inset in Fig. 3~b!, and the open and solid dots in Fig.
connected by the vertical gray lines#. By comparing Figs.
3~a! and 3~b!, one can see that the optical absorption spe
pretty much follow the JDOS profile, being up-shifted
down-shifted in energy, depending on the SWNT handedn
and on the light helicity, because of the photon wave vec
ka , as discussed above. When the SWNT handedness
the light helicity match@see the solid curve in Fig. 3~a! and
the solid arrows in Fig. 2#, the VHS energy is downshifted in
wavelength ~up-shifted in energy!, while for mismatched
SWNT handedness and light helicity@the dashed curve in
Fig. 3~a! and the dashed arrows in Fig. 2#, the VHS energy is
up-shifted in wavelength~down-shifted in energy!, in agree-
ment with our predictions given above for the discussion
the electronic transitions in Fig. 2. The splitting in wav
length between the solid and dashed curves in Fig. 3~a! is
about 0.3 nm, which gives 0.06% when divided by the wa
length 476 nm. The small magnitude of the splitting (0.06%
is related to the small magnitude of the photon wave vec
ka compared to the electronic wave vectorskı and kf
(0.5 %!, and also is related to the relatively flat valence a
conduction bands in the vicinity of electronic states wh
the VHS in the JDOS occurs. We can expect a larger m
nitude of the splitting in the low-quantum-number limit~the
long-wavelength limit! where the electronic bands are le
flat. Thus, it should be possible to observe the natural cir
lar dichroism and the natural circular birefringence expe

FIG. 3. ~a! Optical absorption spectra for (20,10) SWNTs of A
and AR handedness and for L and R circularly polarized phot
labeled by PL and PR, respectively, taking into account the pho
wave vector (k). ~b! JDOS form→m61 vertical electronic tran-
sitions in AL and AR (20,10) SWNTs, neglecting the photon wa
vector (k). Calculations are based on Eq.~19! with light broaden-
ing Dv510 cm21 and the electronic band structure of Fig. 2.
VHS at 476 nm~2.60 eV! arises from transitions between subban
umu545,44.
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mentally, though the experimental condition for observat
is challenging. Such observation will be general for und
standing many chiral nanomaterials.

The electronic transitions6umu→6umu61 @the solid ar-
row in Fig. 2~a! and the dashed arrow in Fig. 2~b!# and
6umu→6umu71 ~the other two arrows in Fig. 2! give rise to
a single VHS in the JDOS profile of Fig. 3~b! because of the
symmetry between the valence and conduction bands in
2. The electronic band structure shown in Fig. 2 is calcula
in the nearest-neighbor tight-binding approximation w
only one parameter, the transfer integralt52.89 eV, fitted to
RRS data form→m transitions in SWNTs.25 While the
asymmetry between the valence and conduction bands is
detected in optical studies form→m transitions, it gives rise
to a splitting in energy between the two VHSs in the JDO
for 6umu→6umu61 and 6umu→6umu71 transitions.
Namely, the VHSEm,m6152.60 eV for the (20,10) SWNT
shown in Fig. 3~b! splits in energy intoE6umu,6umu 61
52.82 eV andE6umu,6umu7152.67 eV when using transfe
integral t53.033 eV and overlap integrals50.129 fitted to
the electronic band structure of graphite calculated from
ab initio variational approach,13 the latter parameter bein
responsible for the asymmetry between the valence and
duction bands in graphite. The VHS splitting in energy yiel
the optical absorption peak splitting in wavelength. The t
optical absorption peaks appear in Fig. 3~a! at 440 nm and
464 nm wavelength. The optical absorption peaks are t
split by 5% and by probing the splitting we can measu
experimentally the asymmetry between the valence and c
duction bands.

The asymmetry between the valence and conduc
bands, if any, splits the VHS in the JDOS for the perpendi
lar polarization, but does not affect the optical activity
chiral SWNTs. Both components of the split VHS in th
optical absorption spectra simultaneously up-shift or dow
shift in energy when changing the light helicity or the SWN
handedness, i.e., form→m11 or m→m21 transitions, re-
spectively. Using the tight-binding parameters for graphite13

the two optical absorption peaks at 440 nm~transitions 44
→45 and 244→245 in Fig. 2! and 464 nm~transitions
45→44 and 245→244 in Fig. 2! are shifted simulta-
neously in wavelength by 0.3 nm for opposite light helici
or SWNT handedness. Using various electronic ba
structure models may significantly change the waveleng
of the optical absorption peaks~440 nm and 464 nm! and the
spacing between them (24 nm), but the change in the op
activity shift (0.3 nm) is expected to be only minor, as lo
as the band-structure model reflects the symmetry of thp
and p* electronic states, because the latter shift is indu
by the photon wave vectorkr independent of the band
structure model. However, if the electronic states of differ
symmetry (s andp* ) are involved in the optical transition
at the same wavelength, as happens for SWNTs in a ce
diameter range according to linear augmented plane-w
calculations,26 the effect of the SWNT handedness and lig
helicity on the optical absorption spectra must be recon
ered, as the selection rules change.

Apart from thes-p* electronic transitions, thes states
are known to mix with thep states in smaller diamete
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SWNTs due to the curvature of the SWNT sidewall. T
sidewall curvature does not affect the dipole selection ru
for the p-p* electronic transitions, as discussed previou
in Sec. III. As for the s-p hybridization in smallerdt
SWNTs, the tight-binding approximation is shown to d
scribe the electronic transition energies of SWNTs fordt
.1.1 nm with a precision of 10 meV in the waveleng
range of visible light~488–785 nm!.27 The electronic transi-
tion energies in SWNTs of smaller diameters tend to dow
shift from the predictions of the tight-binding approximatio
by 20 meV fordt50.8 nm,27 yet the optical activity wave-
length shift~0.3 nm! is hardly affected by thes-p hybrid-
ization. The optical activity wavelength shift is only relate
to the curvature of the electronic band, being induced by
photon wave vectorkr which breaks time-reversal symme
try.

The time-reversal symmetry can also be broken by a m
netic field applied parallel to the SWNT axis,18 giving rise to
an asymmetry in the electronic dispersion relations, which
turn yields a magnetically induced optical activity of chir
SWNTs, though the measurement of these effects requir
high magnetic field. The magnetically induced optical act
ity, also known as the Faraday effect, is phenomenologic
described24 by the third-rank tensor termg i j l in the dielectric
function e i j , where the electric displacement flux dens
Di5e i j Ej1g i j l EjHl depends on the external magnetic-fie
intensityHl .

The magnetic-flux densityBẑ changes the phase facto
of the electronic wave functions, shifting the electronic wa
vectors in the circumferential direction of the SWNT~along
theK1 wave vector in the unfolded 2D Brillouin zone of th
graphene layer! by f/(pdtf0), wheref is the magnetic flux
penetrating the cross section of the SWNT,f5Bpdt

2/4, and
f05h/e54135.6 T nm2 is the flux quantum.13 The wave-
vector shift splits the6umu→6umu61 transitions in energy
up-shifting the energy of theumu→umu11 transition and
down-shifting the energy of the2umu→2umu21 transition
in the case ofB.0, yielding a splitting in energy of the VHS
in the JDOS. The VHS splitting can be estimated by us
the linear electronic dispersion approximation around
K and K8 points in the unfolded 2D Brillouin zone,13

Ev,c57(A3/2)tka. The VHS splitting is given byDE
5(A3/2)taBdt /f0. Using the parameterst52.89 eV,
ot

i-
.S

ze
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nu

20540
s
y
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e
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n

a
-
ly

e

g
e

a50.246 nm, anddt52.07 nm, we obtain the VHS splitting
of DE51.5 meV for the large magnetic-flux densityB
55 T. The VHS splitting yields an optical absorption pe
splitting of 0.3 nm or 0.06% for opposite light helicity o
SWNT handedness. The magnetically induced optical ac
ity for a magnetic-flux densityB55 T is thus comparable to
the natural optical activity in chiral SWNTs.

V. SUMMARY

The interband electronic optical transitions in chir
SWNTs with circularly polarized light propagating along th
axis of the SWNTs are governed by different selection ru
depending on the SWNT handedness and on the light he
ity. The difference in the selection rules related to the pr
ence of a screw axis in chiral SWNTs gives rise to th
optical activity, when the time-reversal symmetry is broke
The time-reversal symmetry is broken by the spatial inhom
geneity of the optical field, yielding a natural circular dichr
ism and a natural circular birefringence~the natural optical
activity! found in other chiral systems. The time-revers
symmetry can also be broken by an axial magnetic fi
yielding magnetically induced circular dichroism and ma
netically induced circular birefringence~magnetically in-
duced optical activity!. The interband electronic optical tran
sition matrix elements calculated for chiral SWNTs placed
an inhomogeneous optical field and in an axial magnetic fi
indicate their optical activity within a single-electron a
proximation. Phenomenologically, the optical activity of ch
ral SWNTs is related to the third-rank tensor term in t
dielectric function. The optical activity of chiral SWNTs ca
be used for the optical determination of the SWNT hand
ness.
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4A. Grüneis, R. Saito, Ge.G. Samsonidze, T. Kimura, M.A. P

menta, A. Jorio, A.G. Souza Filho, G. Dresselhaus, and M
Dresselhaus, Phys. Rev. B67, 165402~2003!.

5A. Jorio, M.A. Pimenta, A.G. Souza Filho, Ge.G. Samsonid
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