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The nanotube handedness is defined for the complete determination of the nanotube atomic structure by its
diameter and chirality. The interband electronic optical transition matrix elements are calculated and the dipole
selection rules are derived for chiral carbon nanotubes and circularly polarized light propagating along the
nanotube axis. The dipole selection rules are shown to depend on the nanotube handedness and on the helicity
of the light, and this dependence is responsible for the optical activity of carbon nanotubes, when time-reversal
symmetry is broken. The optical absorption spectra calculated for opposite light helicity or nanotube handed-
ness show circular dichroism in chiral nanotubes. The optical activity of chiral nanotubes allows the nanotube
handedness to be determined in optical experiments using circularly polarized light.
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[. INTRODUCTION gates along the SWNT axig). This can be achieved by
using fibers of aligned SWNT&ef. 6 or growing aligned
Light absorption and emission processes in single-walSWNTs by chemical vapor deposition in an electric field.
carbon nanotube§SWNTS are governed by dipole selection The light propagating along the SWNT ax@® can be po-
rules"? and by the depolarization effetf While the depo- larized perpendicular to the SWNT axis ¢r y). While both
larization effect implies that light polarized perpendicular tooptical electronic transitionge—u—1 and u—u+1 are
the tube axis is suppressed because of the much larger polaymmetry allowed for linearly polarized lighk (or y), only
izability parallel to the tube axis, the dipole selection rulesone of these two transitions survives in the case of circularly
only allow electronic transitions between the valence andolarized light k=iy), depending on the SWNT handed-
conduction bands withithe samesubband of indexu for  ness and on the light helicity. The left fix+iy) and right
light polarized along the tube axis. The depolarization effec{R=x—iy) helicity of the light corresponds to left-handed
is expected to be more pronounced for metallic SWNTs du@r right-handed rotation of the polarization vector when
to the presence of conduction electrons. If the light polarizalooking along the direction of propagation)( respectively
tion vector is perpendicular to the SWNT axis, the dipoleThe SWNT handedness is defined as AL or AR, depending
selection rules predict electronic transitions between two aden the rotation of two of the three armchéd) chains of the
jacent subband$“of indicesu andw 1. The difference in  carbon atoms to the L or to the R, when looking along the
the dipole selection rules for the parallel and perpendiculaBWNT axis ). While the absorption of the L circularly
light polarization directions indicates different electronic polarized light induces the electronic transitions— u+1
transition energies, which in turn implies different resonanceor AL handed SWNTs andu—u—1 for AR handed
conditions. Thus, the interaction with light polarized perpen-SWNTs, the absorption of the R circularly polarized light
dicular to the SWNT axis can be detected, in spite of thenduces the transitiong— u— 1 for AL handed SWNTs and
depolarization effect, by the proper selection of the resou— u+1 for AR handed SWNTs. The difference in the di-
nance conditions, i.e., wavelength of light resonant with pole selection rules for L and R circularly polarized light
— wp* 1 rather than withu— w transitions in a given SWNT. gives rise to optical activitycircular dichroism and circular
Resonance Raman spectroscd®RS studies on isolated birefringencé of chiral SWNTs>° The difference in the di-
SWNTs confirm the predicted optical selection rules whempole selection rules for AL and AR handed SWNTs provides
changing the light polarization vector. a way to identify SWNT handedness in optical experiments
The majority of optical experiments on isolated SWNTswith circularly polarized light. Alternatively, the SWNT
are performed in the geometry where the SWNTs lie on ahirality, and thus also the SWNT handedness, can be deter-
substrate Xz) and the laser beam propagates normal to themined from images of individual SWNTSs taken by scanning
substratey), and thus normal to the SWNT axig)( allow-  tunneling microscopy(Ref. 1) and TEM (Ref. 129 tech-
ing one to change the direction of the light polarization vec-niques.
tor with respect to the SWNT axis from parall@ to per- In the present paper we demonstrate the possibility to de-
pendicular &). However, it is also possible to design the termine SWNT handedness by optical spectroscopy. The pa-
geometry of the experiment, such that the laser beam propaer is organized as follows. An extended definition of SWNT
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(r;a)(_%“r \ / K7 < H FIG. 1. (a) The graphene layer broken into

(N N >\ 30° sectors where the chiral vector of the SWNT

AL can be defined. Solid and dashed lines, labeled by

Z and A, respectively, stand for zigzag and arm-
chair achiral SWNTs, while the C1 and C2 sec-
tors represent chiral SWNTs of opposite handed-
ness.(b) Z and A achiral SWNTs(c) C1 and C2
chiral SWNTSs, obtained from the graphene layer
in (a), by rolling from the front to the back.

chirality and SWNT handedness is introduced in Sec. Il. Thespond to Z, C1, A, and C2 SWNTSs, respectively. In terms of
optical selection rules for circularly polarized light are de-the (n,m) indices, Z, C1, A, and C2 SWNTs correspond to
rived from the electronic dipole transition matrix elements inm=0, 0O<m<n, m=n, and 0<n<m, respectively. In other
Sec. Ill. While the same selection rules can be obtained bwords, C1 and C2 SWNTSs are related to each other by inter-
symmetry considerations using group theory, as discussed irthanging thein andm indices, i.e., the two pairs of indices
Sec. IV, the matrix elements calculated in Sec. Ill are essentn,m) and (m,n) correspond to two SWNTs of the same
tial for the quantitative analysis of the optical absorptiondiameterd; and the same chiral angtedefined in the range
spectra of chiral SWNTs regarding their handedness and< ¢< /6 but of opposite handedness. The two pairs of
light helicity, as presented in Sec. IV. Concluding remarksindices become r,m) and (h+m,—m) by selecting the
follow in Sec. V. upper-right C2 sector instead of the rightmost in Figa) 12
Z and A achiral SWNTs are shown in Fig(h}, and C1
Il. NANOTUBE HANDEDNESS and C2 chiral SWNTSs in Fig. (t). While L- and R-handed
organic molecules are commonly defined according to the
A SWNT can be considered as a graphene layer rolled ugirection of rotation of the atomic chain when looking along
into a seamless cylinder. The nanotube structure is uniqueljhe molecular axis, the L or R handedness of C1 and C2
determined by the chiral vectdEy, in the graphene layer chiral SWNTs is not so obvious. There are three A directions
which spans the circumference of the SWNTThe chiral  and three Z directions in the graphene layer, as shown in Fig.
vector consists of integral numbers of the unit veclgrand  1(a). In the case of a C1 chiral SWNEee Fig. 1c)], two of
a, shown in Fig. 1a), C,=na;+ma,. The chiral vector is the three A lines are rotated to the left and the third A line to
thus uniquely defined by a pair of integer numbemsnf).  the right when looking along the SWNT axis. At the same
Alternatively, the chiral vector can be defined by its lengthtime, two of the three Z lines are rotated to the right and the
C,=md;, whered, is the tube diameter, and by its angle third Z line to the left when looking along the SWNT axis.
to one of the zigzag directions in the graphene layer, labele@le thus can refer to C1 chiral SWNTs either as armchair
by Z in Fig. 1(a). The chiral angled takes values 0 and/6  left-handedAL) tubes or as zigzag right-hand&R) tubes.
for zigzag and armchair achiral SWNTs, when the chiral vecSimilarly, C2 chiral SWNTs can be referred to either as AR
tor C,, is aligned along the Z and A directions in the grapheneor as ZL. Note that while chiral SWNTs can be either of AL
layer, respectivelysee Fig. 1a)].}* Values of the chiral angle or of AR handedness, zigzag and armchair achiral SWNTs
0 between 0 andr/6 correspond to chiral SWNTSs, when the have no explicit handedness associated with them. This im-
chiral vector is defined within the gray colored sector in theplies that there are twice as many chiral SWNTSs for each pair
graphene layer in Fig.(&). of (n,m) indices as achiral SWNTs, once the indices are
The chiral vector can be defined within one of twelve 30° defined in the range €m=n. This aspect must be taken
sectors in the graphene layer shown in Fige)1While the into account when analyzing the distribution of the, ()
gray colored sector and the five equivalent sectors labeled bipdices in a SWNT sample.
C1in Fig. 1a) correspond to SWNTSs of a given handedness,
the six C2 sectors, which are also equivalent between them- IIl. INTERBAND OPTICAL TRANSITIONS
selves, yield SWNTs of the opposite handedness. The
SWNTs of opposite handedness are related to each other by The optical dipole transitions in graphite and in SWNTs
the one-dimensiondllD) spatial inversion along the SWNT have been recently studied regarding the electronic wave-
axis. The SWNT handedness is also determined by the typéector dependence of their optical transition matrix
of rolling of the graphene layer, either from the front of the elements:*>*°In the present section, we focus on the photon
layer to the back, or from the back to the front, as defined invave-vector and polarization dependence of the matrix ele-
Ref. 9, so that the printed side of Figial becomes, respec- ments, which guides us to the optical activity of chiral
tively, either the outer or the inner surface of the cylinder. BySWNTSs through the optical selection rules for circularly po-
specifying the type of rolling from the front to the back, we larized light.
can define SWNTSs of both handedness by varying the chiral The interband electronic optical transition matrix element
angle in the range from 0 to/3 over the two rightmost 30° for SWNTs is given by
sectors in Fig. (@), C1 and C2. Here, the values of the chiral
angle =0, 0<#<7/6, §==/6, and 7w/6< 6< /3 corre- MEo= (V| HE W ), D
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whereW, and¥; are the wave functions of the initial(and ~ =2(n’>+nm+n?)/ds and dg is the greatest common divisor
final (f) electronic states in the valence)(and conduction of (2n+m) and (2n+n) for the (n,m) SWNT? In what
(c) bands, andHg, is the optical perturbation Hamiltonian follows, we refer to the coordinates of the atomic sites of the
for the absorbed=a) or emitted p=e) light, expressed, unrolled SWNT byR},, whereu=1,... U denotes the
to first order, by nanotube unit cellsh=1,... N denotes the hexagons
within the nanotube unit cell, arek= A,B denotes the atomic
sites within the hexagon.

The electronic wave functio®, (j=1,f or j=v,c) can

, ) . . be written as a sum over the Bloch functiog (s=A,B)
with the vector potential of the electromagnetic wave giver,, o andB carbon atoms within the hexagon

by

b, eh
HoptZIRA -V (2)

p

B

= J

Apzwi C_?emp.r,%opp_ - (1 k)= 2 Clk)DL(r k). ()
P

In the tight-binding approximation, the Bloch functiods;
(s=A,B) are expressed by the linear combinations of atomic
2p, orbitals ¢(r — Ry,

Here,w,, k,, P,, andl, denote photon frequency, photon
wave vector, photon polarization, and light intensity, respec
tively, for the absorbed d=a,1=v,f=c) or emitted p
=e,I=c,f=v) light. The factorY reflects the time depen- 1 v 4N

dence of the optical field for the absorptiop=ta,Y =+1) D (rk)=— > — > eikJ-Rﬁs¢(r_ uy. (7)
or emission p=e,Y = —1) of light. The wave vector of the s JU i1 N A=t hs

emitted photon ige;= = ke, for the backscattering and trans- The limitations of the tight-binding approximation will be

mission geometries, respectively. Within the dipole approxi- . . .
mation, the photon wave vectay, is neglected in compari- discussed in Sec. IV. Note that the sum over intiefover

son to the electronic wave vectdesandk; . By substituting tr;gcg dhiixglgeo\r/]vz\lg :SECEQIXNOIEU‘%I (\’\,sémllj:éebtehi];oggﬂl?/n
Eqg. (3) into Eq. (2) and then Eq(2) into Eq. (1), the elec- P ' P

) . o . the Bloch function of Eq(7) instead, or in other words, we
tronic optical transition matrix element becomes sum the Bloch functions over thé hexagons in the SWNT

ek o unit cell, within the framework of the zone—folding
Mépsi _\/zel(wfqu“)p)tpp. D, (4) approacht® We are allowed to do so because of the equiva-
Mw, V €C lence of theN hexagons in the nanotube unit cell, which
wherew,=E, /# in which E, is the energy of the initial implies that the wave-function coefficien® in Eq. (6) are

—1) or final (J=f) electronic state, anD is the dipole vec- independent of the hexagon index _
tor defined by We now substitute the wave functions given by E@.

and(7) into the dipole vector of E(5). This yields a sum of
D=(W{|V|¥)). (5)  the dipole matrix elements between different atomic orbitals

To obtain the matrix element of Eq4) we thus need to (¢(r—Ry.s)|V[p(r—Ryg) with different phase factors

calculate the dipole vector of E¢B), which requires knowl- and wave-function coefﬁmen_@;f’ C.. Because of the rath_er

edge of the electronic wave function®, (j=1,f or y  fastdecay of the atomic orbitais(r) away from the nuclei,

=v,c). To construct the electronic wave functions, we firstWe can limit our consideration to the nearest-neighbor dipole

define the geometrical structure of the SWNT. matrix elements. The resulting dipole vector can then be
The unit cell of the graphene layer is a rhombus boundedvritten in the fornt

by the unit vectorsy anda,. Each rhombus consists of two U N

inequivalent atomic sitesA and B [see Fig. 1a)]. The D= \/§Mdip chxc! 2 E oi (ki —kp)-Rh A

graphene unit cells can be equally represented by the hexa- aNu B A& &=

gons of the honeycomb lattice. Yet visually more convenient,

each hexagon contains six carbon atoms and each carbon

atom sits among three hexagons opening multiple ways to

define the unit cell of hexagonal shape. In what follows, we

3
. 4
—iks-r €

X(E_le HeTAQr

refer to the unit cells of the graphene layer as hexagons for uoNo o,
convenience, but we imply rhombi rather than hexagons +Circy Y, X etk R >l e ikiterf|,
when writing the coordinates of the atomic sites to avoid u=theL =t

multiple interpretations. 8

The nanotube unit cell is a cylindrical segment of length
T=|T|, whereT is the nanotube translation vectdrThe
number of nanotube unit celld=L/T is determined by the pointing to the nearest-neighbor carbon atoms starting from
nanotube length.. The unrolled nanotube unit cell is given the centralA atom and from the centré atom, respectively,
by a rectangle on the graphene layer bounded by the vectorsimbered by the index=1, ...,3. Thenearest-neighbor
C,, andT. This rectangle consists & hexagons, wheré| vectorsrﬁ (s=A,Bandf¢=1,...,3) areshown in Fig. 1a),

whererf= RE?B—REA and r‘észﬁA— Ris are the vectors

205402-3



GE. G. SAMSONIDZEet al. PHYSICAL REVIEW B 69, 205402 (2004

where we setrg= —rﬁ\. The factorM g, in Eq. (8) is the whered,,» andd,z are the atomic dipole vectors for elec-

dipole matrix element between the two nearest-neighbor catronic optical transitions from th& atom in thehth hexagon

bon atoms defined by to its neighboringB atoms, and from th& atom in thehth
hexagon to its neighboring atoms, respectively. The atomic

dipole vectord,s (h=1, ... N ands=A,B) are given by

(p(r—31)|V|p(r+3rd))= (9)

V3M diprg

a
where a=0.%46 nm is the lattice constant of t_he graph_ene dhs= (0 @9 ds,
layer and|ri|=a/\3=ac.c=0.142 nm is the interatomic
C-C distance in the graphene layer.

The operatorQ) in Eq. (8) places the nearest-neighbor

vectorsr{ on the cylindrical surface of the SWNT sidewall. de= >, eikf-rﬁgy(z_ 0)9)((2) ré, (13)
Note that the operatdi is not applicable to the coordinates =1 6 2
of the atomic site®R[' nor to the nearest-neighbor vectots
in the exponential factors of E@8), because they are mul- o i
tiplied by the wave vectork, andk; which are defined in the Wneréds (s=A,B) are the atomic dipole vectors in the un-
2D reciprocal space of the unrolled graphene layer, accord@lled graphene layer. Note thet=—dy . The atomic di-
ing to the zone-folding schentd.By selecting the right- Pole vectorsds defined by Eq(13) lie in the xz plane and
handed Cartesiarxyzcoordinate system, such that the therefore can be written in the forah =(d,,0d,) anddg

graphene layer lies in they plane as shown in Fig.(a@ and =(—dy ,0,—d}). In fact, this approach ignores the curva-
by aligning the rolled up SWNT along the axis, we can ture of the SWNT sidewall. Because of the curvature, the
write an explicit expression for the operatfr in terms of  three nearest-neighbor vectdis’ (¢=1, ...,3) do not lie
the rotation operator€), (@=x,y,z) about the principal in the same plane when placed on the cylinder surface, giv-
axes, ing rise to small components of the atomic dipole vecthrs
- - in the direction normal to the SWNT sidewall. The corre-
Q:QZ(Q(’DhS)Qy<E — 9) Qx( E) ) (10) _spondlng smaly components of the atomic dipole vgctd?s_
in the unrolled graphene layer are omitted for simplicity.

To align the cylinder along the axis, the rotation operator HOWwever, including these components does not affect in any
QO (7/2) in Eq.(10) is applied first. Then the graphene layer Way the selectlc_)n rules we are here concerned with. By ap-
in the xz plane is rotated by the operatél,(7/6—6) to  Plying the rotation operator&,(® ¢na) and 2,(O ¢yp) to
account for the SWNT chirality. Finally, the graphene layerthe atomic dipole vectors,=(d,,0d,) anddg=(—dy ,0,
is rolled up into a cylinder of diametet, around thez axis ~ —d}) according to Eq(13), we obtain
by the operatof),(0 ¢), Whereey is the angular coordi-
nate of the atomic sit®},; on the cylindrical surface of the
nanotube, and indicates the type of rolling done to the dha= (cog opa)dy, O sin(ppa)dy,dy),
graphene layer, from the front to the bad®& € + 1) or from
the back to the front@® = —1). Thus® = + 1 corresponds to
AL (ZR) and®=—1 to AR (ZL) handednes¢see Sec. —(— * _ @gj * g%
Using the rotation operators of E(L0), the angular coordi- Ohe=(~cosleng)dy .~ Osin(eng) i, —d7). (19
nates of the atomic siteg,,s and the angular shifts on the
cylindrical surface between the nearest-neighbor carbon atrhe dipole vectorD is thus given by Eqs(12) and (14),
oms ¢, become where we only need to substitute the wave veckgrand the
Cartesian and angular coordinates of the atomic &tesnd
X, éns, respectively.
The coordinates of the atomic sites in the unrolled
graphene layer can be written in the foRj,=uT+R,
% (1)  tRs whereuT points to theuth unit cell, R, to the hth
hexagon within the unit cell, anB to thesth carbon atom
within the hexagon. Thé\ hexagons in the unit cell are
arranged equidistantly around the SWNT axis forming the
angles of rotation Zh/N. The two hexagons separated by

2 T ™,
Pns= g Qy| 5700 5| Rns
¢ 2 T ™
(pszd—t Qy E—ﬁ QX 5 I’S .

By substituting the operatd? of Eq. (10) into Eq.(8), we
can write the dipole vectdD in the form

\/§M A Uu N the smallest angle of rotation7ZN are connected by the
D= - _dp ctxch,> > ei(k.*kf)-RﬁAdhA symmetry vectorR=pa;+qa, in the unrolled graphene
aNU U=1h=1 layer!® The symmetry vector applieN times forms a spiral
U N of N hexagons which spans the circumference of the SWNT
+CL*CIBE E ei(kl—kf)~RﬁBth} (12) and cover_stmp—nq unit g:ells,13 NR=Ch'+ MT. The
4=1 h=1 SWNT unit cell consists of pieces of thé spirals located
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within a cylindrical segment of length. The coordinate of 1

the hth hexagon in the SWNT unit cell is thus given By, Dy=5(C+1S:1+C-1S-y),
=hR—[hM/N]T where[ £] indicates the integer part gf

Recalling that the graphene unit cells are in fact not hexa-

gons but rather rhombi, we immediately obtdty= —r§/2 Dy @ (C+1S+l C-1S-1),
[see Fig. 13)]. Finally, the coordinates of the atomic sites are
given byRp.=uT+hR—[hM/N]T—rl/2. SubstitutingR}., D,=CoSy, (15

into Eq. (11) yields the angular coordlnates of the atomic where the following notation is used:
sites  @ne=2mhIN— /2, where ¢@i=—¢5=(2/\/3) \
X(ald;)cos@r/6— 6) is the angular shift on the cylindrical S :i o= i(Au—0)27h/N
surface between th& andB atoms of the graphene unit cell. N = ’
The angular coordinates, thus obtained, define the atomic
dipole vectord,s of Eq. (14). We now need to calculate the Co= \/— Mip
phase factors in the dipole vectbrof Eq. (12).

The electronic wavevectors, (J=1,f) from the phase

———P[CL*Cid, &~ Ch* Chd} €51,

factors of Eq.(12) are defined within the zone-folding \/_ dlp fxclg *CLg* £

schemé? k,=u,K1+k/K,/|K,|, where u, is the cutting Cuy=———[Cg*Chdyé-1—Co* Cidy &54],

line index, also referred to as the subband index, or the an-

gular momentum in the circumferential direction of the &:ei(AM%)so,i/Z_ (16)
SWNT, andk; is the 1D wave vector in the axial direction of

the SWNT. The wave vectois; andK, define the separa- The matrix element of Eq4) is proportional to the scalar

tion between the adjacent cutting lines and the length of th@roduct of the light polarization vect®, (p=a,e) and the
cutting lines, respectiveff# Within the K;-extended repre- dipole vector given by Eq15). One can see from E¢15)
sentation of the cutting line¥, m; varies in the range 1 that the light polarized parallel to the SWNT axiB,& 2)
—N/2<u,<N/2 andk, is in the range— 7/T<k,<w/T. selects the terng, in the matrix element, while the light

For a SWNT of finite lengttL, the 1D wave vectok, be-  polarized perpendicular to the SWNT axipéf( ory) se-
comes quantized, so th&y=u K;+k K,/U, wherek; is lects the termsS, ; andS_;. The presence of the ter®,
now an integer number varying in the range-W/2<k,  (¢£=0,=1) in the matrix element implies the optical selec-
<U/2. By defining the cutting line index changeu=u;  tion rule Au=¢, or u;=pu,+4€, also written asu— u+ €,

— u, and the wave-vector change&k=k;—k,, we can write  sinceS,=1 for Au=¢ andS,=0 otherwise, according to
the difference of the electronic wave vectors from the phasene definition of Eq(16). We thus obtain the dipole selection
factors of Eq. (12) in the form k —ki=—AuK; rules for the optical electronic transitions,— u for parallel

—AKkK,/U. polarization(z) and u— w =1 for perpendicular polarization
By substitutingk, —k; andR} into Eq.(12), the summa-  (x or y).>?*
tion over the indexu (over the SWNT unit cellscan be For circularly polarized light propagating along the

taken out of the squared brackets in the foly_,exp SWNT axis @), the light polarization vector is given by
[—i(AuK;+AkK,/U)-uT]. The wave vectorK; andK,  P,=(1,YAi,0), whereA=+1 for LandA=—1 for R he-
are defined as reciprocal-lattice unit vectors with respect tdicity of light, indicating a rotation of the optical electric-
Cp andT, that is,K;-Cy=K,- T=27 andK;- T=K,-C, field intensityE, (whereE,||P,) to the L and to the R when
=0."% The sum over the index then become§3zlexp looking along the light propagation directio)( while Y
[—i(2mwWU)AK]. The latter sum is equal to zero unles&k ~ =+1 for light absorption p=a) and Y=-1 for light
=0, and for such a case the sum is equalltoWe thus emission p=e). Multiplying the dipole vector of Eq(195)
obtain the selection rule for the electronic wave vector alondy the light polarization vectoP,=(1,Y Ai,0) with conse-
the SWNT axis,Ak=0 or k;=k,, in agreement with the quent substitution into the optical electronic transition matrix
general property of momentum conservation. Summing Egglement given by Eq4) yields

(12) over the indexh (over the graphene unit cellads to

the selection rule for the cutting line index, as we will M? =iE eh \ /l_pei(wf—wl—pr)t[(l+@AY)C Sy
show in the next paragraph. ot "2 mw, Vec tiT
With the help of the selection rulék=0 derived above, +(1-OAY)C_,S 4], (17

we can simplify the phase factors of E{.2) to the form

exf —iAuK - (hR—r$/2)]. Substituting the symmetry vec-  Either of the two terms in the squared brackets of @)
tor NR=Cp+MT and using the relationk;-Cp,=27 and  vanishes, depending on the sign of the prodBatY. Re-
K.-T=0, we obtain exp—iAu27h/N+iAuK - r§/2], where  member that® = + 1 for AL (ZR) and® = —1 for AR (ZL)
K,-ri=¢?! according to the definition op? in Eq.(11). By  handedness of SWNTsy=+1 for L and A=—1 for R
decomposing cogfg and sinyg of Eq. (14) into the sums helicity of light, andY=+1 (absorption,p=a) andY =
and differences of complex exponents, the dipole vebtof —1 (emission,p=e€). The presence of the ter®, in Eq.
Eq. (12) can be written as (17) indicates the selection rulAu=¢, or u—u+4€, as
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TABLE |. The optical selection rules for circularly polarized IV. DISCUSSION
light propagating along the axis of the chiral SWNT. The SWNT . . . .
handedness is referred to as AL/ZRmchair-left/zigzag-right® The dipole selection rules for SWNTs predict optical elec-

= +1) and AR/ZL(armchair-right/zigzag-lef® = — 1). The helic-  tronic transitionsu— u ar'1d pu—p=1 for light polarized.
ity of the light is referred to as I(left, A=+1) and R(right, A parallel and perpendicular to the SWNT axis,
=—1). The two cases for light absorptiop£a,Y=+1) and respectively-?>* For perpendicular polarization, the optical

light emission p=e,Y=—1) are shown. field gains a phase factor when the cylindrical SWNT surface
is unrolled into the flat graphene layet’ yielding a change
SWNT Light helicity of electronic momentum in the unfolded 2D Brillouin zone,
handedness LA=+1) R(A=-1) Ak= =K, which is equivalent to a transition to the adjacent
Light absorption I = +1) cutting line, p—pt 1_. The selectioq rUlQ.LH/.LiJ: be-.
AUZR (©=+1) ot 1 o1 comes more specific in the case of' circularly po!arlzed light
AR/ZL (0 =—1) w1 w1 propagating along the axis of a chiral SWNT, either> u

+1 or u—u—1, depending on whether the light is ab-
sorbed or emitted, on the helicity of the light, as shown in
Ref. 10, and on the handedness of the SWNT. All these cases
are summarized in Table .

The same selection rules derived in Sec. Ill from pertur-

discussed above. The selection rules obtained fromEg.  Pation theory can be obtained directly from group theory
for different SWNT handedness, for different light helicity, USing the symmetry properties of chiral SWNTs. The total

and for light absorption and emission processes are summaYmmetry of a chiral SWNT is expressed by the gr%
rized in Table I. In zigzag and armchair achiral SWNTs, WhereN is the number of hexagons in the SWNT unit c€ll.

circularly polarized light induces both electronic transitions ' "€ €lectric dipole Hamiltonian given by E€) transforms
u—u+1 andu—pu—1 simultaneously, since both the AL aS Oné of the two partners of the two-dimensional represen-
(@=+1) and AR @ =—1) chiral forms correspond to the tationE4, depe_nding on j[he light absorption or emission pro-
same atomic structure of achiral SWNTs. In contrast, onlyc€SS: on the light helicity, and on the SWNT handedness.
one of the two electronic transitions, either— u+1 or u Calculating direct products @, with other irreducible rep-
— u—1, is allowed in chiral SWNTs, depending on Whetherresentations of grougy yields the selection rules listed in
the light is absorbed or emitted, on the helicity of the ”ght'TabIe I. The selection rules are therefore independent of the
and on the handedness of the SWNT. tight-binding representation of the Bloch functions in Eg.

The matrix element given by E17) describes the tran- 2nd they are primarily determined by the symmetry proper-
sition between electronic stateg,(,k,) and (u¢,k;), where ties of chiral SWNTS' The presence of a screw axis in chlral
wi=pm,—1 or u,+1, according to the selection rules listed SWNTs thus provides a possibility for the optical determina-

: . . s tion of the SWNT handedness.
in Table |, andk;=k,. The total electronic optical transition . . . .
rate is given byf ! P The symmetry properties of chiral SWNTs are inherited

from the symmetry properties of the graphene layer. The
i (7 2 presence of the two inequivalent atomic sités dnd B, as
_ ﬁf dtMg, (18  shown in Fig. 1a)) in the unit cell of the graphene layer,

0 related to each other by the 2D spatial inversion in the
within first-order time-dependent perturbation theory, wheredraphene planéthe center of inversion is the center of a
the summation over the final stateg(k;) is omitted be- ~hexagon in the graphene layeresults in two inequivalent
cause of the aforementioned selection rules, apds the — degeneracy pointthexagonal corer andK’) in the first
electron-photon interaction time related to the frequencyBrillouin zone of the graphene layer related to each other by
broadening of lightAw, by the uncertainty principley, time-reversal symmetry: The time-reversal symmetry and
=27/Aw,. The value ofAw,=10 cni* typical for the la- the spatial inversion symmetry impose the following con-
ser beam corresponds t9=0.5 ps. Integrating the time de- straints on the electronic dispersion relations in the graphene
pendence of the matrix element in E48) yields layer, E;(—k) =E,s(k) andE,s(—k) =E,s(k), respectively,
where j=v,c is the band indexs=1] is the spin of the
K Sif[(ws—o,—Yw,)7,/2] electron(wheres is directed opposite ts), andk is the 2D
: wave vector.

(19 When the 2D graphene layer is rolled up into the 1D
SWNT, the 2D electronic dispersion relations of the
In the weak interaction limity,—o and the expression in graphene layer are folded into the 1D electronic dispersion
the square brackets of EL9) becomes a delta function, relations of the SWNT2 namely, the 2D wave vectdrsplits
o(Ei—E,—Yhw,), reflecting energy conservation. Sum- into the 1D wave vectok and the cutting line index (also
ming the expression in the squared brackets over the statesferred to as the subband index or the angular momentum
(u,,k,) in Eq. (19 gives the joint density of electronic states The time-reversal symmetry and the 1D spatial inversion
at the resonant transition enerdy;—E,=Y%w,, and Eq. along the SWNT axis now yield (- u, —Kk)=E,;s(u,K)
(19 then becomes Fermi’s golden rule. and E ¢(u,—Kk)=E;s(u,k), respectively, for zigzag and

Light emission i = —1)
AL/ZR (O=+1) p—pu—1 p—put+l
AR/ZL (6=-1) p—put+l p—pu—1

1
WP

opt— 7._ 2

p mik

2w
we => ZZime
opt %, ﬁ| OpTJ 27Th((1)f_(1)|_Y(1)p)27'p
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armchair achiral SWNTs. For chiral SWNTs, the spatial in-density D;= €;;E;+ y;; (dE;/dr,) for the optical electric-
version symmetry is broken, as it inverts the SWNT handedfield intensityE; . In other words, the terry;;, reflects the
ness. Correspondingly, the electronic dispersion relations idependence of the dielectric functie on the photon wave
chiral SWNTs are only constrained by time-reversal symmevector, , y;;; =—Yi(de;;/dx;), as follows from the vector
try, which yieldsE;s(— u,—k)=E;s(u,k). Thus, the elec- potential of Eq.(3). The termy;; is calculated in Ref. 9 for
tronic dispersion relations in chiral SWNTs are asymmetricchiral SWNTs giving rise to their natural optical activity. The
in k with respect to the center of the 1D Brillouin zonle ( natural optical activity is thus induced by the spatial inhomo-
=0), and this asymmetry is responsible for the optical ac-geneity of the optical field propagating in media which lack
tivity of chiral SWNTs0:1 spatial inversion symmetry.

In fact, however, time-reversal symmetry prevents obser- The spatial inhomogeneity of the optical field is expressed
vation of optical activity in chiral SWNTs. Time-reversal by the photon wave vectat, (p=a,e) in Eq. (3). For light
symmetry requires that the interband electronic transition propagating perpendicular to the SWNT axis, can be ne-

— u+1 (near theK point in the unfolded 2D Brillouin zone  glected, since the SWNT diametdy is much smaller than
for a given spin state has the same transition energy as thethe wavelength of lighk ,, dy<\,. In contrast, the SWNT
—p——u—1 (near theK’ point in the unfolded 2D Bril- length L is of the order of\,, L~\,, so that the optical
louin zon@ for the opposite spin stat and vice versa. This field is sufficiently inhomogeneous for light propagating
implies that the two different interband electronic transitionsalong the SWNT axis. Taking into account the photon wave
u—p+1 and u—pu—1 vyield the same optical response, Vector k, in Eq. (8) results in the dipole vector

when time-reversal symmetry is preserved. That is, no opti-

cal activity would be expected and the SWNT handedness D=(Wle V|V

would not be distinguished by optical spectroscopy, accord- U N

ing to the selection rules in Table I, unless time-reversal sym- _ chxc! E 2 el (ki kY x,) - Rija
metry is broken. Once time-reversal symmetry is broken, the UNa| 7B "AiE) =1

spin-orbit interaction must be taken into account. The latter, 3

however, is known to be weak in carbon materials, and is % 2 Mepe_i[kf_y(l,z)Kp],rf\ﬂrg
hereby incorporated by using thep perturbation method in =T A

graphité® and in SWNTS? Besides, inclusion of spin-orbit
coupling yields only small corrections to the optical activity
effects?! The optical activity effects in chiral SWNTs are
thus primarily determined by breaking the time-reversal
symmetry. _ .
Once the time-reversal symmetry is broken, the presence X > MgPe kY2l gyl (20
of a screw axis in chiral SWNTs gives rise to their optical =t
activity through appearance of the oddkiterms in the elec-  Note that the photon wave vectar, changes the electronic
tronic dispersion relation€:*® Optical activity consists of optical transition matrix elements between the nearest-
the circular dichroisn(difference in absorption of L and R neighbor carbon atoms, so that E8) becomes
circularly polarized light and the circular birefringencghe
rotation of light polarization planethe two conjugate effects NEIY
being typical of chiral organic molecules and enantiomorphic (p(r—3rHe¥ % V| p(r+irl))=—T-2_ (21
crystals(natural optical activity;??> as well as of homomor- a
phic crystals under uniaxial stregstress-induced optical
activity)?! and in the presence of ;151 axial magnetic field
(magnetically induced optical activity” No optical activity, ; p
however, is expected in SWNT bundles, since both AL and'gdht )\g’ the :natmr: eIemeptMls of Eq. (Zfl) can be C?pn'
AR handed SWNTs are equally present within the bundle>'@S€d €dua to the matrix elemelty;, of Eq. (9), Ms
assuming chiral homogeneity of the synthesis process. Once Mapp- Thus, the only difference between the dipole vectors
the separation of chiral SWNTs according to their handed®' EdS- (8) and (20) is the wave-vector change fromk,(
ness succeeds, the efficiency of such a separation can beks) to (k,—k¢+Y,) and fromk; to (ki—Y3x,) in the
monitored by optical techniques, utilizing the effects of natu-phase factors. This change reflects conservation of the elec-
ral circular dichroism and natural circular birefringence. Onetronic momentum along the SWNT axidk=k;—k,=Y«,,
of the possible separation mechanisms can be related to theY27/\,, and does not affect the selection rules for the
recently reported liquid ion exchange chromatography ofcutting line indicesu; and w, summarized in Table .
DNA wrapped SWNTE2 because of the intrinsic handedness We now consider the effect of the photon wave vector
of the single-stranded DNA molecules. (,) on the optical absorption spectrgp=a) of chiral
The time-reversal symmetry is broken by the spatial inho-SWNTs. We select the (20,10) semiconducting SWNT of
mogeneity of the optical field along the length of the SWNT.diameterd;=2.07 nm and chiral anglé=19.1° for demon-
Phenomenologically, the spatial inhomogeneity of the opticastration purpose. The electronic band structure for a (20,10)
field is describetf by the third-rank tensor terny;; in the ~ SWNT of AL handedness is shown in Figsapand 2b),
dielectric functione;;, given the electric displacement flux which depict, respectively, those electronic subbands which

u N
+CL*C{32 E gi(ki—ki+Yx,)-Rig
u=1h=1

3

Because the lattice constant of the graphene lager
=0.246 nm is negligible compared to the wavelength of

205402-7



GE. G. SAMSONIDZEet al. PHYSICAL REVIEW B 69, 205402 (2004

ingly, the photon wave vector, in the band diagram of Fig.
2 isiincreased by 50 times in order to observe its effect on the
electronic transitiongt— pu+1.

The solid and dashed arrows in Fig. 2 connect the elec-
tronic states in the valence and conduction subbands at
which these subbands have the same slope, i.e., where the
VHSs appear in the JDOS. These VHSs depicted by the solid
and dashed arrows in Fig. 2 differ from the VHS, .,
=2.60 eV which involves vertical electronic transitions ne-
glecting the photon wave vectar,, as shown by the open
and solid dots in Fig. 2. Let us consider the- u+1 tran-
sition in the vicinity of theK point, whereu,=44 and u;
=45, as shown in Fig. (). The electronic states in the
valence and conduction bands for the VHS in the JDOS are
shifted by the photon wave vectat, from the open dots, as
indicated by the solid arrow. Because the energy extrema in
the valence and conduction bands appear, respectively, at
wave vectors above and below the VHS wave vecttre
open dotg the photon wave vectok, (the solid arrow

FIG. 2. Electronic band structure of an AL handed (20,10) shifts the VHS wave vector&he open dotsfurther away
SWNT in the zone-folding schem&Ref. 13 using the nearest- from the energy extrema in the valence and conduction
neighbor tight-binding approximation and transfer integtal bands. The photon wave vecte thus gives an increase to
=2.89 eV(Ref. 25. Only subbands in the vicinity of th@ K and  he energy of the VHS in the JDOS for the—u+1 tran-

(b)_K’ points_of t_he _unf_olded 2D Brillouin zone are _shown, for sition. The same increase takes place forjihe u+1 tran-
which the cutting line indices ae=>0 andu<0, respectively. The — gjinn in the vicinity of theK’ point, where transitions be-

electronic subbands are indexed |y =47,46,48,45,49,44,50 and tween w, = —45 andu;=— 44 contribute, as shown in Fig.

are ordered according to increasing energy separation from thtzﬂ(b) by the solid arrow. In contrast, the photon wave vector

Fermi levelEg=0. Subband$u|= 45,44 are shown as black curves . .
and labels, while the other subbands are shown as gray curvefp 9IVES @ decrease to the energy of the VHS in the JDOS for

Open and solid dots show vertical transitiops-u+1 (u=44, H—K8~1 transitions(the dashed arrows in Fig).2The en-
—45) and u—pu—1 (u=45-44), associated with the, ., €Y of the VHS in the JDOS for the \_/ert|cal eIe_ctronlc tran-
—2.60 eV VHS in the JDOS. Solid and dashed arrows show actua$itions, E,, .- 1=2.60 eV, thus splits into two different en-
electronic transitions involving the momentum change by the pho€rgdies, slightly above and slightly below the value of 2.60
ton wave vector ), which is increased by 50 times for demon- €V, for theu— u+1 andu— u—1 transitions, respectively.
stration purpose (56). We thus expect to observe slightly different optical absorp-
tion spectra for the light of L and R helicitigircular dichro-
are mapped to the vicinity of th& and K’ points of the ism) as well as for the SWNTs of L and R handedness, be-
unfolded 2D Brillouin zone(see figure caption for detajls cause only one of two transitions— u =1 is allowed in
The vertical gray lines connecting the open and solid dotshese cases according to the optical selection rules summa-
showu— w1 electronic transitions for thige| =44 and 45  rized in Table |I.
subbands, giving rise to &, ,-,=2.60 eV van Hove sin- We calculated the electronic optical transition rates of Eq.
gularity (VHS) in the joint density of state$JDOS. The  (19) for light absorption p=a) as a function of the light
open and solid dots indicaje—u+1 andu—u—1 elec-  wavelength, i.e., the optical absorption spectra, for the
tronic transitions, respectively. The transition energy(20,10) SWNTs of AL and AR handedness, and for L and R
E, .-1=2.60 eV is the same for both procesges-u+1  helicity of the light, using light broadening w,=10 cm !
andu— p—1 as long as we neglect the photon wave vectorand the electronic band structure shown in Fig(ir2 the
k, (p=a,e), i.e., while we assume the electronic transitionspresent discussion, we consider the real photon wave vector
being vertical. In fact, however, the photon wave veotgr value, not increased by 50 times as in Fig. Phe optical
changes the electronic wave vectky-k, =Y «,, for light  absorption spectra are shown in Figa3 where the labels
propagating along the SWNT axis. The solid and dashed aAL and AR indicate the SWNT handedness, while PL and
rows in Fig. 2 show the real nonvertical electronic transitionsPR denote the photon helicity. The solid and dashed curves
p—u+1l and u—pu—1, respectively, for the absorption in Fig. 3@ correspond to the cases of matched and mis-
(p=a) of L and R circularly polarized photon propagating in matched SWNT handedness and light helicity, respectively.
the positive direction of the axis (x,>0). For the photon For comparison, Fig. ®) shows the JDOS profile of a
wavelength 476 nn{2.60 eV}, the photon wave vectok,  (20,10) SWNT for verticalu— u* 1 electronic transitions
=1.32x10"2 nm™! is about 200 times smaller than the (neglecting the photon wave vectey), where the electronic
maximum electronic wave vectd(,=m/T=2.79 nm! at transition energy is measured in nanometers for direct com-
the edge of the 1D Brillouin zone, whelfe=1.13 nm is the  parison with the optical absorption spectra in Figg)3The
length of the unit cell for thg20,10 SWNT. Correspond- spike in the JDOS profile around 476 nm is due to the

Energy (eV)

Wavevector (nm')
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472 474 476 478 480 mentally, though the experimental condition for observation
is challenging. Such observation will be general for under-
standing many chiral nanomaterials.
The electronic transitiong |u|— = |u| =1 [the solid ar-
row in Fig. 2a) and the dashed arrow in Fig(#] and
+|u|— =|u|+ 1 (the other two arrows in Fig.)3jive rise to
a single VHS in the JDOS profile of Fig(l® because of the
symmetry between the valence and conduction bands in Fig.
2. The electronic band structure shown in Fig. 2 is calculated
in the nearest-neighbor tight-binding approximation with
m only one parameter, the transfer integral2.89 eV, fitted to
£ RRS data foru— u transitions in SWNTE® While the
P L SWNT ~45 [~ asymmetry between the valence and conduction bands is not
H—ptl 44 45 detected in optical studies far— u transitions, it gives rise
k=0 —44 -45 to a splitting in energy between the two VHSs in the JDOS
45 44 for +|u|—=*|u|/x1l and *|u|—=*|u|+1 transitions.
Namely, the VHSE, ,-1=2.60 eV for the (20,10) SWNT
shown in Fig. 80) splits in energy iNtOE.|,| «|, +1
=2.82 eV andE. |, +|,s1=2.67 eV when using transfer
integralt=3.033 eV and overlap integrak0.129 fitted to
FIG. 3. (a) Optical absorption spectra for (20,10) SWNTs of AL the _el_e_ctronl_c pand structure of graphite calculated fro_m an
and AR handedness and for L and R circularly polarized photonéb 'n't'o_ variational approacFﬁ the latter parameter being
labeled by PL and PR, respectively, taking into account the photofi€SPOnsible for the asymmetry between the valence and con-
wave vector ). (b) JDOS foru— u+1 vertical electronic tran- duction bands in graphite. The VHS splitting in energy yields
sitions in AL and AR (20,10) SWNTSs, neglecting the photon wave the optical absorption peak splitting in wavelength. The two
vector (x). Calculations are based on H39) with light broaden-  optical absorption peaks appear in Figa)3at 440 nm and
ing Aw=10 cm ! and the electronic band structure of Fig. 2. A 464 nm wavelength. The optical absorption peaks are thus
VHS at 476 nm(2.60 eV} arises from transitions between subbandssplit by 5% and by probing the splitting we can measure
|u|=45,44. experimentally the asymmetry between the valence and con-
duction bands.
E,. .+1=2.60 eV VHS arising from four different electronic ~ The asymmetry between the valence and conduction
transitions between the subbangs$=44 and 49see tabular bands, if any, splits the VHS in the JDOS for the perpendicu-
inset in Fig. 3b), and the open and solid dots in Fig. 2 lar polarization, but does not affect the optical activity of
connected by the vertical gray linesBy comparing Figs. chiral SWNTs. Both components of the split VHS in the
3(a) and 3b), one can see that the optical absorption spectr@ptical absorption spectra simultaneously up-shift or down-
pretty much follow the JDOS profile, being up-shifted or shift in energy when changing the light helicity or the SWNT
down-shifted in energy, depending on the SWNT handednedsandedness, i.e., fgi—u+1 or u— u—1 transitions, re-
and on the light helicity, because of the photon wave vectospectively. Using the tight-binding parameters for graphite,
k4, as discussed above. When the SWNT handedness atlte two optical absorption peaks at 440 ritransitions 44
the light helicity matcH see the solid curve in Fig.(® and —45 and —44——45 in Fig. 2 and 464 nm(transitions
the solid arrows in Fig. R the VHS energy is downshifted in 45—44 and —45——44 in Fig. 2 are shifted simulta-
wavelength (up-shifted in energy while for mismatched neously in wavelength by 0.3 nm for opposite light helicity
SWNT handedness and light heliciishe dashed curve in or SWNT handedness. Using various electronic band-
Fig. 3(@ and the dashed arrows in Fig], 2he VHS energy is  structure models may significantly change the wavelengths
up-shifted in wavelengtidown-shifted in energy in agree-  of the optical absorption peak$40 nm and 464 njrand the
ment with our predictions given above for the discussion ofspacing between them (24 nm), but the change in the optical
the electronic transitions in Fig. 2. The splitting in wave- activity shift (0.3 nm) is expected to be only minor, as long
length between the solid and dashed curves in Figl 8  as the band-structure model reflects the symmetry ofathe
about 0.3 nm, which gives 0.06% when divided by the waveand 7* electronic states, because the latter shift is induced
length 476 nm. The small magnitude of the splitting (0.06%)by the photon wave vectok, independent of the band-
is related to the small magnitude of the photon wave vectostructure model. However, if the electronic states of different
Kk, compared to the electronic wave vectdks and Kk symmetry - and 7*) are involved in the optical transitions
(0.5%), and also is related to the relatively flat valence andat the same wavelength, as happens for SWNTs in a certain
conduction bands in the vicinity of electronic states wherediameter range according to linear augmented plane-wave
the VHS in the JDOS occurs. We can expect a larger magealculations?® the effect of the SWNT handedness and light
nitude of the splitting in the low-quantum-number linflhe  helicity on the optical absorption spectra must be reconsid-
long-wavelength limit where the electronic bands are lessered, as the selection rules change.
flat. Thus, it should be possible to observe the natural circu- Apart from theo-7* electronic transitions, the states
lar dichroism and the natural circular birefringence experi-are known to mix with ther states in smaller diameter

Optical Absorption

JDOS

472 474 476 478 480
Wavelength (nm)
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SWNTs due to the curvature of the SWNT sidewall. Thea=0.246 nm, andl,;=2.07 nm, we obtain the VHS splitting
sidewall curvature does not affect the dipole selection rulegf AE=1.5 meV for the large magnetic-flux densi§

for the m-7* electronic transitions, as discussed previously=5 T. The VHS splitting yields an optical absorption peak
in Sec. lll. As for the o-7 hybridization in smallerd;  splitting of 0.3 nm or 0.06% for opposite light helicity or
SWNTs, the tight-binding approximation is shown to de- SWNT handedness. The magnetically induced optical activ-
scribe the electronic transition energies of SWNTs dor ity for a magnetic-flux densit=5 T is thus comparable to
>1.1 nm with a precision of 10meV in the wavelength the natural optical activity in chiral SWNTSs.

range of visible light488—785 nm?’ The electronic transi-

tion energies in SWNTs of smaller diameters tend to down-

shift from the predictions of the tight-binding approximation V. SUMMARY

by 20 meV ford,=0.8 nm?’ yet the optical activity wave-

length shift(0.3 nm is hardly affected by the-m hybrid-  q\wNTs with circularly polarized light propagating along the
ization. The optical activity wavelength shift is only related 4yis of the SWNTs are governed by different selection rules
to the curvature of the ele_ctronic banc_j, being induced by th%iepending on the SWNT handedness and on the light helic-
photon wave vectok, which breaks time-reversal symme- i, " The difference in the selection rules related to the pres-
try. , ence of a screw axis in chiral SWNTs gives rise to their
The time-reversal symmetry can also be broken by a magspyical activity, when the time-reversal symmetry is broken.
netic field applied parallel to the SWNT axfgiving rise t0 T time-reversal symmetry is broken by the spatial inhomo-

an asymmetry in the electronic dispersion relations, which inyeneity of the optical field, yielding a natural circular dichro-
turn yields a magnetically induced optical activity of ch|_ral ism and a natural circular birefringenéthe natural optical
SWNTs, though the measurement of these effects requires g.iyity) found in other chiral systems. The time-reversal
h|gh magnetic field. The magnetically _mduced optical aFt'V'symmetry can also be broken by an axial magnetic field
ity, also known as the Faraday effect, is phenomenologicallyie|ging magnetically induced circular dichroism and mag-
descgbe&“ by the third-rank tensor term;, in the dielectric  negically induced circular birefringencémagnetically in-
function €;;, where the electric displacement flux density q,ced optical activity The interband electronic optical tran-
Di=¢j;E;+ i EjH, depends on the external magnetic-field sition matrix elements calculated for chiral SWNTs placed in
intensity H, . . an inhomogeneous optical field and in an axial magnetic field
The magnetic-flux densitfdz changes the phase factors indicate their optical activity within a single-electron ap-
of the electronic wave functions, shifting the electronic waveproximation. Phenomenologically, the optical activity of chi-
vectors in the circumferential direction of the SWNdlong  ral SWNTs is related to the third-rank tensor term in the
the K, wave vector in the unfolded 2D Brillouin zone of the dielectric function. The optical activity of chiral SWNTs can
graphene layemy ¢/(7d; o), wheree is the magnetic flux be used for the optical determination of the SWNT handed-
penetrating the cross section of the SWNE def/4, and ness.
$o=h/e=4135.6 Tnm is the flux quantunt® The wave-
vector shift splits thet |u|— = || =1 transitions in energy,
up-shifting the energy of théu|—|u|+1 transition and
down-shifting the energy of the- |u|— —|u|—1 transition The authors thank Professor M. A. Pimenta for valuable
in the case oB>0, yielding a splitting in energy of the VHS  discussions. The MIT authors acknowledge support under
in the JDOS. The VHS splitting can be estimated by usingNSF Grant No. DMR 01-16042. R. S. and A. G. acknowl-
the linear electronic dispersion approximation around thexdge a Grant-in-AidGrant No. 13440091from the Ministry
K and K’ points in the unfolded 2D Brillouin zon®,  of Education, Japan. A. J. and A. G. S. F. acknowledge fi-
E, .= ¥ (V3/2)tka. The VHS splitting is given byAE nancial support from CNPqg-BrazilProfix) and CAPES-
=(J3/2taBd/¢py. Using the parameters=2.89 eV, Brazil (Prodod.
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