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A simplified approach to quantum control of chemical reaction dynamics based on a classical, local
control theory was developed. The amplitude of the control pulse is proportional to the linear
momentum of the reaction system within the dipole approximation for the system-radiation field
interaction. The kinetic energy of the system is the controlling parameter. That is, the reaction is
controlled by accelerating the representative point on a potential energy surface before crossing over
a potential barrier and then by deaccelerating it to the target after passing over the potential barrier.
The classical treatment was extended to control of wave packet dynamics by replacing the classical
momentum by a quantum mechanically averaged momentum on the basis of the Ehrenfest theorem.
The present method was applied to a quantum system of a simple one-dimensional, double-well
potential for checking its validity. A restriction of the applicability of the simplified method was also
discussed. An isomerization of HCN was treated as a model system for wave packet control of a
two-dimensional reaction. ©2000 American Institute of Physics.@S0021-9606~00!01033-3#
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I. INTRODUCTION

In recent years, there has been considerable efforts m
in theoretical treatments of quantum control of chemical
action dynamics.1–7 Various treatments based on optimal
local control theory and on perturbative or nonperturbat
methods have been developed for designing laser pulse
manipulate nuclear wave packets to the desired target u
consideration.8–34

In our previous studies, we developed a nonperturbat
quantum mechanical feedback control theory based on a
cal control method.24,33,34 In that treatment, the time
development of reaction dynamics was divided into sh
time stages in which the system can be considered to fo
the equation of motion of a time-invariant system. The co
trol theory is free from the laser intensities used and is
plicable to reaction dynamics in strong laser field cases
well as weak field cases. For the quantum control of re
tions in the ground electronic state, a sequence of opt
transitions between the relevant quantum states was util
in order for the reaction to proceed.24,33 This procedure was
well applicable to simple systems such as a multiphoton
sociation of HF in the ground state, but may experienc
difficulty in controlling reactions in multidimensional sys
tems. In order to overcome such a difficulty, it is importa
to develop a control theory based on classical mecha
rather than quantum mechanics.10,14,17,28,29

From the general viewpoint of chemical reaction dyna
ics, the process of the reaction is described in terms o
representative point that moves from a reactant to a pro
over a transition region.35–37 It is natural to consider a reac
tion in quantum control in a similar way, i.e., quantum co
trol is viewed as a representative point moving on the re
tion coordinate in nonstationary laser fields. That is, quan
control is treated in a classical way.

Another theoretical viewpoint is that the target opera
~performance index! for the local control scheme has to com
3510021-9606/2000/113(9)/3510/9/$17.00
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mute with the system Hamiltonian.34 In usual cases in which
the population of the system is taken as the target, there i
problem because the population operator commutes with
system Hamiltonian. The nuclear kinetic energy of a rep
sentative point, on the other hand, can not be taken as
performance index in a quantum system. However, the
netic energy can be considered to be a characteristic qua
controlling chemical reactions in the ordinary reaction d
namics on the basis of chemical intuition; an efficient yie
of chemical reactions under consideration is obtained by
creasing kinetic energy along its reaction coordinate to cr
over the transition state region. From these points of view
is interesting to consider an optimization procedure based
the classical treatment, in which a representative point
reaction obeys the Hamilton’s equation of motion in classi
mechanics.

In this paper, we present a classical, local control the
for controlling reaction dynamics of multidimensional sy
tems. The theory is based on a classical mechanical, f
back control method within a local optimization treatme
presented in a previous paper.24,33 The classical treatmen
was extended to control wave packet dynamics by replac
the classical momentum by a quantum mechanically av
aged momentum on the basis of the Ehrenfest theorem.
is, the controlled field is derived from the Hamilton’s equ
tion of motion under the constraint of a smaller amount
laser energy. The dynamics, on the other hand, is evalu
by solving the time-dependent Schro¨dinger equation.

There have been several studies on classical opti
control developed mainly by Rabitz’s group.14,17,28,29 The
main problem encountered in classical optimal control is fi
how to take into account an ensemble ofN trajectories and
secondly how to keep close to quantum mechanics. Reg
ing the first problem, an optimization approach to a class
system with m degrees of freedom involves 2mN time-
dependent Lagrange multipliers for the propagation of
ensemble ofN trajectories. Its procedure needs much co
0 © 2000 American Institute of Physics
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3511J. Chem. Phys., Vol. 113, No. 9, 1 September 2000 Quantum control of reaction dynamics
putational time for a multidimensional system, and the so
tion was shown to be unstable in some cases. Botina, Ra
and Rahman presented a new classical treatment withm
Lagrange multipliers.28 In their treatment, the average traje
tory is controlled under the constraint that the mean ph
space trajectories are preserved. In our treatment, on
other hand, time development of Lagrange multipliers is
longer needed for the control of the ensemble ofN trajecto-
ries since we can use the Ricatti equation to control the lin
time-invariant~LTI ! system within short time approximation

Regarding the second problem, in general, the opti
control method for a classical system is not always expec
to control a quantum system. One of the solutions for
second problem is to keep classical trajectories close toge
by introducing a variance term in the cost functional.14,29The
resulting field is expected to control the corresponding qu
tum system to some extent, because the ensemble of clas
trajectories tends to spread more easily than the quan
wave packet in the case of existing chaos or other pure c
sical phenomena. Another solution is to evaluate quant
classical differences in the cost functional explicitly.17 On
the other hand, in our treatment, an ensemble averag
linear momentum was replaced by a quantum mechan
average at each short time stage; in other words, we
rected the classical trajectory to a quantum wave packe
each time. Therefore, our treatment is applicable to a qu
tum system as long as it behaves a wave packet.

In the next section, after introducing a local feedba
control treatment, a classical mechanical, local control the
is presented. In Sec. III, the theory is applied first to a sim
one-dimensional system to check the applicability of o
theory. We show that the present theory can be applied
only to classical systems but also to some quantum reac
systems. Finally, we apply the theory to two-dimensio
reaction dynamics of HCN isomerization.

II. THEORY

A. Local feedback control of a linear time-invariant
system

Consider a reaction system in an external control fie
The equation of motion of the system is given by

d

dt
x„t…5 f ~x~ t !,u~ t !,t !. ~1!

Here,x(t) is the n-dimensional system variable vector, an
u(t) is the m-dimensional input vector that is an arbitra
external field to control the system.x(t) corresponds to wave
functions andu(t) corresponds to laser fields in the case
quantum systems. An optimal input vector is determined
minimizing a performance indexJ during the time interval
from t0 to t f ,

J5
1

2
x~ t f !

TFx~ t f !1
1

2Eto

t f
@u~ t !TR~ t !u~ t !

1x~ t !TQ~ t !x~ t !#dt. ~2!

Here, F and Q are n3n real matrices, andR is an m3m
real matrix. Control parameter matricesF, R and Q are
Downloaded 01 Feb 2010 to 130.34.135.21. Redistribution subject to AIP
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related to the final status of the system at timet f , the field
intensity, and the path within the control timet02t f , respec-
tively. Equation ~2! is an expression for a global contro
sinceJ is minimized within a period of time betweent0 and
t f .

Consider a LTI system38 whosen-dimensional system
variable vectorx(t) satisfies

d

dt
x~ t !5Ax~ t !1Bu~ t !, ~3!

whereA and B are time-independent matrices, andu(t) is
the m-dimensional input vector. The optimal input vect
minimizing performance indexJ is given as

u~ t !52R21BTP~ t !x~ t !. ~4!

Here, P(t) is a time-dependent,n3n symmetric positive
definite matrix that obeys the so-called Ricatti equation,39

dP~ t !

dt
52ATP~ t !2P~ t !A1P~ t !BR21BTP~ t !2Q, ~5!

under the final condition

P~ t f !5F. ~6!

In Eq. ~4!, R21BTP(t) is called the feedback gain matrix
Equation~4! is a general expression for global optimizatio
of a LTI system.

Even in the case in which the system of interest is no
LTI system, we can use the LTI optimization procedure
described above by taking a short time limit.24 We divide the
total control periodt02t f into short time steps. In theith
short time step, we rewrite the equations of motion of t
system through Tailor expansion around a certain po
(x0

( i ) ,u0
( i )) to the 1st order as

d

dt
~Dx( i )!5

] f

]xU x5x
0
( i )

u5u
0
( i )

Dx( i )1
] f

]uU x5x
0
( i )

u5u
0
( i )

Du( i ). ~7!

Here, Dx and Du are differences from a certain poin
(x0

( i ) ,u0
( i ))

H x( i )~ t !5x0
( i )1Dx( i )~ t !

u( i )~ t !5u0
( i )1Du( i )~ t !

. ~8!

Equation~7! has the same form of the LTI system, and w
obtain an expression for the control input vector for the s
tem from Eq.~4! as

Du( i )~ t !52R( i )21
~ t !B( i )T

P( i )~ t !Dx( i )~ t !. ~9!

Notice thatP( i )(t) should not be so far fromP( i )(t f)5F( i )

within the short time limit, and we therefore setP( i )(t)
→P( i )(t f). As a result of this replacement, the local contr
input vector at theith short time step is described in a fee
back form as

Du( i )52R( i )21
B( i )T

F( i )Dx( i ). ~10!

By carrying out the short time control procedure repe
edly, we can control the reaction system. This is called lo
feedback control.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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3512 J. Chem. Phys., Vol. 113, No. 9, 1 September 2000 H. Umeda and Y. Fujimura
B. Classical local control theory

Now consider ann-dimensional particle motion in a
time-dependent external field whose dynamics is given
classical Hamilton’s equations of motion,

H d

dt
qi5

]H

]pi

d

dt
pi52

]H

]qi
,

~ i 51, . . . ,n!. ~11!

Here,H5H(q,p,t), the total Hamiltonian, is expressed as

H~q,p,t !5
p2

2M
1V~q!2m~q!•E~ t !, ~12!

where dipole approximation for the particle-external field
teraction is assumed.M, q(t), andp(t) denote particle mass
position, and momentum, respectively.V(q), m(q) andE(t)
are the potential, the dipole moment of the system, and
external field, respectively.

We define system variable vectorx(t) and input vector
u(t) as

x~ t !5Fq~ t !

p~ t !
G ~13!

and

u~ t !5E~ t !. ~14!

Within a short time approximation shown in Sec. II A, th
equations of motion at theith repetition at timet are rewrit-
ten by a difference (Dx0

( i ) ,Du0
( i )) from a point (x0

( i ) ,u0
( i )) as

d

dt
~Dq( i )!5

Dp( i )

M
,

~15!
d

dt
~Dp( i )!5S 2

]2

]q2 V2@mE# D U q5q
0
( i )

p5p
0
( i )

E5E
0
( i )

Dq( i )

1S ]m

]q D U q5q
0
( i )

p5p
0
( i )

E5E
0
( i )

DE( i ).

Then, the local control field is expressed as Eq.~10! with

B( i )5F 0 S ]m

]q D U q5q
0
( i )

p5p
0
( i )

E5E
0
( i )
G T

. ~16!

We setF, Q, andR matrices as

F( i )5Q( i )5F fqq
( i ) fqp

( i )

fpq
( i ) fpp

( i )G ~17!

and

R( i )5F r 1
( i ) 0

�

0 r m
( i )
G , ~18!
Downloaded 01 Feb 2010 to 130.34.135.21. Redistribution subject to AIP
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respectively. Here,F is required to be a symmetric positiv
definite matrix according to the final condition. This requir
ment is satisfied if off-diagonal elements betweenp and q,
fqp
( i ) andfpq

( i ) are set to zero. In this case, the local control fie
is expressed as

Du( i )52R( i )21S ]m

]q D U
q5q

0
( i )

fpp
( i )Dp( i ). ~19!

The performance index at theith short time step is ex-
pressed as

J( i )5
1

2
Dp( i )~ t f

( i )!Tfpp
( i )Dp( i )~ t f

( i )!

1E
t0
( i )

t f
( i )

dtFDu( i )~ t !TR( i )Du( i )~ t !

1
1

2
Dp( i )~ t !Tfpp

( i )Dp( i )~ t !G . ~20!

To control the system, we would like to know how th
diagonal matrix elementfpp

( i ) plays a role in the system. No
tice thatx0 andu0 can be chosen arbitrary. In this paper, w
setx05(q(t),0) andu050, so thatDq50 andDp5p. Then,
Eq. ~20! is rewritten as

J( i )5
1

2
p( i )~ t f

( i )!Tfpp
( i )p( i )~ t f

( i )!

1E
t0
( i )

t f
( i )

dtFu( i )~ t !TR( i )u( i )~ t !1
1

2
p( i )T

~ t !fpp
( i )p( i )~ t !G

~21!

with

u( i )52R( i )21S ]m

]q D U
q5q( i )

fpp
( i )p( i ). ~22!

Equation~21! shows that the control parameterfpp is a mul-
tiplier to the kinetic energy. This means that our control
carried out through changing the kinetic energy of the rep
sentative point of the reaction system. The control fie
minimize the performance indexJ given by Eq.~21!. The
control fields promote the kinetic motion of the system in t
case in whichJ becomes smaller and, on the other han
suppress the kinetic motion in the case in whichJ becomes
larger. For example, iff pp has a negative value, then th
control field energizes the system. On the other hand, iff pp

has a positive value, then the control field decreases the
netic energy of the system.

Notice that our local control scheme consists of a
quence of many short time steps. Because control param
are defined at each step, we can control the kinetic energ
the particle as a function of time, position, momentum,
other physical properties of the system.

So far, we restricted ourselves to local control of a t
jectory of a representative point starting with an initial val
of p and that ofq. In other words, we did not consider
distribution of initial conditions. We now consider two kind
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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3513J. Chem. Phys., Vol. 113, No. 9, 1 September 2000 Quantum control of reaction dynamics
of initial conditions and three kinds of the expressions for
control field assuming that all of the particles are control
by the same field at timet.

1. pÄp „t 0… and q Äq „t 0… at tÄt 0

In this one particle case, the control field at theith time
stage is simply given by Eq.~22!.

2. p and q have a distribution of conditions

In this case, two types of control field are construct
The first type of control field is given by using both classic
ensemble averages of the momentum^p&en and coordinate
^q&en at each step,

u( i )5uq5^q( i )&en

p5^p( i )&en
( i )

( i )
52R( i )21S ]m

]q D U
q5^q( i )&en

fpp
( i )q5^q( i )&en

p5^p( i )&en

^p( i )&en.

~23!

^ &en denotes the ensemble average over the trajectories.
second type of control field is given as

u( i )5^u( i )&en52R( i )21K S ]m

]q D U
q5q( i )

fpp
( i )

q5q( i )

p5p( i )
p( i )L

en

. ~24!

That is, the control field is created by averaging the fields
the trajectories at each step.

C. Extension to wave packet dynamics

The fields, derived in the preceding section, applied t
classical system do not always control the quantum sys
because of spreading and/or bifurcation or other pure qu
tum behaviors of nuclear wave packets. Therefore, we n
to extend the classical local feedback control method deri
above to a quantum system whose wave functionuC(t)&
satisfies

i\
]uC~ t !&

] t
5~Ĥ02m"E~ t !!uC~ t !&, ~25!

whereĤ0 is the system Hamiltonian.
The basic idea for extending to the quantum contro

appropriate selection of the representative points in the ph
space of the system. The simplest method is just to use
quantum averaged position̂q& and momentum̂p& for the
nuclear wave packet on the basis of the Ehrenfest theo
Explicitly, this should be applicable to a system of a h
monic potential. However, it is expected that the simpl
method is effective as long as the wave packets are no
separated, as shown in the next section. Another method
use a quantum phase space distribution function such
Wigner40 or Husimi distribution function.41,42Such a method
is expected to be applicable to a quantum system eve
case in which the wave packet splits, but its computatio
task would be too great to obtain such a distribution funct
at each local control step. For this reason, we adopted
former method. In this case, the control field for a quant
system at theith short time step is expressed as

u( i )52R( i )21S ]m

]q D U
q5^q&( i )

fpp
( i )q5^q&( i )

p5^p&( i )
^p& ( i ). ~26!
Downloaded 01 Feb 2010 to 130.34.135.21. Redistribution subject to AIP
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Here,^ & denotes the quantum expectation value of the s
tem.

In our treatment, time propagation of the quantum s
tem is required. This causes computational difficulties in
large system with many degrees of freedom. One possib
for such a system is the approach using a Gaussian w
packet representation of wave function.43,44 In this approach,
wave function is represented as a sum of Gaussian w
packets located in phase space. In our methodology,
could say that these Gaussian wave packets are one o
selections for the representative points of the system. An
course, our local feedback theory can be applied to
purely classical system. This wide applicability of our theo
is based on the locally controlled property, that is, correct
of the field parametersp andq to the target system at eac
time step.

III. APPLICATIONS AND DISCUSSION

For checking the present local control method, we fi
apply this method to a one-dimensional double-well quant
system. Next, we apply the local control method to control
isomerization reaction of HCN as an example of a tw
dimensional quantum system.

A. A double-well system

In many chemical reactions, the representative po
moves along the reaction path over the barrier into produ
One of the simplest models for these types of reaction
double-well system.

In this section, we apply the local feedback method d
rived in the preceding section to a one-dimensional doub
well system where potential is expressed by

V~q!5aq42bq21cq3 ~27!

as a function of the reaction coordinateq . Here, it was
assumed that a59.223105 cm21 Å 24, b53.79
3104 cm21 Å 22, and c51.593104 cm21 Å 23. The sys-
tem mass was assumed to beM599.3 amu. Figure 1~a!
shows the potential functionV(q) whose two minima are
denoted by A and B,u0& andu5& are the eigenstates of A an
B, respectively. This system has 42 eigenstates below
potential barrier. For the interaction between the system
external fields, we used

m~q!5m01m1q ~28!

as a dipole moment function. Herem050.716 Å e andm1

50.310 e .
Consider a control of a reaction from A to B. Now w

set the initial state to a ground stateu0& of the system and the
control target is set to be the lowest position B in the tar
well shown in Fig. 1~a!. To achieve a control, we need to s
the control parameterf pp appropriately. Recalling thatf pp is
a parameter for controlling kinetic energy,f pp should be a
continuum function of position, which has negative values
the initial well to energize the system and positive values
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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the target well to decrease the kinetic energy. Since the c
trol procedure is robust for a form off pp(q) , we adopted an
analytical form off pp as

f pp~q!5
2

p
tan21~sq!, ~29!

wheres550 Å21. Figure 1~b! showsf pp as a function ofq .
Figure 2~a! shows the time evolution of the controlle

wave packets in a phase space. Here the laser intensity
rameterr was set tor 52930 and the wave packet dynami

FIG. 1. ~a! Potential of a one-dimensional double-well model in Eq.~27!. u0&
and u5& are the eigenstates of the two minima A and B, respectively.~b!
Control parameterf pp as a function of the coordinate whose form is giv
by Eq. ~29!.

FIG. 2. Controlled wave packet dynamics in the phase space by using
field expression Eq.~26!. We set the initial state to a ground stateu0& shown
in Fig. 1 and the laser intensity parameterr was set tor 52930. The solid
line shows the trajectory of quantum expectation values of position^q& and
momentum^p&, and contours represent wave packets expressed in Hu
representation.~b! Obtained control field for this quantum wave packet d
namics.
Downloaded 01 Feb 2010 to 130.34.135.21. Redistribution subject to AIP
n-

pa-

was computed by the symplectic integrator~SI!-FFT
scheme45 under the control field expressed in Eq.~26!. The
solid line describes the trajectory of the quantum avera
position ^q& and momentum̂p&. The contours in Fig. 2~a!
represent the wave packets expressed in the Husimi re
sentation,

rH~q,p!5~2p\!21u^fqpuC&u2 ~30!

at the time denoted by its side. Herefqp denotes the minima
wave packet given by

fqp~x!5~2p~Dq!2!21/4 expF i

\
px2

~x2q!2

4~Dq!2G , ~31!

with an uncertainty of coordinate spaceDq with Dq
5 (\/2) 30.04 a.u. Figure 2~b! shows the control field ob-
tained by using Eq.~26!.

We can see from Fig. 2 that the quantum 1D double-w
system is really controlled by using the local feedba
method described in the preceding section. Figure 2~a! shows
that the system moves from the initial well to the target we
keeping a localized character of the wave packet in ph
space, and its trajectory of^q&2^p& is not so far from the
center of the wave packet, especially in the initial well. Aft
crossing the barrier, the system begins to spread to s
extent because of a branching by the barrier, but the spr
ing is small enough to control the system as a wave pac
In fact, the trajectory of̂ q&2^p& evaluated by using the
Ehrenfest theory closely resembles that of the classical o
and the control field shown in Fig. 2~b! has a similar struc-
ture to the control field applied to the classical system.

Consider a special case in which the system moves
ward the top of the barrier with zero momentum. Figure
shows the controlled wave packet dynamics and control fi
in that case. Here the laser intensity parameterr was set to
r 53050. Figures 3~a! and 3~b! show the controlled wave
packet dynamics prior to crossing over the reaction bar
and after stopping at the barrier, respectively. In Figs. 3~a!
and 3~b!, the solid line describes the trajectory of the qua
tum expectation values of position̂q& and momentum̂p&
until t530 ps. The contours represent the system expres
in Husimi representation defined by Eq.~30! at the time de-
noted by its side. Just after the wave packet reaches at th
of the barrier, the high energy components of the wa
packet proceed to the target well, and, on the other hand
low energy component of the wave packet turns back to
initial well. Therefore, as shown in Fig. 3~b!, the wave
packet splits into two parts. This causes the system to
come uncontrollable. After splitting, the wave packet spre
out into both wells, and then the averaged position^q& and
the averaged momentum̂p& are no longer appropriate fo
the representative point of the system. In fact, such a sys
cannot be controlled by using the simplest local feedb
expression for pulses given in Eq.~26! as shown in Fig. 3~c!.

B. Isomerization of HCN

Consider control of the isomerization of HCN to HN
by using two perpendicular polarized laser pluses as con
fields. We adopt a two-dimensional model in which the c

he

i
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bon and nitrogen atom positions are fixed and the hydro
atom moves on thex–y plane. The potential energy surfac
and the dipole moment function of the reaction system w
calculated by theGAMESS ab initio program.46 The system
has two minimums, which correspond to the two isom
HCN and HNC. The potential energy surface and
adopted control parameterf pp are shown in Fig. 4. In this
figure, the contour around H represents the vibratio
ground state of HCN. We used the same function as
control parameterf pp for the x-polarized fieldEx and the
y-polarized fieldEy . For simplicity, we adopt the form o
f pp as

f pp~qx ,qy!5 f pp~qx!5
2

p
tan21~s~qx2qb!!, ~32!

FIG. 3. Controlled wave packet dynamics in the phase space, and c
sponding control field withr 53050.~a! and ~b! show the dynamics before
and after reaction barrier crossing, respectively. The solid line shows
trajectory of the quantum expectation value of position^q& and momentum
^p& until t530 ps, and contours represent wave packet expressed in Hu
representation.~c! Corresponding control field.
Downloaded 01 Feb 2010 to 130.34.135.21. Redistribution subject to AIP
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e

s
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e

wheres54 Å21 andqb50.5 Å. The intensity parameters fo
Ex andEy were chosen to ber x53030 andr y5556, respec-
tively.

Figures 5~a! and 5~b! show the time development of th
wave packets of the controlled isomerization reaction. T
contours with timet describe the wave packet at that tim
and the dashed line denotes the trajectory of the quan
averaged position̂q& of the wave packet. We can see th
the trajectory runs along the reaction path and that the w
packet moves on that trajectory except for the final part
the reaction. This small difference between the trajectory^q&

re-

e

mi

FIG. 4. ~a! Potential energy surface of HCN molecule. The contour arou
H represents vibrational ground state of HCN.~b! Control parameterf pp as
a function of thex coordinate.

FIG. 5. Controlled wave packet dynamics~a! under two linearly polarized
control fields, and~b! after. The dashed line shows the trajectory of^q&.
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and the center of each wave packet indicates the validit
our simplified treatment with Eq.~26! for controlling the
isomerization of HCN. At the end of the control puls
shown in Fig. 5~b!, the system was localized at the bottom
HNC with a little distribution that excited bending vibration
This remaining part is the origin of the differences betwe
the trajectory of̂ q& and the wave packet at the final part
the control.

Figure 6 shows the control fields for this isomerizatio
The upper figure represents thex-polarized fieldEx and the
lower one represents they-polarized fieldEy . In Figs. 5 and
6, Ey mainly controls the wave packet except for the per
in which the system just moves over the reaction barr
This is because control fields are obtained in proportion
the momentum expressed by Eq.~26!. From the point of
view of transition moment of the quantum system, C–
stretching motion is excited faster than C–H bending moti
However, since the potential energy curve slopes gently
the C–H bending direction, the wave packet easily mo
toward this bending direction. In the early stage, the C
stretching motion was excited by theEx field first, but once
the wave packet began to move in the C–H bending dir
tion, this motion was much more quickly enhanced by
positive feedback of theEy control field. On the top of the
isomerization barrier, theEx control field is enhanced for th
same reason as that mentioned above. After going over
barrier, the wave packet spreads a little, and then the co
spondence between the wave packet and the classical pa
breaks down to some extent. That is one of the reasons
the control pulses are so complicated after the barrier cr
ing. At the end of control, most of the wave packet sett
down to HNC@Fig. 5~b!#.

Figure 7 shows the time-dependent isomerization pr
ability defined by

Piso~ t !5E
20.25

0

dxE
22

2

dyuC~x,y,t !u2. ~33!

The integrated region is shown by a white rectangle in F

FIG. 6. Two linearly polarized control fieldsEx for the x-direction andEy

for the y-direction.
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5~b!. About 92% of the wave packet is localized in that r
gion at the end of the control pulses. It should be noted t
there is no oscillatory behavior in isomerization probabil
after the control pulses come to an end. This indicates
the wave packet remains localized in the product region
HNC.

Figure 8 shows the expectation value of the molecu
Hamiltonian along the reaction coordinate defined in the p
vious paper.33 A dotted line represents the dissociatio
threshold of HCN→H1CN. The wave packet absorbed e
ergies while oscillating in the initial well. It should be note
that the energy absorbed by the system is sufficiently lo
than the dissociation energy even around the transition s
region. Namely, the dissociation is not induced by the c
trolled pulses shown in Fig. 6. Once the wave packet com
to the region in the target well, the system is stabilized
HNC by stimulated emission by controlled pulses.

Let us now make a comparison between the pres
method and other methods proposed so far. Accuracy
computational times in control methods depend on con
objectives adopted, the reaction system under considera
approximations used, etc. There have been several kind
control objectives in quantum optimal control theory
chemical reaction. One of the objectives is a population
target states, and control theories with this object have b
widely investigated and applied to one- or two-dimensio
systems. It should be noted that there is computational d
culty inherent in this objective in the case of large system
That is how to obtain reliable eigenstates of the react

FIG. 7. Isomerization probability as a function of time.

FIG. 8. The trajectory of the energy along the reaction coordinate unde
control fields shown in Fig. 6. Around the point with 0 rad, the system
HCN, and HNC withp rad.
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system of interest, and further one needs to find which
the target states and which are not out of a number of eig
states.

Another objective is molecular geometry, in oth
words, position and momentum of wave packet. For this
jective, matrix diagonalization of large dimensions describ
above is not necessary. This type of control has b
achieved by considering density matrix,19 phase space
representation18 like Wigner representation,d-target27,30 or
position tracking.47–49 However, the direct treatment o
phase space, which involves density matrix calculation
phase space representation, requires additional heavily c
putational tasks. Therefore, approximations in weak field
gimes such as the time-dependent Hartree approximati50

and a linearizedd-target approximation27,30 have been intro-
duced. The linearizedd-target approach is quite efficient
one wants for the system to be localized at a position
desired timet. However, it does not specify its momentum
Then the system cannot be stabilized in a target well. P
tion tracking is a different kind of optimal control. This a
gorithm requires explicit target tracks of the objectives. It
useful if one has already known physically reasona
tracks.49

A local track generation, developed by Chenet al.,49 is
similar to our local control methods. They employed an an
ogy to a classical particle in the quantum regime, and de
mined the objective track locally by using the system exp
tation value at each time. Even in this local track generat
one needs to obtain an explicit tracking path before its sh
time evolution. It means that in principle, one can control
system along the desired path. However, one must know
detailed information on the system in order to determine
path. On the other hand, our local feedback method is dif
ent from tracking, and control parameters such asf pp are
easily obtained

Our local feedback control method is one of the appro
mation methods to treat phase space in quantum mecha
dynamics. It should be noted that this control method is
plicable to systems under intense field conditions as wel
under weak field ones. We have treated phase space w
classical mechanics, and then extended it to a quantum
tem on the basis of the Eherenfest theorem. That is, we a
the quantum expectation value of position^q& and momen-
tum ^p& as a representative point. In this simplified tre
ment, quantum-classical correspondence keeps automati
by compensation at each short time step. The conditions
der the treatment works and when it fails can be qualitativ
seen from Figs. 2 and 3. More generally, when wave pac
act as a single packet in the phase space, they correspo
a classical particle and then our classical local feedb
method works well. On the other hand, when wave pack
bifurcate and split into two or more parts, our method can
handle them since the correspondence between the w
packets and the classical particle breaks down.

IV. CONCLUSIONS

We have developed a simple method for quantum c
trol of chemical reaction dynamics based on a classical lo
control theory. The principle of the control is to manipulate
Downloaded 01 Feb 2010 to 130.34.135.21. Redistribution subject to AIP
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representative point on reaction coordinates by accelera
and/or decelerating its momentum by control fields. In t
ordinal quantum mechanical local control theory, the targ
such as population, should commutate with the syst
Hamiltonian, while in the classical control theory, the cont
target is the momentum or kinetic energy. Our method w
applied to a system with a one-dimensional double-well
tential to check its applicability. It was shown that our simp
method is applicable to nuclear wave packet control by us
a quantum mechanically averaged nuclear momentum on
basis of the Ehrenfest theorem. A limitation of wave pac
control by the present method was discussed. Isomeriza
of HCN to HNC was controlled in a two-dimensional mod
with ;90% yields. In conclusion, this shows the usefulne
of our simplified method for reaction control.

It should be noted that in our treatment, a control eq
tion itself does not need to be obtained from the exact sys
equation under a local control treatment. We can use o
system equations that approximate desired control ob
tives, instead of the whole target system. This feature m
be efficient for a system with more complicated dynamic
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