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A simplified approach to quantum control of chemical reaction dynamics based on a classical, local
control theory was developed. The amplitude of the control pulse is proportional to the linear
momentum of the reaction system within the dipole approximation for the system-radiation field
interaction. The kinetic energy of the system is the controlling parameter. That is, the reaction is
controlled by accelerating the representative point on a potential energy surface before crossing over
a potential barrier and then by deaccelerating it to the target after passing over the potential barrier.
The classical treatment was extended to control of wave packet dynamics by replacing the classical
momentum by a quantum mechanically averaged momentum on the basis of the Ehrenfest theorem.
The present method was applied to a quantum system of a simple one-dimensional, double-well
potential for checking its validity. A restriction of the applicability of the simplified method was also
discussed. An isomerization of HCN was treated as a model system for wave packet control of a
two-dimensional reaction. @000 American Institute of Physids$§0021-9606)0)01033-3

I. INTRODUCTION mute with the system Hamiltonia#t.In usual cases in which
the population of the system is taken as the target, there is no
In recent years, there has been considerable efforts maggoblem because the population operator commutes with the
in theoretical treatments of quantum control of chemical re-system Hamiltonian. The nuclear kinetic energy of a repre-
action dynamics:’ Various treatments based on optimal or sentative point, on the other hand, can not be taken as the
local control theory and on perturbative or nonperturbativeperformance index in a quantum system. However, the ki-
methods have been developed for designing laser pulses ttic energy can be considered to be a characteristic quantity
manipulate nuclear wave packets to the desired target undebntrolling chemical reactions in the ordinary reaction dy-
consideratiorf—3 namics on the basis of chemical intuition; an efficient yield
In our previous studies, we developed a nonperturbativepf chemical reactions under consideration is obtained by in-
quantum mechanical feedback control theory based on a lereasing kinetic energy along its reaction coordinate to cross
cal control method*3*3* In that treatment, the time- over the transition state region. From these points of view, it
development of reaction dynamics was divided into shorfs interesting to consider an optimization procedure based on
time stages in which the system can be considered to follouhe classical treatment, in which a representative point of
the equation of motion of a time-invariant system. The con+eaction obeys the Hamilton’s equation of motion in classical
trol theory is free from the laser intensities used and is apmechanics.
plicable to reaction dynamics in strong laser field cases as In this paper, we present a classical, local control theory
well as weak field cases. For the quantum control of reacfor controlling reaction dynamics of multidimensional sys-
tions in the ground electronic state, a sequence of opticakms. The theory is based on a classical mechanical, feed-
transitions between the relevant quantum states was utilizesck control method within a local optimization treatment
in order for the reaction to proceéd® This procedure was presented in a previous pagér® The classical treatment
well applicable to simple systems such as a multiphoton diswas extended to control wave packet dynamics by replacing
sociation of HF in the ground state, but may experience dhe classical momentum by a quantum mechanically aver-
difficulty in controlling reactions in multidimensional sys- aged momentum on the basis of the Ehrenfest theorem. That
tems. In order to overcome such a difficulty, it is importantis, the controlled field is derived from the Hamilton’s equa-
to develop a control theory based on classical mechanicson of motion under the constraint of a smaller amount of
rather than quantum mechani@s:*17:28:29 laser energy. The dynamics, on the other hand, is evaluated
From the general viewpoint of chemical reaction dynam-by solving the time-dependent Schinger equation.
ics, the process of the reaction is described in terms of a There have been several studies on classical optimal
representative point that moves from a reactant to a producontrol developed mainly by Rabitz’s groth!’?®2°The
over a transition regiof® 3’ It is natural to consider a reac- main problem encountered in classical optimal control is first
tion in quantum control in a similar way, i.e., quantum con-how to take into account an ensembleNtrajectories and
trol is viewed as a representative point moving on the reacsecondly how to keep close to quantum mechanics. Regard-
tion coordinate in nonstationary laser fields. That is, quantuning the first problem, an optimization approach to a classical
control is treated in a classical way. system withm degrees of freedom involvesngN time-
Another theoretical viewpoint is that the target operatordependent Lagrange multipliers for the propagation of the
(performance indexfor the local control scheme has to com- ensemble ol trajectories. Its procedure needs much com-
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putational time for a multidimensional system, and the solu+elated to the final status of the system at tithe the field
tion was shown to be unstable in some cases. Botina, Rabitimtensity, and the path within the control tirhe-t;, respec-
and Rahman presented a new classical treatment with 2tively. Equation(2) is an expression for a global control
Lagrange multiplier€® In their treatment, the average trajec- sinceJ is minimized within a period of time betweep and
tory is controlled under the constraint that the mean phasg .

space trajectories are preserved. In our treatment, on the Consider a LTI systefi whose n-dimensional system
other hand, time development of Lagrange multipliers is novariable vectox(t) satisfies

longer needed for the control of the ensembléNafajecto-

ries since we can use the Ricatti equation to control the linear  — y(t)= Ax(t)+ Bu(t), 3
time-invariant(LTI) system within short time approximation. dt

Regarding the second problem, in general, the optima}here A and B are time-independent matrices, ant) is
control method for a classical system is not always expectegha mdimensional input vector. The optimal input vector
to control a quantum system. One of the solutions for theminimizing performance inded is given as

second problem is to keep classical trajectories close together
by introducing a variance term in the cost functiod®The u(t)=—RBTP(t)X(t). 4
[esultmgt flel? is expectted tog:ontrol tr;ﬁ corresp(l)3r|1d|nfg Iquarjl-_'?re’ P(t) is a time-dependentyxn symmetric positive
um system 1o some extent, because the ensemble ot ClassIGliaiie matrix that obeys the so-called Ricatti equafion,
trajectories tends to spread more easily than the quantum

wave packet in the case of existing chaos or other pure clas- dP(t) T o7

sical phenomena. Another solution is to evaluate quantum/ ¢ — A P(O~POA+POBRB'P()—-Q, (5
classical differences in the cost functional explicitlyOn

the other hand, in our treatment, an ensemble average #fder the final condition

linear momentum was replaced by a quantum mechanical P(t;)=. (6)
average at each short time stage; in other words, we cor-

rected the classical trajectory to a quantum wave packet d0 Eq. (4), R™*BTP(t) is called the feedback gain matrix.
each time. Therefore, our treatment is applicable to a quarEquation(4) is a general expression for global optimization
tum system as long as it behaves a wave packet. of a LTI system.

In the next section, after introducing a local feedback  Even in the case in which the system of interest is not a
control treatment, a classical mechanical, local control theory. Tl system, we can use the LTI optimization procedure as
is presented. In Sec. I1l, the theory is applied first to a simplelescribed above by taking a short time liffitve divide the
one-dimensional system to check the applicability of ourtotal control periodt,—t; into short time steps. In thith
theory. We show that the present theory can be applied nathort time step, we rewrite the equations of motion of the
only to classical systems but also to some quantum reactiogystem through Tailor expansion around a certain point
systems. Finally, we apply the theory to two-dimensional(x$’,u$’) to the 1st order as
reaction dynamics of HCN isomerization.

dA(n_‘?f s Ax(® of S Au® 7
g (AX )—5XZX8) X +%X:X8) ut®, (7)
Il. THEORY u=uf) u=uf)
A. Local feedback control of a linear time-invariant Here, Ax and Au are differences from a certain point
system (x§),u$’)
Considgr a reac'gion system in an gxtgrnal control field. X(i)(t)zxg)+AX(i)(t)
The equation of motion of the system is given by . . oo (8)
. uO(t)=uf’+Au®(t)
g O=fx®),u®),1). (1 Equation(7) has the same form of the LTI system, and we

_ . . . obtain an expression for the control input vector for the sys-
Here,x(t) is the n-dimensional system variable vector, and tem from Eq.(4) as

u(t) is the mdimensional input vector that is an arbitrary

external field to control the system(t) corresponds to wave AuD(t)=—RO ™ (1)BO PO (1) AxD(t). 9)
functions andu(t) correspc_mds _to laser field_s in the case ofNotice thatP(t) should not be so far from()(t,) = ®0)
quantum systems. An optimal input vector is determined by, ... " the “short time limit, and we therefore fs@fi)(t)
minimizing a performance inded during the time interval —P0(t;). As a result of this replacement, the local control

from to to ty, input vector at theth short time step is described in a feed-

1 T 1t - back form as
J=5x(t0) @x(ty)+ 5 [ [u(t) RHu(t)
to Au)= —ROTBO @M A XD (10)

T

+x(1) " Q(t)x(t)]dt. 2) By carrying out the short time control procedure repeat-
Here,® and Q arenXn real matrices, andR is anmxXm  edly, we can control the reaction system. This is called local
real matrix. Control parameter matricas, R and Q are  feedback control.
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B. Classical local control theory

Now consider ann-dimensional particle motion in a
time-dependent external field whose dynamics is given b

classical Hamilton’s equations of motion,

d JH
&,
R (ES ) (11
FTLT

H. Umeda and Y. Fujimura

respectively. Hered is required to be a symmetric positive
definite matrix according to the final condition. This require-
ment is satisfied if off-diagonal elements betwgeandq,

¥(') andf(') are set to zero. In this case, the local control field

|s expressed as

) 1[0 ) )
AUO= RO (ﬁ) 0ap0.

a=q

(19

The performance index at theh short time step is ex-

Here,H=H(q,p,t), the total Hamiltonian, is expressed as Pressed as

2

H(ap.0) = 5 +V(a)— (@) E(), (12

where dipole approximation for the particle-external field in-
teraction is assumed, q(t), andp(t) denote particle mass,

position, and momentum, respectivel¥(.q), x(q) andE(t)

are the potential, the dipole moment of the system, and the

external field, respectively.
We define system variable vect{t) and input vector
u(t) as

t
a( )} 13

0= [ p(t)

and

u(t)=E(t). (14)

Within a short time approximation shown in Sec. Il A, the

equations of motion at thith repetition at time are rewrit-
ten by a difference 4x{’,Au{) from a point &{’,u{’) as

Ap(')
(1)
(Aq )=
2 (15
E(Ap(i)):( —V— [ME]) q= qg>Aq<.>
dt J9° p=p{
E(l)
| 2o a0
99/ | p—p(
e=e()

Then, the local control field is expressed as 8d) with

im

.
a=dp) | (16)
dq

p=p{
e=e{)

BO=|0

We set®, Q, andR matrices as

oo | ]
(I)(I)ZQ('):L(” ) 17
pa  ppd
and
ri) 0]
R = , (18
0 r

B R T AU
I0=3ap0) TpapV(tf)

j Tt

1, -
+§Ap(')(t)Tf33Ap(')(t)}.

AuD () TROAUD (1)

(20

To control the system, we would like to know how the
diagonal matrix elemerff)) plays a role in the system. No-
tice thatxy, andug can be chosen arbitrary. In this paper, we
setxo=(q(t),0) anduy=0, so thatAq=0andAp=p. Then,
Eq. (20) is rewritten as

B TN
I0=Zp0() e (1)

N0
+ | Fdt
R0
0

: - 1
u® () TROUD () + Ep(I)T(t)f(u)p(l)(t)

(21
with

u(i):_Ra)l(a_")

(Hi)
dq f oP

-t

(22

Equation(21) shows that the control paramefgy is a mul-
tiplier to the kinetic energy. This means that our control is
carried out through changing the kinetic energy of the repre-
sentative point of the reaction system. The control fields
minimize the performance indeX given by Eq.(21). The
control fields promote the kinetic motion of the system in the
case in whichJ becomes smaller and, on the other hand,
suppress the kinetic motion in the case in whichecomes
larger. For example, if ,, has a negative value, then the
control field energizes the system. On the other hant}, jf
has a positive value, then the control field decreases the ki-
netic energy of the system.

Notice that our local control scheme consists of a se-
quence of many short time steps. Because control parameters
are defined at each step, we can control the kinetic energy of
the particle as a function of time, position, momentum, or
other physical properties of the system.

So far, we restricted ourselves to local control of a tra-
jectory of a representative point starting with an initial value
of p and that ofg. In other words, we did not consider a
distribution of initial conditions. We now consider two kinds
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of initial conditions and three kinds of the expressions for theHere,( ) denotes the quantum expectation value of the sys-
control field assuming that all of the particles are controllectem.
by the same field at time In our treatment, time propagation of the quantum sys-
1. p=p(ty) and g=q(t,) at t=t tem is required.. This causes computational difficulties_irj_a
' 0 0 0 large system with many degrees of freedom. One possibility
In this one particle case, the control field at fkietime  for such a system is the approach using a Gaussian wave

stage is simply given by Eq22). packet representation of wave functitif In this approach,
wave function is represented as a sum of Gaussian wave
2. p and g have a distribution of conditions packets located in phase space. In our methodology, we

d_could say that these Gaussian wave packets are one of the
Iselections for the representative points of the system. And of
course, our local feedback theory can be applied to the
purely classical system. This wide applicability of our theory

is based on the locally controlled property, that is, correction
of the field parameterp andq to the target system at each
time step.

In this case, two types of control field are constructe
The first type of control field is given by using both classica
ensemble averages of the moment{p)., and coordinate
(Q)en at each step,

f(i)q:<q<i>>en<p(i)>en.

. 0] —1fd
u(l):uQ:<q(i)>en: _R(I) 1(_’L) pp )
a=(q®)g,  P=(Pen

NG 0
P~ q

(23

( Yen denotes the ensemble average over the trajectories. Tfaﬁ APPLICATIONS AND DISCUSSION
second type of control field is given as '

) _ e ) ) For checking the present local control method, we first

()= ¢y O () (0 . : )
u=(u")er=—R a9 . fppq:qt;;p (24)  apply this method to a one-dimensional double-well quantum
a=q®  P=P system. Next, we apply the local control method to control of

That is, the control field is created by averaging the fields fofSOmerization reaction of HCN as an example of a two-
the trajectories at each step. dimensional quantum system.

A. A double-well system

C. Bxtension to wave packet dynamics In many chemical reactions, the representative point

The fields, derived in the preceding section, applied to anoves along the reaction path over the barrier into products.
classical system do not always control the quantum syster®ne of the simplest models for these types of reaction is a
because of spreading and/or bifurcation or other pure quardouble-well system.
tum behaviors of nuclear wave packets. Therefore, we need In this section, we apply the local feedback method de-
to extend the classical local feedback control method derivedved in the preceding section to a one-dimensional double-
above to a quantum system whose wave functidr(t)) well system where potential is expressed by
satisfies

ey V(g)=ag*-bg*+co? (27)

ifi— = (Ho— wEMm)[¥ (1), (25

as a function of the reaction coordinate. Here, it was

whereH, is the system Hamiltonian. assumed  that a=9.22x10° cm 'A% b=3.79

The basic idea for extending to the quantum control isx10* cm™* A72 andc=1.59x10" cm* A~3. The sys-
appropriate selection of the representative points in the phagém mass was assumed to be=99.3 amu. Figure (B)
space of the system. The simplest method is just to use trghows the potential functiov(q) whose two minima are
quantum averaged positigiy) and momentun{p) for the denoted by A and B0) and|5) are the eigenstates of A and
nuclear wave packet on the basis of the Ehrenfest theorenB, respectively. This system has 42 eigenstates below the
Explicitly, this should be applicable to a system of a har-potential barrier. For the interaction between the system and
monic potential. However, it is expected that the simplesexternal fields, we used
method is effective as long as the wave packets are not so
separated, as shown in the next section. Another method isto  u«(q) = uo+ x40 (28)
use a quantum phase space distribution function such as
Wigner*® or Husimi distribution functiod#?Such a method as a dipole moment function. Hegg,=0.716 Ae and u,
is expected to be applicable to a quantum system even ig0.310 e .
case in which the wave packet splits, but its computational Consider a control of a reaction from A to B. Now we
task would be too great to obtain such a distribution functiorset the initial state to a ground std@ of the system and the
at each local control step. For this reason, we adopted theontrol target is set to be the lowest position B in the target
former method. In this case, the control field for a quantumwell shown in Fig. 1a). To achieve a control, we need to set

system at théth short time step is expressed as the control parametefi, , appropriately. Recalling thdt, , is
a parameter for controlling kinetic energfy,, should be a
. =1 07[.L Yy (i) f . . oy . pp . .
ul= —rO 7 L fggq—<Q> _ <p>('), (26) continuum function of position, which has negative values in
I/ g P=(mD the initial well to energize the system and positive values in
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200———r———1— - was computed by the symplectic integratéBl)-FFT
- a schem& under the control field expressed in Eg6). The
5 or - solid line describes the trajectory of the quantum averaged
> position{qg) and momentun{p). The contours in Fig. @)
3 -200 . represent the wave packets expressed in the Husimi repre-
- -y 5—] sentation,
4001\ B - _
R | pr(a.p)=(27h) ~*|(bqpl ¥)I? (30
b r'i at the time denoted by its side. Hepg, denotes the minimal
&0 wave packet given by
J [ (x—0q)?
g : I . 1 \ _ 2\—1/4 _ _
L bap(X)=(27(AQ)?) ex;{ﬁ PX= 70 Aq)z}, (3D)

q/A
with an uncertainty of coordinate spackq with Aq

FIG. 1. (a) Potential of a one-dimensional double-well model in &7). |0) — (ﬁ/2) x0.04 a.u Figure Q)) shows the control field ob-
and|5) are the eigenstates of the two minima A and B, respectiv@ly. tained by u.sing Eq(26)

Control parametef,, as a function of the coordinate whose form is given '
by Eq. (29). We can see from Fig. 2 that the quantum 1D double-well

system is really controlled by using the local feedback
method described in the preceding section. Figae shows
the target well to decrease the kinetic energy. Since the conhat the system moves from the initial well to the target well,
trol procedure is robust for a form éf,,(q) , we adopted an  keeping a localized character of the wave packet in phase

analytical form off ,, as space, and its trajectory @fj)—(p) is not so far from the
2 center of the wave packet, especially in the initial well. After
fop(0)=— tan *(sq), (290  crossing the barrier, the system begins to spread to some
™ extent because of a branching by the barrier, but the spread-
wheres=50 A™L. Figure 1b) showsf ,, as a function ofy.  ing is small enough to control the system as a wave packet.

Figure 2a) shows the time evolution of the controlled In fact, the trajectory ofq)—(p) evaluated by using the
wave packets in a phase space. Here the laser intensity pahrenfest theory closely resembles that of the classical one,
rameterr was set ta =2930 and the wave packet dynamics and the control field shown in Fig(ld has a similar struc-
ture to the control field applied to the classical system.

Consider a special case in which the system moves to-
ward the top of the barrier with zero momentum. Figure 3
shows the controlled wave packet dynamics and control field
T in that case. Here the laser intensity parametesas set to
r=3050. Figures & and 3b) show the controlled wave
. packet dynamics prior to crossing over the reaction barrier
and after stopping at the barrier, respectively. In Figs) 3

400

200

p/a.u.
[

; > s[‘\
200 L\ 4 =192ps § and 3b), the solid line describes the trajectory of the quan-

tum expectation values of positiqig) and momentun{p)

until t=30 ps. The contours represent the system expressed
in Husimi representation defined by E8O) at the time de-
noted by its side. Just after the wave packet reaches at the top

-400

15 : : : : : of the barrier, the high energy components of the wave
b packet proceed to the target well, and, on the other hand, the
1or i low energy component of the wave packet turns back to the
e 5 - initial well. Therefore, as shown in Fig.(3, the wave
°’Z 0 N’ packet splits into two parts. This causes the system to be-
= come uncontrollable. After splitting, the wave packet spreads
= -5r 7 out into both wells, and then the averaged positigh and
10k N the averaged momentugp) are no longer appropriate for
the representative point of the system. In fact, such a system
150 20 30 40 50 60 cannot be controlled by using the simplest local feedback
time /ps expression for pulses given in E@6) as shown in Fig. &).

FIG. 2. Controlled wave packet dynamics in the phase space by using the
field expression E¢26). We set the initial state to a ground stf@¢ shown L
in Fig. 1 and the laser intensity parametevas set tor =2930. The solid B Isomerization of HCN

line shows the trajectory of quantum expectation values of posjtiprand Consider control of the isomerization of HCN to HNC
momenturm(p), and contours represent wave packets expressed in Husimj

representation(b) Obtained control field for this quantum wave packet dy-rrb_y using two perpendicu_lar pol_arized |aser_pluse_5 as control
namics. fields. We adopt a two-dimensional model in which the car-
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400

200

p/a.u.
(=)

-200

-400

400

200

p/a.u.
(=]

-200
t=19.2ps
-400 L : L : L
-0.2 0.0 0.2
q/
20 T T T T T |
c I
10
e ‘
>
‘c 0 ‘
*o1of “
20 1 1 1 1 \‘}‘
0 10 20 30 40 50 60
time /ps

FIG. 3. Controlled wave packet dynamics in the phase space, and corre-
sponding control field withr =3050.(a) and (b) show the dynamics before
and after reaction barrier crossing, respectively. The solid line shows the
trajectory of the quantum expectation value of positjgh and momentum
(p) until t=30 ps, and contours represent wave packet expressed in Husimi

representation(c) Corresponding control field.

bon and nitrogen atom positions are fixed and the hydrogen
atom moves on the—y plane. The potential energy surface
and the dipole moment function of the reaction system were
calculated by thesAMESS ab initio program?® The system
has two minimums, which correspond to the two isomers
HCN and HNC. The potential energy surface and the
adopted control parametép, are shown in Fig. 4. In this
figure, the contour around H represents the vibrational
ground state of HCN. We used the same function as the
control parametef ,, for the x-polarized fieldE, and the
y-polarized fieldE, . For simplicity, we adopt the form of

fpp as

2
fpp(qx 1qy) = fpp(Qx) = ;tan_l(s(qxf db)),

(32

Quantum control of reaction dynamics 3515

-1 L . L
O g /A

2 4

FIG. 4. (a) Potential energy surface of HCN molecule. The contour around
H represents vibrational ground state of HGN). Control parametef ,, as
a function of thex coordinate.

wheres=4 A~ andq,=0.5 A. The intensity parameters for
Ex andE, were chosen to bg,=3030 andr,= 556, respec-
tively.

Figures %a) and 3b) show the time development of the
wave packets of the controlled isomerization reaction. The
contours with timet describe the wave packet at that time
and the dashed line denotes the trajectory of the quantum
averaged positiodq) of the wave packet. We can see that
the trajectory runs along the reaction path and that the wave
packet moves on that trajectory except for the final part of
the reaction. This small difference between the trajectgby

FIG. 5. Controlled wave packet dynami@ under two linearly polarized
control fields, andb) after. The dashed line shows the trajectory of.
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> A

'.g 0.8 b
o)
[]

o 06 b
C
i)

® 041 .
N
3

E 02F b
o
£

0.0 I T

0.0 0.2 0.4 0.6 0.8 1.0

time /ps
FIG. 7. Isomerization probability as a function of time.
| S——

3 o 0'4 : ols : ols Y 5§b). About 92% of the wave packet is localized in that re-

’ ’ time /ps ‘ ' gion at the end of the control pulses. It should be noted that
there is no oscillatory behavior in isomerization probability
after the control pulses come to an end. This indicates that
the wave packet remains localized in the product region of
HNC.

Figure 8 shows the expectation value of the molecular
and the center of each wave packet indicates the validity offamiltonian along the reaction coordinate defined in the pre-
our simplified treatment with Eq(26) for controlling the vious papef® A dotted line represents the dissociation
isomerization of HCN. At the end of the control pulses threshold of HCN-H+CN. The wave packet absorbed en-
shown in Fig. Bb), the system was localized at the bottom of ergies while oscillating in the initial well. It should be noted
HNC with a little distribution that excited bending vibration. that the energy absorbed by the system is sufficiently lower
This remaining part is the origin of the differences betweerthan the dissociation energy even around the transition state
the trajectory ofq) and the wave packet at the final part of region. Namely, the dissociation is not induced by the con-
the control. trolled pulses shown in Fig. 6. Once the wave packet comes

Figure 6 shows the control fields for this isomerization.to the region in the target well, the system is stabilized to
The upper figure represents tkepolarized fieldE, and the HNC by stimulated emission by controlled pulses.
lower one represents thyepolarized fieldE, . In Figs. 5 and Let us now make a comparison between the present
6, Ey, mainly controls the wave packet except for the periodmethod and other methods proposed so far. Accuracy and
in which the system just moves over the reaction barriercomputational times in control methods depend on control
This is because control fields are obtained in proportion tabjectives adopted, the reaction system under consideration,
the momentum expressed by E@6). From the point of approximations used, etc. There have been several kinds of
view of transition moment of the quantum system, C—Hcontrol objectives in quantum optimal control theory of
stretching motion is excited faster than C—H bending motionchemical reaction. One of the objectives is a population of
However, since the potential energy curve slopes gently iarget states, and control theories with this object have been
the C—H bending direction, the wave packet easily movesvidely investigated and applied to one- or two-dimensional
toward this bending direction. In the early stage, the C—Hsystems. It should be noted that there is computational diffi-
stretching motion was excited by tltg field first, but once culty inherent in this objective in the case of large systems.
the wave packet began to move in the C—H bending direcThat is how to obtain reliable eigenstates of the reaction
tion, this motion was much more quickly enhanced by the
positive feedback of th&, control field. On the top of the
isomerization barrier, the, control field is enhanced for the 10—
same reason as that mentioned above. After going over the
barrier, the wave packet spreads a little, and then the corre-
spondence between the wave packet and the classical particle “c 10}k 4
breaks down to some extent. That is one of the reasons why
the control pulses are so complicated after the barrier cross-
ing. At the end of control, most of the wave packet settles
down to HNCJ[Fig. 5b)].

Figure 7 shows the time-dependent isomerization prob-
ability defined by

FIG. 6. Two linearly polarized control fields, for the x-direction andE,
for the y-direction.

[=)

-1
cm

Energy /10

1 1 1 1 1 1
0 T
Reaction coordinate /rad

0 2
Piso(t) = dx | dy|¥(xy,b)2 33
sof ) J_o,z5 -2 y| Xy )| (33 FIG. 8. The trajectory of the energy along the reaction coordinate under the
control fields shown in Fig. 6. Around the point with O rad, the system is

The integrated region is shown by a white rectangle in FigHCN, and HNC withw rad.
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system of interest, and further one needs to find which areepresentative point on reaction coordinates by accelerating
the target states and which are not out of a number of eigerand/or decelerating its momentum by control fields. In the
states. ordinal quantum mechanical local control theory, the target,

Another objective is molecular geometry, in other such as population, should commutate with the system
words, position and momentum of wave packet. For this obHamiltonian, while in the classical control theory, the control
jective, matrix diagonalization of large dimensions describedarget is the momentum or kinetic energy. Our method was
above is not necessary. This type of control has beeapplied to a system with a one-dimensional double-well po-
achieved by considering density matti,phase space tential to check its applicability. It was shown that our simple
representatioff like Wigner representations-target’° or  method is applicable to nuclear wave packet control by using
position tracking’’=*° However, the direct treatment of a quantum mechanically averaged nuclear momentum on the
phase space, which involves density matrix calculation obasis of the Ehrenfest theorem. A limitation of wave packet
phase space representation, requires additional heavily comentrol by the present method was discussed. Isomerization
putational tasks. Therefore, approximations in weak field reof HCN to HNC was controlled in a two-dimensional model
gimes such as the time-dependent Hartree approxinidtionwith ~90% yields. In conclusion, this shows the usefulness
and a linearized-target approximaticti** have been intro-  of our simplified method for reaction control.
duced. The linearized-target approach is quite efficient if It should be noted that in our treatment, a control equa-
one wants for the system to be localized at a position ation itself does not need to be obtained from the exact system
desired timer. However, it does not specify its momentum. equation under a local control treatment. We can use other
Then the system cannot be stabilized in a target well. Posisystem equations that approximate desired control objec-
tion tracking is a different kind of optimal control. This al- tives, instead of the whole target system. This feature might
gorithm requires explicit target tracks of the objectives. It isbe efficient for a system with more complicated dynamics.
useful49if one has already known physically reasonable
tracks:
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