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Quantum optimal control of unbounded molecular dynamics:
Application to Nal predissociation
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In order to achieve optimal control of unbounded molecular dynamics, we develop an algorithm to
deal with a spatially delocalized final condition of homogeneous pulse design equations that are
derived from a typical optimal control procedure. We introduce a quasiprojector to specify a
spatially delocalized physical objective, while we store wave packet components that spread beyond
the grid region in memory. The quasiprojector, which can explicitly identify target products in
photodissociation and bimolecular reactions, is a weighted sum of projectors, whose weight function
is constant outside the grid region. This algorithm, combined with an efficient iteration method, is
applied to the control of Nal predissociation with the aim of obtaining a high dissociation
probability within one cycle of nuclear vibration. We discuss how the control mechanisms are
changed depending on the potential coupling strengths and restriction imposed on the optical
interaction region. The effects of molecular orientation on a control pathway are also examined
using a two-orientation model with the assumption of a frozen rotational wave packe200®
American Institute of Physics[DOI: 10.1063/1.15047Q1

I. INTRODUCTION not achieve the numerical accuracies required for our present

Laser pulse design algorithms based on optimal contropPU'POSe- Thg most frequently afjopted methods are an
theory are presented in the form of inverse probléniga  ©OPtical-potential methodan absorbing boundary approach
standard variational procedure will give coupled nonlineart REfS- 9_121 and its var|a2nts such as a wave packet splitting
pulse design equations that satisfy both an initial conditiorProcedure? In the Iatter}_ the wave packet is divided into
and a final condition specified by a physical objective. Typi-tWO components belonging to regioRsand 1-R using a
cally, optimal pulses are designed to achieve the largest traigutoff functionf(q). Here the regiorR must be within the
sition probability from an initial state to an objective state 9rid region, while IR includes the region outside the grid,
while minimizing the pulse fluence. In this case, the pulsd-€-. the asymptotic region. The cutout components of the
design equations have a homogeneous form, and the numey¥ave packet can be stored in meméty.
cal implementations of the equations have been considerably A serious problem arises when a spatially delocalized
improved by recently developed rapid convergent iteratiorPhysical objective is specified by a spatially delocalized tar-
algorithms?~" Within the wave function formalism, the final get operator. This is because the final condition is given by
condition is expressed as a wave function at a final timghe result of the target operator acting on a wave packet at a
multiplied by a target operator that specifies a physicafinal time. That is, to determine a final condition of pulse
objective?® design equations, an expression for the asymptotic compo-

Even if we restrict ourselves to this class of pulse desigments of the wave packet is required. When these asymptotic
equations, there still remain numerical difficulties when deal<components are not available because of a small grid region,
ing with unbounded molecular dynamics, since we have tadt is generally impossible to calculate backward time propa-
use a spatially finite grid. When a wave packet spreads ovegation that is involved in the pulse design equations. To over-
a very large spatial region beyond a grid region, furthercome the difficulties originating from the spatially delocal-
propagation would cause fictitious reflection from the grid’'sized nature of the unbound dynamics, we propose a novel
edge. Another problem originates from a physical objectivenumerical algorithm in which a quasiprojector, which is de-
if specified by a spatially delocalized target operator, since ifined in Sec. II, is introduced to specify a spatially delocal-
cannot be fully represented by a spatially finite grid. In thisjzed objective. This algorithm makes it possible to calculate
paper, we propose a numerical scheme that overcomes thegg backward propagation using the wave packet data stored
difficulties and enables us to calculate optimal pulses thaj, memory under certain conditions. As shown in Sec. Il
control unbounded dynamics. these conditions do not severely limit its practical applicabil-

For delocalization of a wave packet, introduction of thejty since our numerical implementation for treating a final
interaction representatibean, at least in principle, provide a condition can be naturally combined with recently developed
way to prevent the wave packet from propagating outside thesig convergent iteration solutiofis’ it offers a useful tool
grid region. In our model calculations, however, we couldyr cajculating optimal pulses for unbounded molecular dy-
namics.
dElectronic mail: ohtsuki@mcl.chem.tohoku.ac.jp The quasiprojector can explicitly specify an objective
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state in an asymptotic region on a specified electronic stat&.he molecular Hamiltonian includes two kinds of coordi-
It is thus useful for identifying particular photodissociation nates,q andx, which represent continuum and bound states,
components, bimolecular reaction products, and so on. Thespectively. It is expressed as

qguestion arises here as to whether there is a conventional _ _

alternative for treating the same class of problems without Hw=h(q)+hC)+V(g.x)=Ho+V. @
introducing a spatially delocalized target operator. For ex- In this paper, the time evolution of the system is as-
ample, it is possible to measure a target product by accumsumed to be described by the Satirger equation

lating the probability flux of it near the end of grifl.This,

however, introduces an inhomogeneous term into the pulse iﬁi|¢(t)>=Ht|¢(t)), (3)
design equations, which is not to easy to deal with numeri- Jt
cally. with an initial condition of
Due to the above-mentioned numerical difficulties, there
have been only a few reports on the optimal control of sys- |4(t=0))=1vo). )

tems including unbound states. Grossall* calculated The optimal pulse concerned here is designed so that it

optimal pulses that control the selectivity of dissociationtransfers as much of a population as possible into an objec-
channels in curve-crossing systems, but they used inhomaive state at a specified final tinig subject to minimal pulse
geneous pulse design equations. On the other hand,” Somiituence. The objective state is specified by a target operator
et al’® and de Vivie-Riedleet al'® used homogeneous de- that has the largest expectation value when the molecular
sign equations. The physical objective of Soidbal 1° was system reaches the objective state. Then we have the follow-
to efficiently cause the dissociation of.1In their study, ing objective functional to be maximized:

since the wave packet always stayed within the grid region, 1

there was no problem concerning the final condition. In the  j=(y(t;)|W| y(ts)) — _f dt[E(t)]?

study by de Vivie-Riedlet al,*® laser-induced energy trans- hA Jo

fer reactions of Na-Kl were investigated in terms of the 4

wave packet localization. Their physical objective was the -2 Re[f dt(&(1)] |¢(t)>], (5)
creation of a localized wave packet, and they did not exam- 0

ine artificial reflection of a wave packet. To the best of ouryhere A a positive constant, is chosen so as to weigh the

knowledge, there is no report in which a solution algorithmgjgnificance of the penalty due to the pulse fluence|gfid)

for homogeneous pulse design equations with a spatially dgs 5 |agrange multiplier constraining the system to obey the

localized target in unbounded dynamics has been proposedchiainger equation3). As derived by means of the calcu-
This paper is organized as follows. After introducing |ys of variations, the time evolution of the Lagrange multi-

pulse design equatioriSec. Il A) and the wave packet split- plier is governed by the homogeneous equation of motion
ting procedurgSec. |1 B, we describe a solution algorithm

for the backward time propagation in both the cases of a ih£|§(t)>=H‘|§(t)) 6)
spatially localized and a delocalized target operator in Sec. ot ’

[IC. In Sec. lll, the algorithm is applied to the control of Nal
predissociation(a “half-collision” problem), in which we
aim at accelerating the predissociation. In polyatomic mol-  |&(tf))=W/u(ty)). (7)
ecules, predissociation often competes with various relax- 14 cajculate optimal control pulses, it is evident that it-
ation processes such as IVentramolecular vibrational-  gr4tion methods need to be employed. For example, gradient
energy redistribution It is thus important to analyze the |,othogd14.19-22 require the gradientsd/SE(t) for Vit
optimal pathway to accelerate the predissociation using &104,], which is given by

simple molecule like Nat/'® Finally, a summary and con- o

7 i
o h

with a final condition of

clusions are given in Sec. V. o 2 2
SED - 7 MEOLLl) - FREM. ®
In other iteration algorithm$;”*®on the other hand, the ex-
Il. THEORY pression of the optimal pulse is explicitly used in the calcu-
lation:

A. Optimal control pulse

We consider a molecule interacting with a time- E(t)=—AIm{&(t)] i (t)). ©)
dependent electric fieldE(t), through the semiclassical Independent of an iteration algorithm, the coupled design
dipole-field interaction. The Hamiltonian of the system isequations of motion fot(t)) and|&(t)) must be solved

given by simultaneously. That is, in each iteration step, the Schro
dinger equation is numerically integrated, starting with the
H'=H\,+V!=Hy— nE(t), (1) initial condition. Using the wave function at the final time,

the final condition of the Lagrange multiplier is calculated by
whereH,,, V!, andu are the molecular Hamiltonian, inter- Eq. (7), and then it propagates backward in time. The latter
action potential, and electric dipole moment operator, respe@rocess originates from the fact that the optimal pulse design
tively. The electric field is assumed to be linearly polarized.requires the solution of an inverse problem.
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B. Splitting a wave packet Qri=Mmin{q:f(q)=1} (159

Let us introduce a cutoff functiori(q) to divide the 54
wave packet into two components belonging to regiés
and 1-R, where regiorR must be within the grid regiot? drz=maxq:f(q)=1}, (15b)
Note that the functiorf(q) is not a projector or a Hermitian
operator. Here an electronic state is not explicitly specifie
for simplicity. If we need to explicitly specify an electronic 4Rz
state|D(q)), the cutoff function should be replaced with P:f lg)da(al (169
£() defined by IR1

Jhe projectors? andQ are defined by

and

f“”:f dg|Da)f(a)(Dal, (10 Q—1-P. (16
where|Dqg)=|D(q))|q). According to these definitions, we have the relations

When the time interval is divided intd steps so that the
nth time step corresponds tp=nAt with At=t;/N (n Pf=fP=P, (179
=0,1,2,..N; t=0 andty=ty), the calculation algorithm is P(1—f)=(1—f)P=0, (17b
summarized as follows.

(1) Splitting the initial wave packet: and

[gh(to))="fleh(to)) + (1= 1) h(to)) 1-f=Q(1-f)=(1-HQ. (179

=[¢r(to)) +|p1-r(to)), (1)  Although the projectors do not appear in numerical calcula-

tions, the introduction of them makes it easy to develop so-
lution algorithms because of their self-adjoint, idempotent,
and orthonomal properties.

where| ¢, _g(to)) is stored in memory.
(2) Calculating the time evolution within regioR:

|p(tn)=U(th th-1)|Pr(th-1)) (N=1,2,..N), (12 We first summarize the following preconditions that are
whereU(t,,,t,_;) is a time evolution operator. required in our solution algorithm:
(3) Splitting the wave packe(tn)): [P1] |®; g(1))=Q|®; g(1)) for Vte[Ot]. (18)
| B(ta)=flb(tn)) + (1= D) H(tn) This condition means that the cutout packft$, r(t,))}
=|r(tn)) +|P1_r(tn)), (13  do not come back into regioR in a given time interval

[0t¢], which is the same assumption as that required in the

where | $g(t)) is used in the next time stef?), while 46 packet splitting procedure described in Sec. I B.

|1 gr(tn)) is stored in memory.
Once the cutout components of the wave packet [P2] QV!=V'Q=0. (19
{|$1_r(tn)),n=0,2,...N}, are stored in memory, we do not
calculate their time evolutiot® Since we have no informa-
tion on the future behavior of the stored components, w
cannot resume the calculation of their time evolution even i
they return to regiorR. This algorithm is, thus, valid only [P3] QV=VQ=0. (20)
when the cutout packdte, _g(t,))} never comes back into _ N ) _
regionR in a given time interval O,t;]. In other words, this This condition requires that the two kinds of degrees of free-

algorithm can be applied even to bound systems as long &0, represented by andx, interact with each other only

the cutout packets remain in regior-R during the control  Within the P space.

time. Using the notation introduced above, the wave function !t should be noted that only a projected wave packet
at timet,, can be formally expressed as P|y(t,)), rather than a whole packet, is needed to calculate

optimal pulses because of conditibRZ]. According to the
algorithm described in Sec. I B2|(t,)) is expressed as

Plif(ty)) =Pl ¢r(tn)), (21)

=|¢a(tn) +[P1g(tn). (14 \where we have used Eq4.4), (170, and(18).
It should be noted again that the time evolution is calculated ~ The final condition of the Lagrange multiplier is given,
within region R and that we have no information on from Egs.(7) and(14), by

[®1-r(tn)). |E(t)) =WI(tn)) = WE| dr(tw) + | @1_a(t))]. (22

Since the expression dfb;_g(ty)) is not available, it is
generally impossible to determine the final condition
|€(tn))- As will be shown below, however, if the target op-

It is convenient to introduce projectors that specify theeratorW possesses appropriate properties, we can calculate
cutoff regions. Lettingjr, andqgg, be {P|&(t,))} and thus obtain the optimal pulse.

We assume that the molecule-laser interaction occurs within
the P spaceThe preconditions [P1] and [P2] are assumed
?throughout this paper

|w<tn>>=|¢R<tn>>+mE:0 U(t,tm)| 1 r(tm)

C. Solution to the Lagrange multiplier with a spatially
delocalized target operator

Downloaded 03 Jan 2010 to 130.34.135.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



6432 J. Chem. Phys., Vol. 117, No. 14, 8 October 2002 Nakagami, Ohtsuki, and Fujimura

1. Locallzed target operator Pl&(tn)) = PWI(tn)) = PW| () + [ 4 ()]
Before dealing with a spatially “delocalized” target op- —PW| r(ty)), (29)
erator, we briefly consider a localized target operator that
satisfies the condition of where Egs(170 and(25) have been used to derive EGS).
At time ty_;, the projected Lagrange multiplier
W=WP. (23 P|&(ty_1)) is given by

We call it a localized target operator. Since this target opera- Pl&t —pUOT &t
tor exclusively operates on the projected wave packet in re- |(t-1)) N IEt)
gion R, the final condition of the Lagrange multiplier can be =PU W] y(ty))

wrien & MW et} + s mt)], (29)
=PUN WL | @r(tn)) + [ d1-r(tN))],
|E(tn)) =W ih(tn)) =WP|g(tn)) =W dr(ty)).  (24) . _ _
] - ) ) where the relation proved in the Appendix,
Once the final condition has been determined, the time evo- o N
lution is calculated simply by integrating the equation of  PU TWUR|®{ x(ty_1))=0, (30
motion. If a portion of the Lagrange multiplier spreads be-j) 5 peen used. Since this relation can be generalized to
yond the grid region, we may add an optical potential to Ot o o ) ) ) )
eliminate those components. If necessary, we can apply theUL UL - U WU U, ul) | a(t))y =0
cutoff function to the Lagrange multiplier and store cutout (31

components in computer memory. In the latter case, the calappendiy, we can calculateP|(t,)) using stored wave
culation algorithm is the same as that of the wave functiorhacket data.

propagation described in Sec. |1 B. Therefore, if we introducéég(t,)), which connects with
P|£&(t,)) through the relation
P[&(th)) =P[&r(tn)), (32)

2. Delocalized target operator . . .
our algorithm for calculatingég(t,)) can be summarized as

Next, we consider a “delocalized” target operator that follows:
operates on the wave packet components in both redfons ) .
and 1-R. As proved below, if the target operator satisfies the(l) final condition
condition of |€r(tn)) =W or(tn)), (33)

W(x,q)Q=QWI(x,q)=QWjz(x), (25  (2) backward time propagation

then P|£(t,)) can be calculated under the preconditions of  |&r(tn))=UT(tn:1,t)[|Er(tns 1))+ W] b1 r(tns1))].
[P1-P3. Here the operatoWg(x) does not contain the 3
degrees of freedom. Examples of this kind of delocalizedRepeating Eq(34) successivelyn=N—1—N—2—---—1

operator include one that specifies objective states concernedg e have£x(t,)) and thusP|&(t,)) [Eq. (32)], which
solely with thex degrees of freedom and a quasiprojectorgre needed to calculate optimal pulses.

that specifies dissociation components, bimolecular reaction

products, and so on. We will show one of the examples of théll. RESULTS AND DISCUSSION

quasiprojector in Sec. IIl. Sodium iodide is a target molecule widely used for dem-
Suppose that the wave function and Lagrange multiplienstrating quantum control. Experimentally, Herekal?*

evolve in time under electric field&™(t) and E)(t), re-  controlled the branching ratio between two channels of pho-

spectively, where the superscripts in the electric fields eactbdissociation productgdNa+| and N& +I) based on a

denote the number of iteration steps. It should be noted thgdump—dump scheme. Bardeenal? tried to improve the

superscript(k) is not equal to(€) in general because of the selectivity by squeezing the spatial distribution of the excited

iterative nature of the solution. Using this notation, we shallpacket using chirped pulses. We theoretically designed con-

express the wave function at a final tifie=ty as trol pulses that accelerate the predissociation of Nal using a
N local control method’*81n this treatment, the reaction path-
l(tn))=| dr(tn)) + 2 UM (ty,t)] d1_r(tn) way and an objective state are predetermined by a target
n=0

operator as an inpdtt"1826-210n the other hand, the optimal
| procedure naturally chooses optimal pathways to
= | pr(tn)) +| DL r(tn)), 26) ~ control proc u S baty
| $r(tn))+|PLZR(tN)) 28 chieve a high probability of transition to the objective state
where the superscrigk) in the time evolution operator cor- subject to the minimum pulse fluence. As an application of
responds to the electric field®(t). In the following, we  the algorithm described in Sec. II, we will present numerical
will use a simplified notation in which the time evolution results on the optimal control of photodissociation of Nal,
operator during the time intervét,, ,t,_,] is represented by which is an example of a half-collision.
K 1K _®0 B For illustrative purposes, we start with a one-
Un = Ut ta-g) = Uty 1y = AD. @7 dimensional, two-electronic state model adopted from Ref.
At time ty, the projected Lagrange multipli€t &(ty)) 28 to describe the dynamics. The orientation effects on the
is given by control will be examined in Sec. Il C. The dynamics of the

Downloaded 03 Jan 2010 to 130.34.135.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 117, No. 14, 8 October 2002 Optimal control of Nal predissociation 6433

wave packet evolving on the first excited electronic state of 2
Nal is determined by the interaction between the two diaba-

tic states arising from ionic and covalent electronic configu- ~
rations. In the diabatic representation, the molecular Hamil- § 11
tonian is expressed as

jonic state Na*+1~

[

covalent state Na +1

Hu=Ho(@= 2 | da|Dg)[T+Voo(a))(D|

potential energy (10*

+[JdQ|iq>Vic(q)<CQ|+H-C- : (35

where|iq)=i(a))|a) ([cq)=|c(a))|a)) denotes the ionic 6794 o semA oA gn10A]

(covaleny state with the eigenstate of the nuclear coordinate, r l. — 1 L l . .
|). The operatord, V;i(a) [Vec(a)], andVic(a) [Vei(a)] R T
represent a kinetic energy operator, the diabatic potential o (b) f(a)
the ionic(covalenj state, and the coupling between the two
diabatic states, respectively. For the electric dipole moment
operator, we assume that it optically connects two diabatic Y "
states, and we neglect the nuclear coordinate depend&nce. > 10 15
Some features of this model potential are described in oul a(A)
previous papelﬂ FIG. 1. (a) Diabatic(adiabati¢ potential energy curves for Né&Ref. 17 are

In the simulations shown below, the final time is set todrawn by solid(dotted lines. (b) Functionsf(q) [Eq. (36b)] andw(q) [Eq.
t;=1000fs, which is shorter than the period of the Wave_(37b)] associated with the cutoff function and target operator are also

L . . . . .. illustrated.

packet oscillation in the electronic excited state. This time
interval is divided intoN,=50 000 time steps. The conver-

gence with respect to the number of time steps was checked 1, iteratively solve the coupled pulse design equations,

numerically. For the internuclear distance, we assume a grig,q employ the algorithm developed by Zhu and Rabitz
region of[1.5 A, 15.0 Al in which theNg=512 grid points  gjnce it exhibits quadratic and monotonic convergence. As an
are unn‘_ormly spaceq. The time evolution is then palculateqnitiau guess field, we assume a Gaussian pulse whose tem-
by th_e first-order split operator scheme togeth_er with Fhe fasboral peak is set to=150fs, and peak intensity and tempo-
Fourier transform(FFT) method. The electronic transitions ral width are chosen so that about 25% of the population is

due to the optical as well as, potential couplings are calCugansferred to the electronic excited state. For the weight pa-
lated using the Pauli matri¢:'” The cutoff function used to rameter. we assuma=4.0x 101 Under these conditions
specify the out-of-region components of the wave function is;o_1400 iteration steps were needed to obtain converged

setto results, depending on the magnitude of the diabatic coupling.
In the final two steps, the difference in values of the objec-

f(°>(Q)=f dalcg)f(g)(cql, (368  tive functionals was AJ/J=10%%-10%%. To save
memory as well as computational time, the cutout wave
where packet data were stored every five time steps. We numeri-
1 cally observed a monotonic convergence behavior of the ob-

= jective functional as a function of iteration st t shown

f(a) 1+exd —an(q—am)]’ (360 Jhere_ o

with a,,=10.0 A" andq,,=14.0 A. We checked that a rea- Figure 2 showsa) a calculated optimal pulse arfl) the
sonable choice of these parameters—for examptg,, () population on each diabatic potential as a function of time.
=(4.0A™1, 15.5 A)—does not change the numerical resultsAs indicated by the dotted line in Fig.(®, 95% of the
Since our physical objective here is to accelerate the dissqropulation is transferred into the dissociation continuum.
ciation on the covalent potential, the target operator can b&he pulse is composed of three subpulses, each of which

chosen as controls the molecule in a different way. The first subpulse is
a pump pulse that transfers the initial population to the ex-
(" cited electronic state. The second subpulse consists of low-
W= fo dglcayw(q){cq|, (379 frequency components that strengthen the diabatic coupling
to prevent the excited packet from directly dissociating.
where These two subpulses create an excited packet that has a spa-
tially localized distribution just before it reaches the outer
w(q)= (37 turning point. Note that relevant to this packet shaping, the

L+exd — aw(d—dw)] frequency of the first subpulse is positively chirped, which is
with ay=4.0A"! andqy=11.0A. The functions of (q) in agreement with the results of analysis by Tang and Ece.

andw(q) are illustrated in Fig. 1 with the potential energy This shaped packet with an outgoing momentum is then ef-
curves used in our calculations. ficiently transferred to the dissociation continuum by the
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FIG. 2. (a) Calculated optimal pulse ar@) time evolution of the popula- ~ FIG. 3. () Calculated optimal pulse an#) time evolution of the popula-
tion on each diabatic potential for a preoriented model. The dissociatiorfion on each diabatic potential for a preoriented model, when the diabatic
probability (W(t)) as a function of time is presented by a dotted line. coupling is replaced with;.(q)/2.

third subpulse. If the low-frequency compone(ite second 51y {5 the above-mentioned results. We will show below
subpuls¢ are removed, the dissociation probability is re- 5t the magnitude of the diabatic coupling determines
duced from 95% to 85%. In this case, some of the excitquNhether the optimal pulse chooses an indirect pathway
population is directly dissociated by th_e_diabatic couplipg, pump—dump contralor a direct dissociation pathway. Fig-
which deforms the wave packet remaining on the exmtet{lre 3 showsga) a calculated optimal pulse arit) the popu-
_state. This deformation de_creases the_ efficiency Of_ the qumﬁétion on each diabatic potential as a function of time, when
ing prqgess and results !n a reduct|on_of the dlssouanorghe diabatic couplingVi.(q) is replaced withV,.(q)/2.
probablhty. In effect_, the sign of the amplitude of the Se?O”dAgain, we have a high dissociation probability of 95%. The
subpulse is determined so as to strengthen the diabatic COYptimal pulse consists of several subpulses that are either
pling |n'order for the wave .packet to time propagate anngpump pulses or low-frequency pulses. The low-frequency
the e?<C|ted adiabatic potenhal. , subpulses have opposite signs to that in Fi@);2that is,
Finally, we would like to comment on the generation of y,oy negate the diabatic coupling by the optical interaction
the low-frequency subpul;g ;hown in Figa which may  hen the excited packets pass the crossing point. Since these
be called a half-cycle pulse:™ Although half-cycle pulses ¢4 plings have a different nuclear coordinate dependence,
can be created by several p}"{;'é%% compression techniques rgly 1156 shape must be adjusted so that the two couplings
evant to their temporal widthS;™ their intensities are USU-  cancel each other at every nuclear coordinate separation near
ally much weaker than that of the half-cycle pulse shown inpe hotential crossing. This explains the fact that the shapes
Fig. 2@). It is possible, in principle, to adjust the phases by o the |ow-frequency subpulses reflect the shapes of the cor-
using phase modulators, but there are no experimental resuvésponding wave packets. To lower the penalty due to the

showing the effectiveness of a technique for controlling t,hepulse fluence, all of the subpulses appear separately in time
phase of a half-cycle pulse. Although half-cycle pulses Wlth(no temporal overlap

high intensities and definite phases may be experimentally
feasible in the near future, they are not available at presen
In order for numerical simulations to suit current experimen-
tal conditions, Grosst al1* introduced a filtering procedure

into an iterative solution to remove low-frequency compo- In our calculations, the artificial reflection of wave pack-

nents from an optimal pulse. In the present paper, on th&ts at the edge of the grid is removed by the wave function
other hand, it will be shown that the |0W_frequency Compo_Sp"tting procedure. Here we will discuss the effects of the
nents are naturally eliminated by taking into account rota-artificial reflection on optimal pulse shapes and show how
tional effects(a two-orientation modgl which will be dis-  they lead to erroneous results without graphical illustrations.

E. Effects of the reflection of wave packets
at the boundary on the control mechanism

cussed in Sec. Il C. In this subsection, we assume the same diabatic-coupling
, , ) ) condition as that for the example shown in Fig. 3.
A. Effects of the magnitude of diabatic coupling If the system is excited by the pulse shown in Fia)3

on a control pathway but in the presence of a reflecting boundary, a portion of the

Another interesting control pathway is to utilize the di- dissociated packet turns around the boundary, comes back,
abatic transitions by weakening the diabatic coupling, conand goes out of the targédissociation region. Thus, in the
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presence of a reflecting boundary, the control pathway mustalculations. It is therefore expected that we can qualitatively
be changed to prevent a reduction in dissociation probabilitynterpret essential features of the orientational effects based
due to such a packet reflection. In effect, an optimal pulsen this simplified simulation.
calculated under the influence of artificial reflection has a  Within our model, the dynamics is described by the
very different structure from that of the pulse shown in Fig.Schralinger equation
3(a@). This pulse does not choose a direct dissocation path-
way, but adopts the pump—dump control pathway. Its shape 7 — |w(t))=[H,,+ V]| ¥ (1)), (40)
is quite similar to that of the pulse shown in FigaR but the ot
irradiation timing is shifted toward the final time so as to
minimize the reflecting components.

A more serious problem arises when the artificially re- ~ V'=—uE()(|+){(+]| ==} —1). (41)

flected components come back to the optical interaction res o projected wave functions defined by (t))

gion, since the optimal pulse can misuse them to enhance th:e<+ W (1)) obe
dissociation. As an example, we consider the case in which * y

whereH,, is defined in Eq(35) and

the final time is set td;=2000fs, which is longer than the 4

period of the excited packet oscillation. The control pulse is 1% ¢ [ () =[HuF wED)][#..(1). (42)
composed of several pump, dump, and low-frequency sub-

pulses (not shown herg In the pumping processes, the If we assume that the molecule is initially in thermal

pulses utilize the interference between the ground-stat@quilibrium and that both orientation states are equally occu-

packet and artificially reflected packets. To numericallypied, we have the initial density matrix of

check how these fictitious excitation processes reduce the 0 0

dissociation yield, we calculated the tir?we evolution with an p(tzo)z|¢°>[|+>p(+)<+|+|_>p(‘)<_|]<'//°" 43

absorbing boundary and found that the probability is reducesvhere| ) represents the initial state of the vibronic state of

to 78%, which is considerably smaller than that of 95% inNal and p® denotes initial thermal distributions with(®

Fig. 3(b). =p@=0.5. With this notation, the optimal pulse at tirhe
can be expressed as

C. Orientation effects E(t)=—AIm{p'? (&, (1) u| g (1))

So far, we have assumed a preoriented Nal molecule. —pO(E_(0)|uly_(1)}, (44)
For a molecule that has the opposite orientation to that diszhere the initial conditions are given by
cussed so far, low-frequendyalf-cycle pulses can cause
opposite effects because of their unipolar nature. That is, a |- (t=0))=|¢y). (45

pulse that weakens the diabatic coupling can strengthen it fofhe Lagrange multiplier$¢. (1)) introduced into Eq(44)

a molecule that has an opposite orientation. . . .
. : . represent the constraints due to the equations of motion in
To discuss orientation effects, we must adopt a three:

dimensional(3D) model. If we are concerned with internal Eq. (42) with the final conditions of
dynamics interacting with a linearly polarized electric field, |EL(t6))=W| (7). (46)
the dynamics is described by the azimuthally symmetric

Hamiltonian in the radial—polar space: Figure 4 showsa) a calculated optimal pulse arfl) the

population on each diabatic potential as a function of time,
. R 5_2+iii 1 9 when the diabatic coupliny;.(q) is replaced withV,.(q)/2.
2m|dqg® g% sing 96 We see from Fig. &) that there are no low-frequency com-
ponents, although they played an essential role for a preori-
+V(q)— uE(t)cos, 38 ented moleculéFigs. 2 and 3 The optimal pulse is a pair of
wherem is a reduced mass), is the angle between the Nal pump and dump pulses that transfers 95% of the population
axis and the electric field, and(q) includes all the poten- to the dissociation continuum. Both subpulses have posi-
tials except the dipole interaction. tively chirped structuregnot shown hergto squeeze the ex-
In this paper, we present the results of qualitative analy<ited packe{pump puls¢ and to efficiently dump it into the
sis of the effects of orientation on control. For the purpose oflissociation continuunidump pulsg
qualitative analysis, the following simplifications are made:  In a previous study by Grosa al,** a gradient filtering
(1) the rotational kinetic energy is neglectéal frozen rota- was introduced to remove low-frequency components from
tional wave packet and(2) it is assumed that there are two the control pulses. However, such components are naturally
orientation states+) defined by eliminated if the orientational effects are taken into account,
_ as shown in Fig. 4. If the control time is sufficiently short to
(xlcosg|x)==1, (]|cosé|+)=0. (39 ignore the rotational motion, it is expected that the present
Machholm and HenrikséA adopted the same two- two-orientation model accurately approximates the 3D dy-
orientation model in their study on control for selective pho-namics as mentioned in Ref. 33. We therefore conclude that
tofragment orientation of Nal. They found that the numericala pump—dump scheme is the optimal control pathway to en-
results were in good agreement with those obtained by 3hance the predissociation within one cycle of nuclear vibra-

sind 06
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FIG. 4. (a) Calculated optimal pulse anh) time evolution of the popula- FIG. 5. (a) Calculated optimal pulse ar#) time evolution of the popula-

tion on each diabatic potential for a two-orientation model, when the diabation on each diabatic potential for a two-orientation model, when the diaba-
tic coupling is set tov;c(q)/2. tic coupling is set toV;(q)/2 and the transition moment function is modi-

fied by Eq.(47).

tion. This control mechanism is in good agreement with . .
those discussed on the basis of physical intuitf§rs. nism, we calculated the power specirum of this optimal
Another feature of the optimal pulse is that the delayP!S€: Which is shown in Fig. 6. In this calculation, we re-
time between the pump and dump pulses is slightly Iongefm’ved the first subpulse, since the rapid rise in the pulse
than that of the pulse shown in Fig(@ In Fig. 4, about amplitude around~0 introduces a complicated structure
45% of the population moves along the covalent potentia|nto thf rﬁ)ower specltrum. Fpr cqmplarlsohn, the power spec-
and directly dissociates, while the wave packet remaining Otﬁrum oht € pump puise in F'Q-(‘*‘)h'?]; aiso shown byhz?\ iottefd
the ionic potential is transferred to the dissociation con-"®: The power spectrum 1s S_'tEd toward a 'gher Tre-
tinuum by the dump pulse arourtd-700fs. The directly ~dY4eNCY tha_m that in Fig.(4). That is, the pgmp_pulses N F|g._
dissociated packet and dumped packet cannot adjust theft® Selectively create a wave packet with higher energy in
phases so as to enhance the optical transitions by constru%[der_for the packet to have a larger veloc!ty at_the pot(_ar_1t|al
tive interference. Thus the dump pulse has to wait until the*"oSsSINg and to eff|C|en.tIy cause nonadlgbatlc transitions
directly dissociated packet moves away from the OpticaﬁLandau—Zener mechanigmiThe decrease in the Franck-

transition region for the dumping process. On the other hana@Ondon facto_r V,V'th Increase in the excnanpn frequency 'm-
no such restriction is imposed on the timing of the dumpposes a restriction on this control mechanism because it re-

pulse in Fig. 2a) since there is virtually no directly dissoci-
ated components. The difference in the delay times, there-
fore, can be attributed to the difference in the potential cou-
pling strengths.

Finally, we consider the case in which the optical inter-
action region is restricted so that a control pulse can excite >
the molecule around the Franck—Condon region accessibli@
from the initial state. That is, the optimal pulse must enhance£

the predissociation only through pumping processes. For this’é 05 i
purpose, the transition moment function is set to =
K]

_ Mo
l+exga,(q—q,)]’

with uo=3.527D, ,=16.0A"*, andq,=3.8A. In this _ )
calculation, the two-orientation model is adopted. The calcu- 0.0 SO " T T
lated optimal pulse and time evolution of populations are 30000 35000
shown in Fig. 5. From Fig. ), we see that the excited frequency (cm™)

packets ten.d to .move aolong the dlabatl(.: cqvalent potentia IG. 6. Power spectrum of the pump pulse in Figa)4dotted ling and that
and qt the'fm'al time, '40/0 of the popglauon is transferred tqy Fig. 5@a) (solid line), in which the spectrum is defined by an absolute
the dissociation continuum. To examine the control mechasquare of the Fourier components of an electric field.

wm(q) 47
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quires a more intense pulse that suffers from a larger penaltgluded that the optimal pathway for our physical objective
due to pulse fluence. In addition to the frequency shift, werequires pump and dump pulses, both of which are positively
can see a band structure in the power spectfswiid line). chirped. When the optical interaction region was restricted to
The spacing between the peaks corresponds to the energyound the Franck—Condon region accessible from the initial
separation of the adjacent bound states in the ground elestate, the optimal control pulse utilized the Landau—Zener
tronic state. This indicates that the pulse may utilize a pumpmechanism to enhance the nonadiabatic transitions, resulting
dump—pump excitation process in order for the packet tan a high dissociation probability.

acquire larger kinetic energy, which is in agreement with the  In the present paper, although we focused on Nal predis-

results reported by Gross al* sociation, which is a typical example of a half collision, the
present algorithm can also be applied to full collision
IV. SUMMARY processed®

For optimal control of unbounded molecular dynamics,
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reactions. APPENDIX: PROOF OF EQS. (30) AND (31)

The effectiveness of the quasiprojector-type target opera- o L
tor stems from the fact that it does not deform the shape of a To prove Eq/(30), we divide the time intervlty ., ty]

; . . ... Into M steps, i.e.,

wave packet outside the grid region because of the condition
given by Eq.(25). According to our algorithr{Egs. (32— th=tN_1+jdt (j=0,1,..M; th:OZtN_l’ th:M:tN),
(34)], backward propagation can be calculated using cutout (A1)
wave packet dﬁta th?tlare .storetg' n memory:dSm(E)T Wedca\f\}ith dt=At/M. Then the time evolution operator can be
assume a smail spatial region, this can considerably re uce63<pressed as the product of those in smaller time intervals:
the number of grid points and, therefore, computational time.

The trade-off is that large memory is needed to store th&J{’|® (ty_1))

wave packet data, although the frequency at which wave M
acket data should be stored and the amount of spatial data
P P =11 HU(k)(thathfl)|q)(1|(2R(tN—l)>

that should be stored depend on the numerical accuracy re- i=1
quired for each calculation. Looking at recent developments
in computer technology, reducing computational time seems
to be more important than saving memory in our practical

applications.

As an illustrative example, optimal pulses that acceleratg\’here the arrow indicates time ordering: i.e., operators are

predissociation of Nal were calculated under various condiprdered from right to left as time increases. Here we have

tions of potential coupling, transition moment, and orienta-taken Into a%t(:)ount Eq179 a_nd the precor?dltlpv[lP;] that
tion. As a prototype of the control of predissociation in poly- e Packet®iZg(ty 1)) stay in the R region in this time
atomic molecules, in which there exist several competing™térval- Similarly, we have
processes, we aim at accelerating the predissociation—i.e., M

enhancing the dissociation probability within one cycle of ~ U{'"=]] HU(”T(th,thf
nuclear vibration. For a preoriented model, the calculated =1

pulses include low-frequency components that strengthen dptilizing Egs. (A2) and (A3), we have
negate_ the potenti_al co_upling depending_ on the na’Fure of thSU(mWU(k)kD(k) (ty_ 1))
potential(more adiabatic or more diabatic, respectiyeiyn N N TH1-RUN-1

M
=I1 —[QU¥(tn.ty, QI R(tn-0)).  (A2)

). (A3)

1

the former case, the optimal pulse is a pair of pump and M M

dump pulses, while in the latter, the excited packet moves =[] —]] —PUOT(ty ty_)

along the diabatic potential and directly dissociates. Within a =1 =t

two-orientation model that may approximate a 3D system, it XWB[QU(k)(th1th71)Q]|q)(1k7) ~(ty_1)). (A4)

was shown that the orientation effects eliminated low-
frequency components from the optimal pulse and led to a We choose a large number of time stelds such that the
pump—dump pulse as an optimal solution. We therefore cortime evolution operator can be approximated by

Downloaded 03 Jan 2010 to 130.34.135.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



6438 J. Chem. Phys., Vol. 117, No. 14, 8 October 2002 Nakagami, Ohtsuki, and Fujimura

i 8J. Z. H. Zang, Chem. Phys. Left60, 417(1989; J. Chem. Phys92, 324
U(t+dt,t)=ex —gH‘dt (1990.
°R. Kosloff, J. Phys. ChenB2, 2087(1988.

i i 0D, Neuhauser and M. Baer, J. Chem. Ph98, 4351 (1989; 92, 3419
=exp( - —(V+Vt)dt) ex;{ - —Hodt) , (1990. _
h h 1T, Seideman and W. H. Miller, J. Chem. Ph¥§, 4412(1992.
AB 12R. Heather and H. Metiu, J. Chem. Ph@§, 5009(1987).
(AS) BThe cutout wave packet may be time propagated in another routine, e.g.,
where[t,t+dt] e [tN_l 'tN]. Here the superscript has been in momentum spaceRef. 12. However, this is not suitable for our present
omitted for simplicity. Using the assumption regarding the purpose, since we have to transform the wave packet into the coordinate

" representation to calculate the final condition.
target operator, Eq25), and the preconditionfP1-P3, a 14p. Gross, D. Neuhauser, and H. Rabitz, J. Chem. F36;<2834(1992.

part of the prOdUCt appearing in E(A4) can, for example, 153, Somla, V. A. Kazakov, and D. J. Tannor, Chem. Phy§2, 85 (1993.

be calculated by 16R. de Vivie-Riedle, K. Sundermann, and M. Motzkus, Faraday Discuss.
113 303(1999.
(01 0 _
U (tNM’tNM—l)WBQU (tNM’tNM—l)Q We(dD)Q, 7K. Hoki, Y. Ohtsuki, H. Kono, and Y. Fujimura, J. Phys. Chem183

(AB) 6301(1999.
18K, Hoki, Y. Ohtsuki, H. Kono, Y. Fujimura, and S. Koseki, Bull. Chem.

where Soc. Jpn72, 2665(1999.
i i W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanndy;
Wg(dt)=exp —h(x)dt|Wgexp — -h(x)dt|. (A7) merical Recipes in FortraiCambridge University Press, Cambridge, En-
h h gland, 1992

203, H. Tersigni, P. Gaspard, and S. A. Rice, J. Chem. Fa8/4670(1990.

Successively applying EGAG) to Eq. (A4), we have 21W. Jakubetz, E. Kades, and J. Manz, J. Phys. Cl8in12609(1993.

PUF\,{)TWUE\IK)FI)&QR(IN,Q) 223, L. Krause, M. Messina, K. R. Wilson, and Y. Yan, J. Phys. Cheon.
13736(1995.
:WB(At)pQ|cp(lij(tN_l)>:0_ (A8) 23,(6\1.998_2rtana, R. Kosloff, and D. J. Tannor, J. Chem. Phy86, 1435

To prove Eq.(31), we utilize the preconditiofP1] that  24J. L. Herek, A. Matery, and A. H. Zewail, Chem. Phys. L&®1, 50
|&{9 () stay in the R region after timet,. Then, by _(1993.

: . 5 i
applying the above-mentioned procedure to the Ieft-hané C. J. Bardeen, J. Che, K. R Wilson, V. V. Yakovlev, P. Cong, B. Kohler,
J. L. Krause, and M. Messina, J. Phys. Chenl(4, 9587(1997).

side of Eq.(31), we have 26y, Ohtsuki, Y. Yahata, H. Kono, and Y. Fujimura, Chem. Phys. 28,

pu@t...y @Ot yOHWuRy® ..g® 1k (¢ 627(1998.
n+i N=1=N N EN=L n+1/ P12R(t)) 27y, Ohtsuki, H. Kono, and Y. Fujimura, J. Chem. Ph¢89, 9318(1998.
28 :
=p Ot, .. (€)‘rW At (k) k) q)(k) t))--- V. Engel and H. Metiu, J. Chem. Phy&0, 6116(1989.
Un+l UN*l B( )QUN71 Un+1 lfR( n)> BWe assumed a value gf,=3,527 D, which is calculated at the equilib-
=PWg((N— n)At)Q|<I>(1kZ R(tn)>:01 (A9) rium nuplear coordinate separation using ttteinit‘io molecular orbital
calculation packageamess (Ref. 18; M. W. Schmidtet al, J. Comput.

which proves Eq(31). Chem.14, 1347(1993.

30H, Tang and S. A. Rice, J. Phys. Chem181, 9587 (1997.

31R. R. Jones, Phys. Rev. Left6, 3927(1996.

32T, Brabec and F. Krauz, Rev. Mod. Phy&2, 545 (2000).

33M. Machholm and N. E. Henriksen, J. Chem. Phi&l, 3051(1999.

IA. P. Peirece, M. A. Dahleh, and H. Rabitz, Phys. Re@7A4950(1988.
2R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, and D. J. Tannor, Chem
Phys.139 201 (1989.

3S. Shi and H. Rabitz, J. Chem. Ph@g, 364 (1990. 34B. Hartke, E. Kolba, J. Manz, and H. H. R. Schor, Ber. Bunsenges. Phys.
4W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phy88, 1953(1998. Chem.94, 1312(1990; E. Kolba and J. Manz, Faraday Discuss. Chem.
5W. Zhu and H. Rabitz, J. Chem. Phyk09, 385 (1998. Soc.91, 369 (1991.
8Y. Ohtsuki, W. Zhu, and H. Rabitz, J. Chem. Phg&0, 9825(1999. 35T, Taneichi, T. Kobayashi, Y. Ohtsuki, and Y. Fujimura, Chem. Phys. Lett.
Y. Ohtsuki, K. Nakagami, Y. Fujimura, W. Zhu, and H. Rabitz, J. Chem. 231, 50(1994.

Phys.114, 8867(2001). 36A. Abrashkevich, M. Shapiro, and P. Brumer, Chem. PB%3, 81 (2001).

Downloaded 03 Jan 2010 to 130.34.135.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



