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Quantum optimal control of unbounded molecular dynamics:
Application to NaI predissociation

Kazuyuki Nakagami, Yukiyoshi Ohtsuki,a) and Yuichi Fujimura
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

~Received 29 October 2001; accepted 15 July 2002!

In order to achieve optimal control of unbounded molecular dynamics, we develop an algorithm to
deal with a spatially delocalized final condition of homogeneous pulse design equations that are
derived from a typical optimal control procedure. We introduce a quasiprojector to specify a
spatially delocalized physical objective, while we store wave packet components that spread beyond
the grid region in memory. The quasiprojector, which can explicitly identify target products in
photodissociation and bimolecular reactions, is a weighted sum of projectors, whose weight function
is constant outside the grid region. This algorithm, combined with an efficient iteration method, is
applied to the control of NaI predissociation with the aim of obtaining a high dissociation
probability within one cycle of nuclear vibration. We discuss how the control mechanisms are
changed depending on the potential coupling strengths and restriction imposed on the optical
interaction region. The effects of molecular orientation on a control pathway are also examined
using a two-orientation model with the assumption of a frozen rotational wave packet. ©2002
American Institute of Physics.@DOI: 10.1063/1.1504701#
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I. INTRODUCTION

Laser pulse design algorithms based on optimal con
theory are presented in the form of inverse problems.1–3 A
standard variational procedure will give coupled nonline
pulse design equations that satisfy both an initial condit
and a final condition specified by a physical objective. Ty
cally, optimal pulses are designed to achieve the largest t
sition probability from an initial state to an objective sta
while minimizing the pulse fluence. In this case, the pu
design equations have a homogeneous form, and the num
cal implementations of the equations have been consider
improved by recently developed rapid convergent iterat
algorithms.4–7 Within the wave function formalism, the fina
condition is expressed as a wave function at a final ti
multiplied by a target operator that specifies a physi
objective.4,5

Even if we restrict ourselves to this class of pulse des
equations, there still remain numerical difficulties when de
ing with unbounded molecular dynamics, since we have
use a spatially finite grid. When a wave packet spreads o
a very large spatial region beyond a grid region, furth
propagation would cause fictitious reflection from the gri
edge. Another problem originates from a physical object
if specified by a spatially delocalized target operator, sinc
cannot be fully represented by a spatially finite grid. In th
paper, we propose a numerical scheme that overcomes
difficulties and enables us to calculate optimal pulses
control unbounded dynamics.

For delocalization of a wave packet, introduction of t
interaction representation8 can, at least in principle, provide
way to prevent the wave packet from propagating outside
grid region. In our model calculations, however, we cou

a!Electronic mail: ohtsuki@mcl.chem.tohoku.ac.jp
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not achieve the numerical accuracies required for our pre
purpose. The most frequently adopted methods are
optical-potential method~an absorbing boundary approac
~Refs. 9–11! and its variants such as a wave packet splitt
procedure.12 In the latter,12 the wave packet is divided into
two components belonging to regionsR and 12R using a
cutoff function f (q). Here the regionR must be within the
grid region, while 12R includes the region outside the grid
i.e., the asymptotic region. The cutout components of
wave packet can be stored in memory.13

A serious problem arises when a spatially delocaliz
physical objective is specified by a spatially delocalized t
get operator. This is because the final condition is given
the result of the target operator acting on a wave packet
final time. That is, to determine a final condition of pul
design equations, an expression for the asymptotic com
nents of the wave packet is required. When these asymp
components are not available because of a small grid reg
it is generally impossible to calculate backward time prop
gation that is involved in the pulse design equations. To ov
come the difficulties originating from the spatially deloca
ized nature of the unbound dynamics, we propose a no
numerical algorithm in which a quasiprojector, which is d
fined in Sec. II, is introduced to specify a spatially deloc
ized objective. This algorithm makes it possible to calcul
the backward propagation using the wave packet data st
in memory under certain conditions. As shown in Sec.
these conditions do not severely limit its practical applicab
ity. Since our numerical implementation for treating a fin
condition can be naturally combined with recently develop
rapid convergent iteration solutions,4–7 it offers a useful tool
for calculating optimal pulses for unbounded molecular d
namics.

The quasiprojector can explicitly specify an objecti
9 © 2002 American Institute of Physics
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state in an asymptotic region on a specified electronic st
It is thus useful for identifying particular photodissociatio
components, bimolecular reaction products, and so on.
question arises here as to whether there is a conventi
alternative for treating the same class of problems with
introducing a spatially delocalized target operator. For
ample, it is possible to measure a target product by accu
lating the probability flux of it near the end of grid.14 This,
however, introduces an inhomogeneous term into the p
design equations, which is not to easy to deal with num
cally.

Due to the above-mentioned numerical difficulties, the
have been only a few reports on the optimal control of s
tems including unbound states. Grosset al.14 calculated
optimal pulses that control the selectivity of dissociati
channels in curve-crossing systems, but they used inho
geneous pulse design equations. On the other hand, So´i
et al.15 and de Vivie-Riedleet al.16 used homogeneous de
sign equations. The physical objective of Somlo´i et al.15 was
to efficiently cause the dissociation of I2 . In their study,
since the wave packet always stayed within the grid reg
there was no problem concerning the final condition. In
study by de Vivie-Riedleet al.,16 laser-induced energy trans
fer reactions of Na-H2 were investigated in terms of th
wave packet localization. Their physical objective was
creation of a localized wave packet, and they did not exa
ine artificial reflection of a wave packet. To the best of o
knowledge, there is no report in which a solution algorith
for homogeneous pulse design equations with a spatially
localized target in unbounded dynamics has been propo

This paper is organized as follows. After introducin
pulse design equations~Sec. II A! and the wave packet split
ting procedure~Sec. II B!, we describe a solution algorithm
for the backward time propagation in both the cases o
spatially localized and a delocalized target operator in S
II C. In Sec. III, the algorithm is applied to the control of Na
predissociation~a ‘‘half-collision’’ problem!, in which we
aim at accelerating the predissociation. In polyatomic m
ecules, predissociation often competes with various re
ation processes such as IVR~intramolecular vibrational-
energy redistribution!. It is thus important to analyze th
optimal pathway to accelerate the predissociation usin
simple molecule like NaI.17,18 Finally, a summary and con
clusions are given in Sec. IV.

II. THEORY

A. Optimal control pulse

We consider a molecule interacting with a tim
dependent electric field,E(t), through the semiclassica
dipole-field interaction. The Hamiltonian of the system
given by

Ht5HM1Vt5HM2mE~ t !, ~1!

whereHM , Vt, andm are the molecular Hamiltonian, inte
action potential, and electric dipole moment operator, resp
tively. The electric field is assumed to be linearly polarize
Downloaded 03 Jan 2010 to 130.34.135.21. Redistribution subject to AIP
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The molecular Hamiltonian includes two kinds of coord
nates,q andx, which represent continuum and bound stat
respectively. It is expressed as

HM5h~q!1h~x!1V~q,x!5H01V. ~2!

In this paper, the time evolution of the system is a
sumed to be described by the Schro¨dinger equation

i\
]

]t
uc~ t !&5Htuc~ t !&, ~3!

with an initial condition of

uc~ t50!&5uc0&. ~4!

The optimal pulse concerned here is designed so th
transfers as much of a population as possible into an ob
tive state at a specified final timet f subject to minimal pulse
fluence. The objective state is specified by a target oper
that has the largest expectation value when the molec
system reaches the objective state. Then we have the fol
ing objective functional to be maximized:

J5^c~ t f !uWuc~ t f !&2
1

\A E
0

t f
dt@E~ t !#2

22 ReH E
0

t f
dt^j~ t !uS ]

]t
1

i

\
HtD uc~ t !&J , ~5!

whereA, a positive constant, is chosen so as to weigh
significance of the penalty due to the pulse fluence anduj(t)&
is a Lagrange multiplier constraining the system to obey
Schrödinger equation~3!. As derived by means of the calcu
lus of variations, the time evolution of the Lagrange mul
plier is governed by the homogeneous equation of motio

i\
]

]t
uj~ t !&5Htuj~ t !&, ~6!

with a final condition of

uj~ t f !&5Wuc~ t f !&. ~7!

To calculate optimal control pulses, it is evident that
eration methods need to be employed. For example, grad
methods3,14,19–22 require the gradientdJ/dE(t) for ;t
P@0,t f #, which is given by

dJ

dE~ t !
52

2

\
Im^j~ t !umuc~ t !&2

2

\A
E~ t !. ~8!

In other iteration algorithms,4–7,23on the other hand, the ex
pression of the optimal pulse is explicitly used in the calc
lation:

E~ t !52A Im^j~ t !umuc~ t !&. ~9!

Independent of an iteration algorithm, the coupled des
equations of motion foruc(t)& and uj(t)& must be solved
simultaneously. That is, in each iteration step, the Sch¨-
dinger equation is numerically integrated, starting with t
initial condition. Using the wave function at the final tim
the final condition of the Lagrange multiplier is calculated
Eq. ~7!, and then it propagates backward in time. The lat
process originates from the fact that the optimal pulse des
requires the solution of an inverse problem.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



e
c
h

ke
t

-
w
n

g

io

te
n

he

la-
so-
nt,

re

the

thin
d

ee-

ket
late

,

on
-
late
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B. Splitting a wave packet

Let us introduce a cutoff functionf (q) to divide the
wave packet into two components belonging to regionsR
and 12R, where regionR must be within the grid region.12

Note that the functionf (q) is not a projector or a Hermitian
operator. Here an electronic state is not explicitly specifi
for simplicity. If we need to explicitly specify an electroni
state uD(q)&, the cutoff function should be replaced wit
f (D) defined by

f ~D !5E dquDq& f ~q!^Dqu, ~10!

whereuDq&5uD(q)&uq&.
When the time interval is divided intoN steps so that the

nth time step corresponds totn5nDt with Dt5t f /N (n
50,1,2,...,N; t050 andtN5t f), the calculation algorithm is
summarized as follows.

~1! Splitting the initial wave packet:

uc~ t0!&5 f uc~ t0!&1~12 f !uc~ t0!&

5ufR~ t0!&1uf12R~ t0!&, ~11!

whereuf12R(t0)& is stored in memory.
~2! Calculating the time evolution within regionR:

uf~ tn!&5U~ tn ,tn21!ufR~ tn21!& ~n51,2,...,N!, ~12!

whereU(tn ,tn21) is a time evolution operator.
~3! Splitting the wave packetuf(tn)&:

uf~ tn!&5 f uf~ tn!&1~12 f !uf~ tn!&

5ufR~ tn!&1uf12R~ tn!&, ~13!

where ufR(tn)& is used in the next time step,~2!, while
uf12R(tn)& is stored in memory.

Once the cutout components of the wave pac
$uf12R(tn)&,n50,2,...,N%, are stored in memory, we do no
calculate their time evolution.13 Since we have no informa
tion on the future behavior of the stored components,
cannot resume the calculation of their time evolution eve
they return to regionR. This algorithm is, thus, valid only
when the cutout packet$uf12R(tn)&% never comes back into
regionR in a given time interval@0,t f #. In other words, this
algorithm can be applied even to bound systems as lon
the cutout packets remain in region 12R during the control
time. Using the notation introduced above, the wave funct
at time tn can be formally expressed as

uc~ tn!&5ufR~ tn!&1 (
m50

n

U~ tn ,tm!uf12R~ tm!&

5ufR~ tn!&1uF12R~ tn!&. ~14!

It should be noted again that the time evolution is calcula
within region R and that we have no information o
uF12R(tn)&.

C. Solution to the Lagrange multiplier with a spatially
delocalized target operator

It is convenient to introduce projectors that specify t
cutoff regions. LettingqR1 andqR2 be
Downloaded 03 Jan 2010 to 130.34.135.21. Redistribution subject to AIP
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qR15min$q: f ~q!51% ~15a!

and

qR25max$q: f ~q!51%, ~15b!

the projectorsP andQ are defined by

P5E
qR1

qR2
uq&dq^qu ~16a!

and

Q512P. ~16b!

According to these definitions, we have the relations

P f5 f P5P, ~17a!

P~12 f !5~12 f !P50, ~17b!

and

12 f 5Q~12 f !5~12 f !Q. ~17c!

Although the projectors do not appear in numerical calcu
tions, the introduction of them makes it easy to develop
lution algorithms because of their self-adjoint, idempote
and orthonomal properties.

We first summarize the following preconditions that a
required in our solution algorithm:

@P1# uF12R~ t !&5QuF12R~ t !& for ;tP@0,t f #. ~18!

This condition means that the cutout packets$uf12R(tn)&%
do not come back into regionR in a given time interval
@0,t f #, which is the same assumption as that required in
wave packet splitting procedure described in Sec. II B.

@P2# QVt5VtQ50. ~19!

We assume that the molecule-laser interaction occurs wi
the P space.The preconditions [P1] and [P2] are assume
throughout this paper.

@P3# QV5VQ50. ~20!

This condition requires that the two kinds of degrees of fr
dom, represented byq and x, interact with each other only
within the P space.

It should be noted that only a projected wave pac
Puc(tn)&, rather than a whole packet, is needed to calcu
optimal pulses because of condition@P2#. According to the
algorithm described in Sec. II B,Puc(tn)& is expressed as

Puc~ tn!&5PufR~ tn!&, ~21!

where we have used Eqs.~14!, ~17c!, and~18!.
The final condition of the Lagrange multiplier is given

from Eqs.~7! and ~14!, by

uj~ tN!&5Wuc~ tN!&5W@ ufR~ tN!&1uF12R~ tN!&]. ~22!

Since the expression ofuF12R(tN)& is not available, it is
generally impossible to determine the final conditi
uj(tN)&. As will be shown below, however, if the target op
eratorW possesses appropriate properties, we can calcu
$Puj(tn)&% and thus obtain the optimal pulse.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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1. Localized target operator

Before dealing with a spatially ‘‘delocalized’’ target op
erator, we briefly consider a localized target operator t
satisfies the condition of

W5WP. ~23!

We call it a localized target operator. Since this target ope
tor exclusively operates on the projected wave packet in
gion R, the final condition of the Lagrange multiplier can b
written as

uj~ tN!&5Wuc~ tN!&5WPuc~ tN!&5WufR~ tN!&. ~24!

Once the final condition has been determined, the time e
lution is calculated simply by integrating the equation
motion. If a portion of the Lagrange multiplier spreads b
yond the grid region, we may add an optical potential
eliminate those components. If necessary, we can apply
cutoff function to the Lagrange multiplier and store cuto
components in computer memory. In the latter case, the
culation algorithm is the same as that of the wave funct
propagation described in Sec. II B.

2. Delocalized target operator

Next, we consider a ‘‘delocalized’’ target operator th
operates on the wave packet components in both regionR
and 12R. As proved below, if the target operator satisfies
condition of

W~x,q!Q5QW~x,q!5QWB~x!, ~25!

then Puj(tn)& can be calculated under the preconditions
@P1–P3#. Here the operatorWB(x) does not contain theq
degrees of freedom. Examples of this kind of delocaliz
operator include one that specifies objective states conce
solely with thex degrees of freedom and a quasiprojec
that specifies dissociation components, bimolecular reac
products, and so on. We will show one of the examples of
quasiprojector in Sec. III.

Suppose that the wave function and Lagrange multip
evolve in time under electric fieldsE(k)(t) and E(,)(t), re-
spectively, where the superscripts in the electric fields e
denote the number of iteration steps. It should be noted
superscript~k! is not equal to~,! in general because of th
iterative nature of the solution. Using this notation, we sh
express the wave function at a final timet f5tN as

uc~ tN!&5ufR~ tN!&1 (
n50

N

U ~k!~ tN ,tn!uf12R~ tn!&

5ufR~ tN!&1uF12R
~k! ~ tN!&, ~26!

where the superscript~k! in the time evolution operator cor
responds to the electric fieldE(k)(t). In the following, we
will use a simplified notation in which the time evolutio
operator during the time interval@ tn ,tn21# is represented by

Un
~k!5U ~k!~ tn ,tn21!5U ~k!~ tn ,tn2Dt !. ~27!

At time tN , the projected Lagrange multiplierPuj(tN)&
is given by
Downloaded 03 Jan 2010 to 130.34.135.21. Redistribution subject to AIP
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Puj~ tN!&5PWuc~ tN!&5PW@ ufR~ tN!&1uF12R
~k! ~ tN!&]

5PWufR~ tN!&, ~28!

where Eqs.~17c! and~25! have been used to derive Eq.~28!.
At time tN21 , the projected Lagrange multiplie

Puj(tN21)& is given by

Puj~ tN21!&5PUN
~, !†uj~ tN!&

5PUN
~, !†Wuc~ tN!&

5PUN
~, !†W@ ufR~ tN!&1uf12R~ tN!&], ~29!

where the relation proved in the Appendix,

PUN
~, !†WUN

~k!uF12R
~k! ~ tN21!&50, ~30!

has been used. Since this relation can be generalized to

PUn11
~, !†Un12

~, !†
¯UN

~, !†WUN
~k!
¯Un12

~k! Un11
~k! uF12R

~k! ~ tn!&50
~31!

~Appendix!, we can calculatePuj(tn)& using stored wave
packet data.

Therefore, if we introduceujR(tn)&, which connects with
Puj(tn)& through the relation

Puj~ tn!&5PujR~ tn!&, ~32!

our algorithm for calculatingujR(tn)& can be summarized a
follows:

~1! final condition

ujR~ tN!&5WufR~ tN!&, ~33!

~2! backward time propagation

ujR~ tn!&5U†~ tn11 ,tn!@ ujR~ tn11!&1Wuf12R~ tn11!&].
~34!

Repeating Eq.~34! successively,n5N21→N22→¯→1
→0, we haveujR(tn)& and thusPuj(tn)& @Eq. ~32!#, which
are needed to calculate optimal pulses.

III. RESULTS AND DISCUSSION

Sodium iodide is a target molecule widely used for de
onstrating quantum control. Experimentally, Hereket al.24

controlled the branching ratio between two channels of p
todissociation products~Na1I and Na*1I! based on a
pump–dump scheme. Bardeenet al.25 tried to improve the
selectivity by squeezing the spatial distribution of the exci
packet using chirped pulses. We theoretically designed c
trol pulses that accelerate the predissociation of NaI usin
local control method.17,18 In this treatment, the reaction path
way and an objective state are predetermined by a ta
operator as an input.2,17,18,26,27On the other hand, the optima
control procedure naturally chooses optimal pathways
achieve a high probability of transition to the objective sta
subject to the minimum pulse fluence. As an application
the algorithm described in Sec. II, we will present numeri
results on the optimal control of photodissociation of N
which is an example of a half-collision.

For illustrative purposes, we start with a on
dimensional, two-electronic state model adopted from R
28 to describe the dynamics. The orientation effects on
control will be examined in Sec. III C. The dynamics of th
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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wave packet evolving on the first excited electronic state
NaI is determined by the interaction between the two dia
tic states arising from ionic and covalent electronic config
rations. In the diabatic representation, the molecular Ham
tonian is expressed as

HM5H0~q!5 (
D5 i ,c

E dquDq&[T1VDD(q)] ^Dqu

1 H E dqu iq&Vic(q)^cqu1H.c.J , ~35!

where u iq&5u i (q)&uq& (ucq&5uc(q)&uq&) denotes the ionic
~covalent! state with the eigenstate of the nuclear coordina
uq&. The operatorsT, Vii (q) @Vcc(q)#, andVic(q) @Vci(q)#
represent a kinetic energy operator, the diabatic potentia
the ionic ~covalent! state, and the coupling between the tw
diabatic states, respectively. For the electric dipole mom
operator, we assume that it optically connects two diab
states, and we neglect the nuclear coordinate dependen29

Some features of this model potential are described in
previous paper.17

In the simulations shown below, the final time is set
t f51000 fs, which is shorter than the period of the wa
packet oscillation in the electronic excited state. This ti
interval is divided intoNt550 000 time steps. The conve
gence with respect to the number of time steps was chec
numerically. For the internuclear distance, we assume a
region of@1.5 Å, 15.0 Å#, in which theNq5512 grid points
are uniformly spaced. The time evolution is then calcula
by the first-order split operator scheme together with the
Fourier transform~FFT! method. The electronic transition
due to the optical as well as potential couplings are ca
lated using the Pauli matrix.14,17 The cutoff function used to
specify the out-of-region components of the wave function
set to

f ~c!~q!5E dqucq& f ~q!^cqu, ~36a!

where

f ~q!5
1

11exp@2am~q2qm!#
, ~36b!

with am510.0 Å21 andqm514.0 Å. We checked that a rea
sonable choice of these parameters—for example, (am ,qm)
5(4.0 Å21, 15.5 Å)—does not change the numerical resu
Since our physical objective here is to accelerate the di
ciation on the covalent potential, the target operator can
chosen as

W5E
0

`

dqucq&w~q!^cqu, ~37a!

where

w~q!5
1

11exp@2aW~q2qW!#
, ~37b!

with aW54.0 Å21 and qW511.0 Å. The functions off (q)
and w(q) are illustrated in Fig. 1 with the potential energ
curves used in our calculations.
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To iteratively solve the coupled pulse design equatio
we employ the algorithm developed by Zhu and Rabit5

since it exhibits quadratic and monotonic convergence. As
initial guess field, we assume a Gaussian pulse whose
poral peak is set tot5150 fs, and peak intensity and temp
ral width are chosen so that about 25% of the population
transferred to the electronic excited state. For the weight
rameter, we assumeA54.031011. Under these conditions
100–1400 iteration steps were needed to obtain conve
results, depending on the magnitude of the diabatic coupl
In the final two steps, the difference in values of the obje
tive functionals was DJ/J51026% – 1028%. To save
memory as well as computational time, the cutout wa
packet data were stored every five time steps. We num
cally observed a monotonic convergence behavior of the
jective functional as a function of iteration steps~not shown
here!.

Figure 2 shows~a! a calculated optimal pulse and~b! the
population on each diabatic potential as a function of tim
As indicated by the dotted line in Fig. 2~b!, 95% of the
population is transferred into the dissociation continuu
The pulse is composed of three subpulses, each of w
controls the molecule in a different way. The first subpulse
a pump pulse that transfers the initial population to the
cited electronic state. The second subpulse consists of
frequency components that strengthen the diabatic coup
to prevent the excited packet from directly dissociatin
These two subpulses create an excited packet that has a
tially localized distribution just before it reaches the ou
turning point. Note that relevant to this packet shaping,
frequency of the first subpulse is positively chirped, which
in agreement with the results of analysis by Tang and Ric30

This shaped packet with an outgoing momentum is then
ficiently transferred to the dissociation continuum by t

FIG. 1. ~a! Diabatic~adiabatic! potential energy curves for NaI~Ref. 17! are
drawn by solid~dotted! lines.~b! Functionsf (q) @Eq. ~36b!# andw(q) @Eq.
~37b!# associated with the cutoff function and target operator are a
illustrated.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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third subpulse. If the low-frequency components~the second
subpulse! are removed, the dissociation probability is r
duced from 95% to 85%. In this case, some of the exc
population is directly dissociated by the diabatic couplin
which deforms the wave packet remaining on the exci
state. This deformation decreases the efficiency of the du
ing process and results in a reduction of the dissocia
probability. In effect, the sign of the amplitude of the seco
subpulse is determined so as to strengthen the diabatic
pling in order for the wave packet to time propagate alo
the excited adiabatic potential.

Finally, we would like to comment on the generation
the low-frequency subpulse shown in Fig. 2~a!, which may
be called a half-cycle pulse.30,31 Although half-cycle pulses
can be created by several pulse compression technique
evant to their temporal widths,31,32 their intensities are usu
ally much weaker than that of the half-cycle pulse shown
Fig. 2~a!. It is possible, in principle, to adjust the phases
using phase modulators, but there are no experimental re
showing the effectiveness of a technique for controlling
phase of a half-cycle pulse. Although half-cycle pulses w
high intensities and definite phases may be experimen
feasible in the near future, they are not available at pres
In order for numerical simulations to suit current experime
tal conditions, Grosset al.14 introduced a filtering procedur
into an iterative solution to remove low-frequency comp
nents from an optimal pulse. In the present paper, on
other hand, it will be shown that the low-frequency comp
nents are naturally eliminated by taking into account ro
tional effects~a two-orientation model!, which will be dis-
cussed in Sec. III C.

A. Effects of the magnitude of diabatic coupling
on a control pathway

Another interesting control pathway is to utilize the d
abatic transitions by weakening the diabatic coupling, c

FIG. 2. ~a! Calculated optimal pulse and~b! time evolution of the popula-
tion on each diabatic potential for a preoriented model. The dissocia
probability ^W(t)& as a function of time is presented by a dotted line.
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trary to the above-mentioned results. We will show belo
that the magnitude of the diabatic coupling determin
whether the optimal pulse chooses an indirect pathw
~pump–dump control! or a direct dissociation pathway. Fig
ure 3 shows~a! a calculated optimal pulse and~b! the popu-
lation on each diabatic potential as a function of time, wh
the diabatic couplingVic(q) is replaced withVic(q)/2.
Again, we have a high dissociation probability of 95%. T
optimal pulse consists of several subpulses that are e
pump pulses or low-frequency pulses. The low-frequen
subpulses have opposite signs to that in Fig. 2~a!; that is,
they negate the diabatic coupling by the optical interact
when the excited packets pass the crossing point. Since t
couplings have a different nuclear coordinate depende
the pulse shape must be adjusted so that the two coup
cancel each other at every nuclear coordinate separation
the potential crossing. This explains the fact that the sha
of the low-frequency subpulses reflect the shapes of the
responding wave packets. To lower the penalty due to
pulse fluence, all of the subpulses appear separately in
~no temporal overlap!.

B. Effects of the reflection of wave packets
at the boundary on the control mechanism

In our calculations, the artificial reflection of wave pac
ets at the edge of the grid is removed by the wave funct
splitting procedure. Here we will discuss the effects of t
artificial reflection on optimal pulse shapes and show h
they lead to erroneous results without graphical illustratio
In this subsection, we assume the same diabatic-coup
condition as that for the example shown in Fig. 3.

If the system is excited by the pulse shown in Fig. 3~a!,
but in the presence of a reflecting boundary, a portion of
dissociated packet turns around the boundary, comes b
and goes out of the target~dissociation! region. Thus, in the

n
FIG. 3. ~a! Calculated optimal pulse and~b! time evolution of the popula-
tion on each diabatic potential for a preoriented model, when the diab
coupling is replaced withVic(q)/2.
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presence of a reflecting boundary, the control pathway m
be changed to prevent a reduction in dissociation probab
due to such a packet reflection. In effect, an optimal pu
calculated under the influence of artificial reflection has
very different structure from that of the pulse shown in F
3~a!. This pulse does not choose a direct dissocation p
way, but adopts the pump–dump control pathway. Its sh
is quite similar to that of the pulse shown in Fig. 2~a!, but the
irradiation timing is shifted toward the final time so as
minimize the reflecting components.

A more serious problem arises when the artificially
flected components come back to the optical interaction
gion, since the optimal pulse can misuse them to enhance
dissociation. As an example, we consider the case in wh
the final time is set tot f52000 fs, which is longer than th
period of the excited packet oscillation. The control pulse
composed of several pump, dump, and low-frequency s
pulses ~not shown here!. In the pumping processes, th
pulses utilize the interference between the ground-s
packet and artificially reflected packets. To numerica
check how these fictitious excitation processes reduce
dissociation yield, we calculated the time evolution with
absorbing boundary and found that the probability is redu
to 78%, which is considerably smaller than that of 95%
Fig. 3~b!.

C. Orientation effects

So far, we have assumed a preoriented NaI molec
For a molecule that has the opposite orientation to that
cussed so far, low-frequency~half-cycle! pulses can caus
opposite effects because of their unipolar nature. That i
pulse that weakens the diabatic coupling can strengthen i
a molecule that has an opposite orientation.

To discuss orientation effects, we must adopt a thr
dimensional~3D! model. If we are concerned with interna
dynamics interacting with a linearly polarized electric fie
the dynamics is described by the azimuthally symme
Hamiltonian in the radial–polar space:

Ht52
\2

2m F ]2

]q2 1
1

q2

1

sinu

]

]u S 1

sinu

]

]u D G
1V~q!2mE~ t !cosu, ~38!

wherem is a reduced mass,u is the angle between the Na
axis and the electric field, andV(q) includes all the poten-
tials except the dipole interaction.

In this paper, we present the results of qualitative ana
sis of the effects of orientation on control. For the purpose
qualitative analysis, the following simplifications are mad
~1! the rotational kinetic energy is neglected~a frozen rota-
tional wave packet!, and~2! it is assumed that there are tw
orientation statesu6& defined by

^6ucosuu6&561, ^6ucosuu7&50. ~39!

Machholm and Henriksen33 adopted the same two
orientation model in their study on control for selective ph
tofragment orientation of NaI. They found that the numeri
results were in good agreement with those obtained by
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calculations. It is therefore expected that we can qualitativ
interpret essential features of the orientational effects ba
on this simplified simulation.

Within our model, the dynamics is described by t
Schrödinger equation

i\
]

]t
uC~ t !&5@HM1Vt#uC~ t !&, ~40!

whereHM is defined in Eq.~35! and

Vt52mE~ t !~ u1&^1u2u2&^2u!. ~41!

The projected wave functions defined byuc6(t)&
5^6uC(t)& obey

i\
]

]t
uc6~ t !&5@HM7mE~ t !#uc6~ t !&. ~42!

If we assume that the molecule is initially in therm
equilibrium and that both orientation states are equally oc
pied, we have the initial density matrix of

r~ t50!5uc0&@ u1&p1
~0!^1u1u2&p2

~0!^2u#^c0u, ~43!

whereuc0& represents the initial state of the vibronic state
NaI and p6

(0) denotes initial thermal distributions withp1
(0)

5p2
(0)50.5. With this notation, the optimal pulse at timet

can be expressed as

E~ t !52A Im$p1
~0!^j1~ t !umuc1~ t !&

2p2
~0!^j2~ t !umuc2~ t !&%, ~44!

where the initial conditions are given by

uc6~ t50!&5uc0&. ~45!

The Lagrange multipliersuj6(t)& introduced into Eq.~44!
represent the constraints due to the equations of motio
Eq. ~42! with the final conditions of

uj6~ t f !&5Wuc6~ t f !&. ~46!

Figure 4 shows~a! a calculated optimal pulse and~b! the
population on each diabatic potential as a function of tim
when the diabatic couplingVic(q) is replaced withVic(q)/2.
We see from Fig. 4~a! that there are no low-frequency com
ponents, although they played an essential role for a pre
ented molecule~Figs. 2 and 3!. The optimal pulse is a pair o
pump and dump pulses that transfers 95% of the popula
to the dissociation continuum. Both subpulses have p
tively chirped structures~not shown here! to squeeze the ex
cited packet~pump pulse! and to efficiently dump it into the
dissociation continuum~dump pulse!.

In a previous study by Grosset al.,14 a gradient filtering
was introduced to remove low-frequency components fr
the control pulses. However, such components are natu
eliminated if the orientational effects are taken into accou
as shown in Fig. 4. If the control time is sufficiently short
ignore the rotational motion, it is expected that the pres
two-orientation model accurately approximates the 3D
namics as mentioned in Ref. 33. We therefore conclude
a pump–dump scheme is the optimal control pathway to
hance the predissociation within one cycle of nuclear vib
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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tion. This control mechanism is in good agreement w
those discussed on the basis of physical intuitions.34,35

Another feature of the optimal pulse is that the de
time between the pump and dump pulses is slightly lon
than that of the pulse shown in Fig. 2~a!. In Fig. 4, about
45% of the population moves along the covalent poten
and directly dissociates, while the wave packet remaining
the ionic potential is transferred to the dissociation co
tinuum by the dump pulse aroundt;700 fs. The directly
dissociated packet and dumped packet cannot adjust
phases so as to enhance the optical transitions by cons
tive interference. Thus the dump pulse has to wait until
directly dissociated packet moves away from the opti
transition region for the dumping process. On the other ha
no such restriction is imposed on the timing of the dum
pulse in Fig. 2~a! since there is virtually no directly dissoc
ated components. The difference in the delay times, th
fore, can be attributed to the difference in the potential c
pling strengths.

Finally, we consider the case in which the optical int
action region is restricted so that a control pulse can ex
the molecule around the Franck–Condon region access
from the initial state. That is, the optimal pulse must enha
the predissociation only through pumping processes. For
purpose, the transition moment function is set to

m~q!5
m0

11exp@am~q2qm!#
, ~47!

with m053.527 D, am516.0 Å21, and qm53.8 Å. In this
calculation, the two-orientation model is adopted. The cal
lated optimal pulse and time evolution of populations a
shown in Fig. 5. From Fig. 5~b!, we see that the excite
packets tend to move along the diabatic covalent poten
and at the final time, 40% of the population is transferred
the dissociation continuum. To examine the control mec

FIG. 4. ~a! Calculated optimal pulse and~b! time evolution of the popula-
tion on each diabatic potential for a two-orientation model, when the dia
tic coupling is set toVic(q)/2.
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nism, we calculated the power spectrum of this optim
pulse, which is shown in Fig. 6. In this calculation, we r
moved the first subpulse, since the rapid rise in the pu
amplitude aroundt;0 introduces a complicated structu
into the power spectrum. For comparison, the power sp
trum of the pump pulse in Fig. 4~a! is also shown by a dotted
line. The power spectrum is shifted toward a higher f
quency than that in Fig. 4~a!. That is, the pump pulses in Fig
5~a! selectively create a wave packet with higher energy
order for the packet to have a larger velocity at the poten
crossing and to efficiently cause nonadiabatic transiti
~Landau–Zener mechanism!. The decrease in the Franck
Condon factor with increase in the excitation frequency i
poses a restriction on this control mechanism because i

-

FIG. 5. ~a! Calculated optimal pulse and~b! time evolution of the popula-
tion on each diabatic potential for a two-orientation model, when the dia
tic coupling is set toVic(q)/2 and the transition moment function is mod
fied by Eq.~47!.

FIG. 6. Power spectrum of the pump pulse in Fig. 4~a! ~dotted line! and that
in Fig. 5~a! ~solid line!, in which the spectrum is defined by an absolu
square of the Fourier components of an electric field.
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quires a more intense pulse that suffers from a larger pen
due to pulse fluence. In addition to the frequency shift,
can see a band structure in the power spectrum~solid line!.
The spacing between the peaks corresponds to the en
separation of the adjacent bound states in the ground e
tronic state. This indicates that the pulse may utilize a pum
dump–pump excitation process in order for the packet
acquire larger kinetic energy, which is in agreement with
results reported by Grosset al.14

IV. SUMMARY

For optimal control of unbounded molecular dynamic
we have developed an algorithm to deal with a spatially
localized final condition of pulse design equations by co
bining a target operator having the form of a quasiprojec
with a wave packet splitting procedure. Since the q
siprojector can directly specify a spatially delocalized sta
optimal pulses are calculated by homogeneous pulse de
equations. Our algorithm for treating a spatially delocaliz
final condition can naturally be combined with the efficie
iteration algorithms that were developed for solving the h
mogeneous type of pulse design equations. Therefore,
algorithm is a powerful tool for dealing with unbounded m
lecular dynamics such as photodisociation and bimolec
reactions.

The effectiveness of the quasiprojector-type target op
tor stems from the fact that it does not deform the shape
wave packet outside the grid region because of the cond
given by Eq.~25!. According to our algorithm@Eqs. ~32!–
~34!#, backward propagation can be calculated using cu
wave packet data that are stored in memory. Since we
assume a small spatial region, this can considerably red
the number of grid points and, therefore, computational tim
The trade-off is that large memory is needed to store
wave packet data, although the frequency at which w
packet data should be stored and the amount of spatial
that should be stored depend on the numerical accuracy
quired for each calculation. Looking at recent developme
in computer technology, reducing computational time see
to be more important than saving memory in our practi
applications.

As an illustrative example, optimal pulses that acceler
predissociation of NaI were calculated under various con
tions of potential coupling, transition moment, and orien
tion. As a prototype of the control of predissociation in po
atomic molecules, in which there exist several compet
processes, we aim at accelerating the predissociation—
enhancing the dissociation probability within one cycle
nuclear vibration. For a preoriented model, the calcula
pulses include low-frequency components that strengthe
negate the potential coupling depending on the nature of
potential~more adiabatic or more diabatic, respectively!. In
the former case, the optimal pulse is a pair of pump a
dump pulses, while in the latter, the excited packet mo
along the diabatic potential and directly dissociates. Withi
two-orientation model that may approximate a 3D system
was shown that the orientation effects eliminated lo
frequency components from the optimal pulse and led t
pump–dump pulse as an optimal solution. We therefore c
Downloaded 03 Jan 2010 to 130.34.135.21. Redistribution subject to AIP
lty
e

rgy
c-
-

o
e

,
-
-
r
-
,

ign
d
t
-
ur

ar

a-
a
n

ut
an
ce
.
e
e
ta

re-
ts
s
l

te
i-
-

g
e.,
f
d
or
he

d
s
a
it
-
a
n-

cluded that the optimal pathway for our physical objecti
requires pump and dump pulses, both of which are positiv
chirped. When the optical interaction region was restricted
around the Franck–Condon region accessible from the in
state, the optimal control pulse utilized the Landau–Ze
mechanism to enhance the nonadiabatic transitions, resu
in a high dissociation probability.

In the present paper, although we focused on NaI pre
sociation, which is a typical example of a half collision, th
present algorithm can also be applied to full collisio
processes.36
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APPENDIX: PROOF OF EQS. „30… AND „31…

To prove Eq.~30!, we divide the time interval@ tN21 ,tN#
into M steps, i.e.,

tNj
5tN211 jdt ~ j 50,1,...,M ; tNj 50

5tN21 , tNj 5M
5tN!,

~A1!
with dt5Dt/M . Then the time evolution operator can b
expressed as the product of those in smaller time interva

UN
~k!uF12R

~k! ~ tN21!&

5)
j 51

M

←U ~k!~ tNj
,tNj 21

!uF12R
~k! ~ tN21!&

5)
j 51

M

←@QU~k!~ tNj
,tNj 21

!Q#uF12R
~k! ~ tN21!&, ~A2!

where the arrow indicates time ordering: i.e., operators
ordered from right to left as time increases. Here we ha
taken into account Eq.~17c! and the precondition@P1# that
the packetuF12R

(k) (tN21)& stay in the 12R region in this time
interval. Similarly, we have

UN
~, !†5)

j 51

M

→U ~, !†~ tNj
,tNj 21

!. ~A3!

Utilizing Eqs. ~A2! and ~A3!, we have

PUN
~, !†WUN

~k!uF12R
~k! ~ tN21!&

5)
i 51

M

→)
j 51

M

←PU~, !†~ tNi
,tNi 21

!

3WB@QU~k!~ tNj
,tNj 21

!Q#uF12R
~k! ~ tN21!&. ~A4!

We choose a large number of time steps,M, such that the
time evolution operator can be approximated by
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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U~ t1dt,t !5expS 2
i

\
HtdtD

5expS 2
i

\
~V1Vt!dtDexpS 2

i

\
H0dtD ,

~A5!

where @ t,t1dt#P@ tN21 ,tN#. Here the superscript has bee
omitted for simplicity. Using the assumption regarding t
target operator, Eq.~25!, and the preconditions@P1–P3#, a
part of the product appearing in Eq.~A4! can, for example,
be calculated by

U ~, !†~ tNM
,tNM21

!WBQU~k!~ tNM
,tNM21

!Q5WB~dt!Q,
~A6!

where

WB~dt!5expS i

\
h~x!dtDWB expS 2

i

\
h~x!dtD . ~A7!

Successively applying Eq.~A6! to Eq. ~A4!, we have

PUN
~, !†WUN

~k!uF12R
~k! ~ tN21!&

5WB~Dt !PQuF12R
~k! ~ tN21!&50. ~A8!

To prove Eq.~31!, we utilize the precondition@P1# that
uF12R

(k) (tn)& stay in the 12R region after timetn . Then, by
applying the above-mentioned procedure to the left-h
side of Eq.~31!, we have

PUn11
~, !†

¯UN21
~, !† UN

~, !†WUN
~k!UN21

~k!
¯Un11

~k! uF12R
~k! ~ tn!&

5PUn11
~, !†

¯UN21
~, !† WB~Dt !QUN21

~k!
¯Un11

~k! uF12R
~k! ~ tn!&¯

5PWB„~N2n!Dt…QuF12R
~k! ~ tn!&50, ~A9!

which proves Eq.~31!.
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