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Optimal laser control of ultrafast photodissociation of | > In water:
Mixed quantum /classical molecular dynamics simulation
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A linearized optimal control method in combination with mixed quantum/classical molecular
dynamics simulation is used for numerically investigating the possibility of controlling
photodissociation wave packets gf in water. Optimal pulses are designed using an ensemble of
photodissociation samples, aiming at the creation of localized dissociation wave packets. Numerical
results clearly show the effectiveness of the control although the control achievement is reduced
with an increase in the internuclear distance associated with a target region. We introduce effective
optimal pulses that are designed using a statistically averaged effective dissociation potential, and
show that they semiquantitatively reproduce the control achievements calculated by using optimal
pulses. The control mechanisms are interpreted from the time- and frequency-resolved spectra of the
effective optimal pulses. €004 American Institute of Physic§DOI: 10.1063/1.1771640

I. INTRODUCTION of freedom are explicitly or implicitly removed by appropri-

In the last several years, we have witnessed significan"iltet adssbumptlonts.t n addl(tjloln ’tr:het' systeml If. ofte][] ahpprrIO.x -
advances toward achieving quantum control over a wigdnatea by a prototype model, the time evorution of which 1S

range of molecular dynamics using ultrafast laser pulses thé{escrlbed by using the optical Bloch equatibtf**and the

. L 9,21-23
are optimally designed by the so-called closed loop@Ster equation with/without memory effects: The

experimentd:2 A number of successful quantum control ex- advantage of such modeling is that it facilitates understand-

periments have been reported, some of which deal with mgn9 ©f the behavior of condensed-phase dynamics and the
lecular dynamics in condensed pha¥&sThey include the examlnatlon of the control mechanisms in Qetgll, whereas_ the
photochemistry of dydsand coordination complexé€:?® dlsadvantage is that we always reach q.ualltatlvle conclusions.
pulse propagation in liquidsyibrational dynamics in crys- By restricting ourselves to a weak field regime, we have
talline polymers, and energy flow in biological systerfls. & linearized pulse deS|gn'equ2a8t|on' expressed in terms of a
Although those studies clearly show the basic principles offolecular response f“”Ct'aﬁ-_ This approach has been
quantum control, it is still unclear how efficiently the dynam- extensively developed by Wilson and co-work&s™’ This
ics in condensed phases can be coherently manipulated paimplification imposes less restrictions for describing mo-
cause quantum interferences are easily destroyed by dissipgcular dynamics in condensed phases. In fact, various ap-
tion processes. To answer this question, we conduct a cagoximations, such as harmonic as well as anharmonic
study of the manipulation of photodissociation afih water ~ Brownian oscillators;" classical MD simulation$? and
by means of an optimal control method in combination withthe time-dependent Hartre@DH) approximatiort,® have
mixed quantum/classical molecular dynamicéMD) been implemented to calculate the molecular response func-
simulation!®!! As the strong solute-solvent interaction cor- tions and thus the optimal pulse.
responds to the most unfavorable condition, we will show Of several available approaches, mixed quantum/
the limits of the quantum control in condensed phases. classical MD simulation is considered to be a powerful tool
Our theoretical analyses consist of two steps: the desigfor numerically investigating molecular response functions
of optimal pulses and the decoding of the designed pulse$n condensed phasé$™?®In this case, the system is treated
Laser pulse design algorithms based on the optimal contrgjuantum mechanically, whereas the heat bath is treated clas-
theory are expressed in the form of inverse problems, whiclsical mechanically. The systetheat bath acts on the heat
lead to coupled nonlinear pulse design equations with specbath (system through the Hellman—Feynman for¢mean
fied initial and final condition$? Although efficient mono-  field). Because of the flexibility in choosing the system size,
tonically convergent algorithms within the density matrix the time evolution of the whole system can be calculated
formalism have been proposed, their iterative solution rewithin reasonable computational time. According to this
quires time-consuming computatioh’s’ This situation im-  pulse design scheme, Guiang and WAfastudied the quan-
poses restrictions on the theoretical treatment of condensetim control of , wave packet localization in the electroni-
phase dynamic¥?3that is, the whole system is divided into cally excited state in an Ar matrix within a low temperature
a(relevanj system and a heat bath, in which the bath degreemnge. The J/Ar system can be regarded as a prototype sys-
tem with weak solute-solvent interactions, and therefore an
dAuthor to whom correspondence should be addressed. Electronic-maii.deal condensed-phase system for quantum cofttrdl.
ohtsuki@mcl.chem.tohoku.ac.jp In the present work, we deal with the quantum control of
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a |, /H,O system that is characterized by strong solute-  J

solvent interactions. We construct an ensemble of photodis- 7 5 [PT(D)=L1lpr(1)

sociation samples using classical MD simulations. An opti-

mal pulse is designed so that it maximizes the statistical =(Lg+Ks+Lg+Ksp)|pr(t)), 4

average of a specified target yield over the ensemble. Wﬁ/here the double-spadeiouville-spaceé notation is used®

employ the linearized optimal control procedure in combina-The Liouvillians |_T:|_o+ K04 Ksg, correspond to the

tion with mixed quantum/classical MD simulation in order to commutators of, the Hsamiltsonia%s in E'ql) e, [Hr, ]

design an optimal pulse that generates a localized dissocia_-[HoJth +HO 4 Veg,--]. We apply the T,D.H.:alpp:c;xima—

. . . . - S S B ’ .

tion wave packgt ofj in Fhe excited elec”gn'c state. The tion to the total density operator in order to factorize it in the

control mechanisms are interpreted by using a Stat'St'Ca"X)roduct form:

averaged effective dissociation potential, which is introduce '

in Sec. IV. lpr(D))=[p(O) ) ps()), (5)
From an experimental viewpoint; (Br, ) has been re- . .

garded as a prototype molecule for exploring photodissociawhere|p(t)»(|pB(t)») Is the systeheat bath density op

tion dynamics in the presence of strong solute-solvent inter?rator' The system potential is modified by the mean-field

actions since the pioneering work by Lineberger’s giddp interaction due to the instantaneous coupling with the heat

who studied the dynamics using size-selected clusters. bath,

In solutions, real-time measurements of the photodissocia-  (Vgg(t))g= Trg{pa(t)Vsal. (6)

tion and the subsequent caging dynamics pofwere con-

ducted by Barbara’s grou$7¢ These observatiofs>®

were consistently interpreted by MD simulatiohs?? Be- P

cause of available knowledge regarding théH,O system, iﬁE|P(t))>:[|-(s)+ K5+ (Kss(1)sllp(t)), (7

it may serve as an ideal tool for experimentally investigating

the possibility of quantum control in condensed phases. where (Kgg(t)Yg—[{Vsg(t))g, --], with the initial condi-
This paper is organized as follows: In Sec. Il, the mixedtion of |p(0))=|po). For the density operator of the heat

quantum/classical equations of motion and the linearizedbath, we assume spatially localized distributions, and that the

pulse design equation are presented. After describing the nurean value of a function of the bath coordinates is equal to

merical detailgSec. Ill), we discuss the numerical results in its value for the mean value of the coordinates. This assump-

We have the equation of motion for the relevant system

Sec. IV, and give a summary in Sec. V. tion leads to
Tra{pa(t)Vse(r,Q)}=Vsg(r,(Q(t))g), (8)
Il. THEORY where r (Q) denotes a set of the systefiineat bath

coordinate$? If we rewrite (Q(t))g asQ(t) for simplicity,
The Hamiltonian of a whole system is divided into a the average values of thjth coordinateQ;(t), and its con-
(relevanj system HamiltonianH2, a heat bath Hamiltonian, jugate momentumP;(t), satisfy the canonical equations of

HY, and the interaction between theRyp: classical mechanics with a classical Hamilton functi),
cl

Hy=H3+V5+H3+ Vg, (1) Q:ﬁHB 3
oopy

whereVy is the interaction between the relevant system and
a laser field,E(t). Here, the heat bath is assumed to be2nd

optically inactive. Considering a two-electronic-state system, gHe!
we expresng as the sum of two vibronic Hamiltonians: Pi=- 19_QB' (9b)
]
0_ 0 0
Hs=[g)Hq(gl +[e)Hc(el, (2 Here, the classical Hamilton function is defined by

where H] (H2) denotes the vibrational Hamiltonian in the  HE=HZ(Q,P)=H3(Q,P)+ Tre{p(t)Vsg(Q)},  (10)

ground (excited state,|g) (|e)). For the optical interaction, ) )
we assume the rotating-wave approximation within the semiWhereQ andP are regarded as classical variables. The last
classical dipole interaction: term in Eq.(10) gives the Hellmann-Feynman force, WhICh
describes the action from the quantum system to the classical
Ve=—pe(t) — pu_e*(1), (3)  heat bath. o o
An optimal pulse is designed so that it achieves the larg-
whereu, =(u_)" is the dipole moment operator associatedest transition probability from an initial state to an objective
with absorption(emission processes. In Eq.3), we write  state specified by a target operakdt subject to minimum
the laser field in the formE(t) = e(t) + €* (t) to extract the pulse fluence. The target operator is assumed to have a maxi-
rotating parts fromeg(t). mum expectation value when the system reaches the objec-
The time evolution of a whole system is described by ative state. Then, the optimal pulse is defined by the electric
total density operatop+(t), which obeys the quantum Liou- field e(t) that maximizes the following cost functional with a
ville equation specified control time; :
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t¢ Equation (16) is proved in a straightforward manner. We

J:<<W|P(tf)>>_7\f0 dt[e(t)[?, (1) multiply both sides of Eq(12) by €*(t), and then integrate
overte[0t;]. The resulting expression is rewritten using

where a positive constantweighs the physical significance the expression of the target expectation value within the

of the penalty due to pulse fluence. If we assume a weakecond-order perturbation approximation with respedtgo

laser field, the density operator in E@.1) can be approxi- Utilizing the following equality, which is valid for an arbi-

mated by the second-order perturbation solution with respeatary function,f(t,7),

to the optical interactionyy. Under the constraint of the

second-order perturbation solution, we apply calculus of ftfdtftdef(t,T):jtfdtfthf(T,t), (17
variations to Eq.(11), and obtain the following linearized 0 t 0 0
pulse design equatictt: we obtain Eq/(16).
t Next, we will make some assumptions in calculating the
fo d7M(t,7)e(7) = Ne(t), (120 time evolution of the system. Assuming stationary thermal
fluctuations, we neglect the time orderings in the time-
where the molecular response function is given by evolution operators so that they depend on only the time
1 intervals. Because of the stochastic nature of the system-bath
M(t,7)= — (WI|Guu(t; . ) 2o Gunl 7.1) Tor Gu(t,0 interaction, we further assume that the system is initially in
(t7) hZ« (Cedltr )it e 70 s Gyl Vlpo) thermal equilibrium. Thus, the ground state, time-evolution
operator,G,4, operates offipy)) to give
1 ~
X(r—t)+ ﬁ<<W|Gee(tf vt)MJrGeg(th) Ggg(tao)|p0>>: |Po>>, (18
. wherepq represents the Boltzmann distribution. After optical
X i1 Ggg(7,0)|po))O(t— 7). (13)  excitation, we solve the coupled equations, E@s.and(9),

Here thed function is defined byd(x)=1 whenx>0 and to determine the time evolution of the system in the elec-

6(x)=0 whenx=<0. The cap f.) and tilde (z,) space Uonic excited state. o

operators denote left-hand-acting and right-hand-acting op- Under these approximations, the molecular response

erators, respectively. The double-space operatGeg,, function of thekth sample is rewritten as

Gye(Geg), and G, describe the tirr_1e evqlution fopgg ) 1 . "

=(dlplg), pge(peg), andpee, respectively, in the absence M )(t,r)z—zTr{WU(e (t— 1 pu U (7—1)

of the system-laser interaction. The time orderings in these h

operators orlglnate_ from the tme-_dependent mean fields. XpO,LL,Uék)T(tf—t)}. (19
When we consider the maximization of the target expec- ) ) _ .

tation value averaged over an ensemble constructed by miblere, the operators) | ). andU{?, describe the time evolu-

simulations, we employ another objective functional ex-tion of thekth system in the electronic ground and excited

pressed as states, respectively. Note that the approximated integral ker-

nel in Eq.(19), is also HermitianM®(t, 7)=M®* (7t).

N
1 te

I=5 2 (WIpM(tn)—r f dtfe(t)[?, (14)

k=1 0 I1l. COMPUTATIONAL METHODS

where|p(®(t))) is the density operator of the¢h sample, and

) . ) In this section, we introduce the potential parameters
N is the total number of samples included in the ensemble . . . :
(Sec. Il A), explain the numerical details of our MD simu-

Within a weak-field regime, we derive the same Iinearized]a,[ionS (Sec. Il B), specify control targetéSec. 111 Q, and

pulse design equation as E@.2), in which, however, the . . . :
.Y : ... summarize the numerical procedure for calculating optimal
molecular response function is replaced with the statistically

averaged function: pulses(Sec. Il D).
A. Model potentials

1 N
M(t,T)ZNE M®(t, 7). (19 In our MD calculations, we employ a cubic main cell
k=1 that contains one,l, a counter cation, Ng and 254 water
In Sec. IV, we numerically design optimal pulses using thismolecules modeled by SPCE.(The density of water is
statistically averaged molecular response function. 1.023 g/cm.) The photodissociation dynamics of lis ap-
The integral equatiorfeigenvalue equation Eq. (12),  proximated by a one-dimensional, two-electronic-state
has real eigenvalue$)}, which are guaranteed by the her- model. The electronic ground state potential.oi$ modeled
miticity of the integral kernelM(t,7)=M*(7,t). The opti- by a Morse oscillator, the potential parameters of which are
mal pulse is given by the eigenvector associated with théaken from Ref. 46. The dissociation energy, the equilibrium
largest eigenvalue, which leads to the largest expectatiodistance and the range parameter are giveidpy 1.1eV,
value of the target operator normalized by the pulse fluence:.=3.23 A, andB=1.16 A, respectively. The harmonic fre-
N quency of this potential is in good agreement with the ex-
1 > (WlpM(t))=x ftfdt|e(t)|2. (16  Perimentally observed value 6f115 cmtof I, in water?’
N =1 0 The excited-state potential, on the other hand, is modeled by
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- T 7 on the electronic state of I. For the water-N& potential,

(a) the parameters are taken from Ref. 53. The Ewald method is
used for calculating the Coulomb interaction, in which the
cutoff length, the damping parameter and the maximum mo-
mentum are set at 15.0 A, 0.32°A and 10x2x/(cell-
= length, respectively.

g
(=3
1
1

oy
<
1
1

potential energy ( 10* cm")

B. Numerical simulations

0.0 .

o0d ’ * ‘ ' An equilibrium molecular configuration is constructed

& / ®) . by the 15 ps classical NVT calculations using the Nivss-

£ 037 1 mostat aff =300 K. The 5 ps NVE run follows to generate a
1.0 Meiccecccececsonan - microcanonical ensemble. The equations of motion are nu-

4 6 3 merically solved by the predictor-corrector method with a

internuclear distance (A) 0.1 fs time gric®* In these calculations, lis assumed to be
in the ground electronic state.
FIG. 1. (a) One-dimensional, two-electronic-state model for, land (b) a The mixed quantum/classical calculation starts with the

charge switching functiopg. (201 initial configuration prepared by the classical simulation. The

classical internal motion of,1 is replaced with the thermal
. , ) distribution of the Franck-Condon wave packet, which is
an - exponential - function, Vo exq_%zg_re)] with Vo uniformly discretized by 2048 grid points over the range of
=059eV,r,=323A, andp=3.50 A®® The excess dis- [1.7 A, 17.0 A. Its time evolution is solved by the split-
sociation energy estimated _at0.59 eV corresponds 1o a operator-fast Fourier transform scheme with a time grid of
d|ssomat|on_ time of 170 f_s if we negle_ct_ solvent effe"?:)ts._ 0.02 fs. The mean-field potential and the Helmann—Feynman
Althoqgh_ this is rather a simple m_odel, Itis kn_own t0 semi- ¢4 e are calculated every 0.1 fs. In our simulations, the elec-
quant|tat|vely repmdgg € the transient absorption spectra ol njc ransitions ofJ are induced by the optical interaction
served b,y I§I|nergt al. - but not by the mean-field interaction. Finally, to see the re-
As |, dissociates, the excess electron initially delocal-j\- o ant effects on the following time evolution of the
ized over the anion becomes localized on one of the ioding/ave packet, we carry out an extra NVE run using the mixed

ato_mrs]._ We fdesgrlbe_sucr& a cgarbge separation grocgglw'ﬂhﬁantum/classical calculation for several time intervals, and
switching function introduce y Perena and Ariet, find that the difference is so small that no distinction in the

which is given by shape of the wave packets can be recognigext shown
QpAr)=—-0.5e(1x3{1+tanf 5(r—s)1}), (200 here.

wheres specifies the distance at which the separation occurs
and 5 denotes the width of the interval over which the sepa-c' Control targets
ration occurs. According to their criterfAwe choose=5.0 We specify the control targets after introducing the mi-
A, which corresponds to the distance at which the boundroscopic picture of the photodissociation dynamics of diio-
energy of the ground-state iodine is reduced to 25% comeline anion in a polar solvent. The photodissociation is initi-
pared to that at the equilibrium position, ane-6.0 A™*. We  ated by optical excitation to an antibonding state. According
neglect any delocalization of ionic charge from the anionto Parsoret al*, immediately after the excitation, the excess
onto the surrounding water. The model potential and thecharge of the ion moves to the less solvated atom. This
charge switching function are illustrated in Fig. 1. anomalous charge flow leads to strong Coulomb interactions
The water-solute intermolecular potentials are approxithat pull the solute together and prevent it from dissociating.
mated by a sum of Lennard-Jones and Coulomb potentialsThus, the dissociation only occurs after a nonadiabatic tran-
12 6 sition to an electronic state associated with “normal” charge
Tjj Tjj QIqj . R . .. .
(—) - —) +— (21  flow. This explains the low quantum dissociation yield, e.g.,
Fij Fij Fij ~0.12, in the case of an aqueous solufibr®
with the standard combining rules The natural choice of the control objective may be to
increase the dissociation yield; however, it is not a trivial
target. As mentioned above, the dissociation is induced by a
and nonadiabatic transition to form solvated iodine ions, which
Y 22) can be attributed to charge transfer and/or solvent trarfsfer.
€ij = VEi€): Although solvent reorganization plays an important role in
As regards the Lennard-Jones parameters of the partiallyoth cases, the optimal pulse cannot directly control solvent
charged iodine,19(—1<q=<0), o is chosen asc(q) motion because we assume an optically inactive solvent. Be-
=4.987-0.178 (A), wherease has a charge-independent sides, the numerical description of a nonadiabatic transition
value of 0.100 kcal/mol, which reproduce the parametersequires more electronic states, resulting in time-consuming
given in Ref. 52 in the two limiting casegj=0 andq  computations beyond our computational resources. In the
= —1. We further assume that the parameters do not depermtesent work, we thus restrict ourselves to the control of a

V(rij):4€ij

_1
oij=3(oitay),
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dissociation wave packet using the two-electronic-state
model[Fig. 1(a)]. Nonadiabatic transitions are effectively in-
cluded in simulation using the charge switching function
[Fig. 1(b)] without explicitly evaluating them.

Because of the low quantum yield of photodissociation,
we first collect the dissociation samples by using classical
MD calculations, which are described in Sec. IlID. We de-
sign optimal pulses with the aim of maximizing the statisti-
cally averaged population in the regiéhat a specified in-
ternuclear distance at a control time. This control objective is
denoted by the target operator

zww
"' 4’%’,% 0

’/
'I,/'u ’/,,,

v _(10%cm™)

'zu/"/

W=J [rydr(r], (23
R

FIG. 2. Effective potential defined by E(Q5).

with r being the coordinate of the internuclear distance of

I; . As the target operator is represented by an integrah 20 (k)
i A o o S (W(1))
of projectors, the control yield is not limited by the statistical Y(t)= —r—i (24)
distribution of the dissociation sampl&s>’ 322,PY(t)

where(W(t))® and PM(t) are, respectively, the target ex-
pectation value and the excited-state population of ke
D. Summary of numerical procedure sample. We calculat@n(t))® andP{(t) using the optimal
for calculating optimal pulses pulse and the mean fields of tHgéh sample(stored in
memory. We perform this for each sample and substitute all
" - - . _the results into Eq(24) to evaluate the control achievement.
initial molecular configuration prepared in Sec. Il B, we per The definition of the control achievement in EG4) can be

form the classical MD simulation to collect dissociation lized by the f h | b isticall
samples according to the scheme described below. At everyrftlonalze y the fact that we always observe a statistically

ps, we check if ] dissociates in the given configuration, that aV(laragﬁd quanU;y._ er;enzzll _samzles ‘3“? e?# |\€acljerf\.t, tr&e.con-
is, we calculate the trajectories using the excited-state poterli[0 ac |eveme24_|2rg q(24) is reduced to that defined in
tial of I, instead of the ground-state potential. If the internu-PreVIoUS papers.

clear distance of,l exceeds 6.0 A within 300 fs, it is re-

garded as a d|SSOC|at|on sample. Once we find a dlssomat|o|>1/ NUMERICAL RESULTS AND DISCUSSION
sample, we stop collecting dissociation samples for 5 ps in  Before discussing the numerical results, we introduce a
order to remove possible statistical correlation between adjsstatistically averaged dissociation potential of, Iwhich is
cent dissociation samples. According to this scheme, we cokimply called an effective potential in this paper. The effec-
lect 30 dissociation samples. Based on the above criteriorive potential is defined by

we have a dissociation yield of 8.8%, in good agreement _ Y

with the experimentally measured value ©fl2%. Finally, Verl .0 =Voexi —A(r —re)]

Step 1 Collecting dissociation samples: Starting with the

we randomly choose 20 samples from the 30 dissociation 1
samples to reduce computational burden in the following +Nk21 Vsa(r(Q(1)™), (25
steps. N

Step 2 Calculating statistically averaged molecular re-whereVyexd —B(r—rg)] is the excited-state potential of |
sponse function, Eq15): As shown in Eq(19), the molecu-  and Vgg(r,(Q(t))¥) is the mean-field potential of thkth
lar response function is expressed in terms of the time evasample. Figure 2 shows the effective potential as a function
lution of the thermal distribution of the Franck—Condon of time and internuclear separation, which is characterized
wave packets. The time-dependent wave functions are olisy a huge barrier around the initial time and a flat structure
tained by numerically integrating the mixed quantum/after~250 fs. This is because after250 fs, all the samples
classical equations. All the data of the time-dependent meacontributing to the dissociation must have repulsive poten-
fields are stored in memory, which are required for evaluattials, whereas around the initial time, no restrictions are im-
ing control achievement in the next step. To calculate Egposed on the potential shapes. In fact, some of the samples
(15), we take the statistical average of each molecular rekitially have bound potentials, and introduce the barrier into
sponse function over the thermal distribution as well as theéhe effective potential. The potential barrier gradually disap-
dissociation samples. pears due to solvent reorganization that occurs on the same

Step 3 Calculating optimal pulse and control achieve-time scale as the photo-dissociation gfat 300 K.
ment: The diagonalization of the statistically averaged mo-  The effective potential is expected to extract the charac-
lecular response function gives the optimal pulse, which igeristic properties of the ensemble. We also design an optimal
the eigenstate associated with the largest eigenvalue. The cglilse using the effective potential, and refer to it as the ef-
culated optimal pulse is used for evaluating control achievefective optimal pulse in this paper. We substitute the effective
ment defined by optimal pulse into the equations of motion to calculate the
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FIG. 3. For the target regiomR €[4.0, 4.1 A, (a) the optimal pulse(b) the FIG. 4. For the target regiolR €[4.5, 4.7 A, (a) the optimal pulse(b) the
effective optimal pulse, an¢t) the control achievements calculated by the effective optimal pulse, an¢t) the control achievements calculated by the
optimal pulse(bold-solid ling, the effective optimal pulsébold-dashed  optimal pulse(bold-solid ling, the effective optimal pulsé€bold-dashed
line) and the Franck—Condon wave packiin solid ling. Arbitrary units line) and the Franck—Condon wave packitin solid ling. Arbitrary units
(a.u) are used for the electric field amplitudes. (a.u) are used for the electric field amplitudes.

target expectation value and the excited-state population dfportant than the above, is that the target in the cost func-
each sample. The insertion of these values in(24). yields tional [Eq. (14)] is to maximize the target expectation value,

the statistically averaged control achievement realized by thBOt the control achievement.
effective optimal pulse. Comparing the results in Figs. 3—-5, we summarize the

Optimal pulses are designed with the aim of generating #umerical observations as follows:
localized wave packet &®<[4.0, 4.1 A, Re[4.5, 4.7 A,
andRe[5.0, 5.2 A, which are shown in Figs. 3, 4, and 5,
respectively. The first target region has a width of 0.1 A,
whereas the other two regions have a width of 0.2 A as the
control of wave packet motion at a longer internuclear dis-
tance becomes more difficult. The target regiorRaf[5.0,
5.2 A] corresponds to the internuclear distance immediately
after the charge localization occurs. All the target regions are
within the first solvation shellThe possibility of controlling
wave packet dynamics beyond the first solvation shell is
shown in Fig. 7).

Figures 3a) and 3b) show the optimal pulse and the
effective optimal pulse, respectively. Arbitrary unita.u)
are used for the electric field amplitudes as we assume the
weak-field regime. In Fig. @) the control achievement cal-
culated by using theeffective optimal pulse is represented
by a bold-solid(bold-dashed line. For reference, the thin
solid line shows the control achievement associated with the
Franck—Condon wave packet, in which we do not take the
statistical average of the time evolution of the Franck—
Condon wave packet over the thermal distribution and the 00 0 100 200 300
samples. In Figs.(®), 4(c), and %c¢), the timing at which the time (fs)
control achievement becomes a maximum is slightly differ-
ent from the control timet;=350fs. This is because the FIG.5. For the target regioR <[5.0, 5.2 A, (a) the optimal pulse(b) the
number of dissociation samples is not suficently large for*Tetie ST PSS 2 (e oo chierins caceted b e
realizing a stationary heat bath, which is assumed in OUfing) and the Franck—Condon wave packitin solid line. Arbitrary units
calculations(Sec. I). Another reason, which may be less (a.u) are used for the electric field amplitudes.

E(t) (a.u.)

Y(t)
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(A) Comparing the peak values of the control achieve- 3.0 - . - . - T
ments, the designed optimal pulses always lead to nearly two ‘ (a)
times greater control achievements than those obtained by 0.0 8
the Franck—Condon wave pacK€&igs. 3c¢), 4(c), and Jc)].

(B) The optimal pulse has a larger temporal width for -3.0 .
the target region at a longer internuclear distaégs. 3a), ~ : :
4(a), and Fa)]. g

(C) The effective optimal pulses have much simpler = 309 ®
structures than the corresponding optimal pu[$eégs. 3b), :

4(b), and 8b)]; however, the effective optimal pulses lead to g 001 i
almost the same control achievements as those calculated by %
the optimal pulse$Figs. 3c), 4(c), and Fc)]. =307 ’ I ’

Result(A) clearly shows that the optimal pulses can ma- 6.0 ()
nipulate wave packet dynamics by means of coherent con-
trol. They generate a localized dissociation wave packet of 3.04 4
I, , with high probability even in the presence of strong
solute-solvent interactions as well as statistical distributions. 0.0 T . T . T
As the specified internuclear distance becomes longer, the 0 100 200 300
control achievement is rapidly reduced due to the solute- time (fs)

sp]vent interactions. However' the control effects may be SufFIG. 6. (a) Time- and frequency-resolved spectrum of the effective optimal
ficiently large for us to experimentally observe some degre@ulse in Fig. 8b), (b) that in Fig. 4b), and(c) that in Fig. %b). For conve-
of wave packet localization. As the present case study dealdence, the zero frequencies are chosen such that they correspond to the

ith fth t unf bl t f ¢ vertical transition energies at the equilibrium internuclear distance,
with one of the most unfavorable systems for quantum congy,_ .~
trol because of the strong solute-solvent coupling, regult
suggests that a wide range of condensed-phase dynamics can
be coherently controlled to achieve specified targets. The time- and frequency-resolved spectr®tw,t), of

We can explain observatidiB) in terms of the statistical the control pulseg(t), is calculated by
distribution of the velocities of the wave packets, which is R 2
. - . w .
due to the inhomogeneous environment induced by the heat s(w,t):U drH(t—7,7,)e(7)e'“7 .
bath. Because an excited wave packet has nearly zero veloc- t=mwl2
ity immediately after optical excitation, the distribution Here, the Blackman window functiot(r,7,), is defined
width increases as the time required to reach a target regidy
increases. Roughly speaking, wave packets with low veloci- o Ao
ties must be excited earlier than those with high velocities in -~ H( 7, 7,)=0.42+0.50 co%— 7-) +0.08 Coé_ 7-),
order for all of them to meet together at a target region at a Tw @7
control time. Thus a temporally broader optimal pulse is _ . B _
needed to localize the ensemble of the wave packets at here the time resolution specified by the parametgy, is
longer internuclear distance. set at 10 fs. In Fig. 6, the calculated time- and frequency-
Concerning observatiofC), we first point out that the resolved spectra of the effgctive optimal pulses in Figs),3

modulated structures in optimal pulses are largely attributed(P), and 8b), are, respectively, shown from top to bottom.
to the statistical distribution of the dissociation samples. IfFOr convenience, the frequencies are measured from the ver-
the optimal pulse is designed using one sample and not thtécal transition energies at the equilibrium internuclear dis-
ensemble, we virtually see no modulation in the calculated®nCe: -6+ We Seleg(re,f)=0. As the internuclear distance of

pulse(not shown here The overall structure of the optimal th? target is mg:reased, the central .fre.quency of the pulse is
. . - . . shifted to a higher frequency. This is because the wave
pulse is determined by “typical” samples included in the

. . . ) acket must have extra energy to complement the ener
ensemble. In this sense, the effective optimal pulse is pr 9y P 9y

dicted to b d S h imal oul dissipated by the heat bath during the propagation to a target.
icted to be a goo appro?(lmatlon to the optimal pulse ag, addition, the wave packet with larger kinetic energy takes
long as the effective potential can be regarded as a rePréSefdss time to reach the target and thus has less chances of

tative of the sample potentials. This prediction is supporteqeracting with the heat bath, resulting in a higher control
by the numerical results in which the effective optimal pulseslyiem_

semi-quantitatively reproduce the control achievements cal- e also see that the time- and frequency-resolved spec-
culated by using the optimal pulses. In Figck the control  tra have characteristic chirped structures. For example, in the
achievement calculated by using the effective optimal pulsgase ofRe[4.0, 4.1 A, the effective optimal pulse shows
appears with a time lag that is explained by the slight temslight negative chirpindFig. 6@]. Because this target is
poral peak shifts between the pulses in Figs) 4nd 4b). In |ocated far from the first solvation shell, the solute-solvent
the following, we examine the control mechanisms using thénteractions may play a minor role in the control. In such a
effective optimal pulses. system, a positively chirped pulse is often said to efficiently

(26)

Tw
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create a spatially localized wave packet on a repulsive
potential®® In our case, on the other hand, the target is local-
ized very close to the Franck—Condon region, and also the
curvature of the repulsive potential is smaller than those of
the molecules studied so far. Because of the small curvature
of the repulsive potential, small shifts in frequency corre-
spond to large changes in the internuclear distance at which
resonant vertical transitions occur. Under these conditions, in
order to create a localized wave packet, we must first create
the wave packet components initially at a small internuclear
distance and then create those initially at a large internuclear
distance. here, we call the form@atter) components small-
distance(large-distancecomponents for simplicity. If both
components are generated simultaneously, there is no chance
for the small-distance components to catch up with the large-
distance components because the target region is so CloSegd; 7. Time evolution of the wave packet calculated using the effective
the Franck—Condon region. Assuming resonant transitionsptimal pulse in Fig. &), in which we do not take a statistical average over
the small-distance components are generated by the higkhe ensemble.

frequency parts of the pulse, whereas the large-distance com-

ponents are generated by the low-frequency parts of the. L S - .
pulse, resulting in the negatively chirped structure of the ef_SISSOCIatIOFI wave packet is initially trapped within the first

fective optimal pulse. Note that often times we numericallysmvatIon shell, which is destroyed by dissipation, and then

observe a Franck—Condon packet propagating on a repulsi\}ge fragment atoms escape from this cage. The cage escape

. . ) . . gccurs on a much longer time scale than what we are cur-
potential being spatially squeezed at first and then becomin . .
! ntly concerned with. Recently, Apkarian and co-workers
broad (not shown here This may also support the above-

. ; reported that the photoexcited in an Ar matrix with an
mentioned control mechanisms. excess energy of 4 eV can break the Ar cage with 50%
For the target ofRe[4.5, 4.7 A, we do not see any 9y g

particular chirping in the effective optimal pulfEig. 6b)]. probability™ This indicates that it is possible for a system

) ) . o .. with weak solute-solvent interactions to coherently control
In this region, the statistical distribution as well as the dissi- y

i ken the chirpi foct th the dynamics of a dissociation wave packet outside a solva-
Frillon processes can weaken the chirping ettects on the Cofa, shell. on the other hand, it is a real challenge to coher-

. . . . ..._ently control the wave packet outside the first solvation shell
In Fig. 6(c), the effective optimal pulse associated with y P

) for the I, /H,O system because of the strong solute-solvent
the targetR e[5.0, 5.2 A, has an up-down chirped structure interactiénsz y g

in the time- and frequency-resolved spectrum. Because of the
low control achievement, it is difficult to say if this charac-
teristic chirped structure of the effective optimal pulse is es-- SUMMARY
sential for the control. We have investigated the possibility of controlling the
To get a rough idea of the control mechanisms in thephoto-dissociation dynamics of lin water using a linearized
case of theRe[5.0, 5.2 A target, we calculate the time optimal control method. Mixed quantum/classical MD simu-
evolution of the dissociation wave packet generated by théations were used to describe the time evolution of the whole
effective optimal pulse. In this calculation, the system is assystem, in which the quantum systesolute was coupled
sumed to be represented by a wave function under the influxith the classical heat batfsolven) through the Hellman—
ence of the time-dependent effective poterftiad. (25)], that ~ Feynman forces and the mean-field potentials. Optimal laser
is, we do not take a statistical average. Figure 7 shows thpulses were designed to maximize a statistically averaged
calculated wave packet indicating that the first-half and thearget expectation value subject to minimum pulse fluence,
second half of the effective optimal pulse create the twausing an ensemble of dissociation samples that were col-
separate wave packet components that meet at the target teeted by classical MD simulations.
gion at the control time. Note that the interference patterns We numerically designed optimal pulses with the aim of
shown in Fig. 7 have no physical importance because wereating a localized wave packet at three regions specified by
ignore the statistical distribution in this analysis. different internuclear distances. The optimal pulses always
Finally, we briefly discuss the possibility of controlling led to approximately two times better achievements than
wave packet dynamics outside the first solvation shell. Irthose given by the thermal distribution of the Franck—
Fig. 7, we do not see any wave packet components that dcondon wave packetshe 5-function excitation. As the tar-
rectly dissociate without being caught by the solvent cageget internuclear distance was increased, the control achieve-
Remembering our method to collect “dissociation” samples,ments were decreased rapidly; however, there remained the
all the corresponding classical trajectories exceed 6.0 Aoherent control effects that were experimentally observable.
within 300 fs. Thus, the quantum nature of the dissociation ~ We introduced an effective optimal pulse that was de-
makes it difficult for |, to form independent fragment atoms signed using the statistically averaged dissociation potential,
outside the first solvation shell. This suggests that the photczalled an effective potential hef€ig. 2). We found that the
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effective optimal pulses semiquantitatively reproduced theé?2y. Ohtsuki, K. Nakagami, W. Zhu, and H. Rabitz, Chem. P3&7, 197
control achievements calculated by the optimal pulses al; (2003.

though the effective optimal pulses had much simpler struc-

R. Xu, Y.-J. Yan, Y. Ohtsuki, Y. Fujimura, and H. Rabitz, J. Chem. Phys.
120, 6600(2004).

tures th.an the .optimal PUlSeS- We examined the controky_j yan, R. E. Gilllan, R. M. Whitenell, K. R. Wilson, and S. Mukamel,
mechanisms using the time- and frequency-resolved spectral. Phys. Chem97, 2320(1993.
of the effective op“ma' pu'ses_ Because of the dissipationfs\]. Che, M. Messina, K. R. Wilson, V. A. Apkarian, Z. Li, C. C. Martens, R.

we saw a high-energy shift in the central frequency of the,

Zadoyan, and Y.-J. Yan, J. Phys. Chetf0, 7873(1996.
M. Messina, K. R. Wilson, and J. L. Krause, J. Chem. P, 173

pulse as the target internuclear distance was increased. Wheiy gog.
the target region was located at a small internuclear distancéJ. Cao, M. Messina, and K. R. Wilson, J. Chem. PHa8§, 5239(1997.
the effective optimal pulse had a slightly negative chirped;C- S- Guiang and R. E. Wyatt, J. Chem. Phys2 3580(2000.

structure. From the time evolution of the wave packet, there

9J. C. Bardeen, J. Che, K. R. Wilsat al, J. Chem. Phys106, 8486

was no wave F_)aCket component that broke and went outsidez, gihary, R. zadoyan, M. Karavitis, and V. A. Apkarian, J. Chem. Phys.
the first solvation shell. It is necessary to develop new sce- 120 7576(2004, and references therein.

ing i icoIM. L. Alexander, N. E. Levinger, M. A. Johnson, D. Ray, and W. C.
narios in order to coherently control wave packet dynamics ) , ' '

outside the solvation shell for systems with strong solutes,

solvent interactions, such as the/H,O system.
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