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A linearized optimal control method in combination with mixed quantum/classical molecular
dynamics simulation is used for numerically investigating the possibility of controlling
photodissociation wave packets of I2

2 in water. Optimal pulses are designed using an ensemble of
photodissociation samples, aiming at the creation of localized dissociation wave packets. Numerical
results clearly show the effectiveness of the control although the control achievement is reduced
with an increase in the internuclear distance associated with a target region. We introduce effective
optimal pulses that are designed using a statistically averaged effective dissociation potential, and
show that they semiquantitatively reproduce the control achievements calculated by using optimal
pulses. The control mechanisms are interpreted from the time- and frequency-resolved spectra of the
effective optimal pulses. ©2004 American Institute of Physics.@DOI: 10.1063/1.1771640#

I. INTRODUCTION

In the last several years, we have witnessed significant
advances toward achieving quantum control over a wide
range of molecular dynamics using ultrafast laser pulses that
are optimally designed by the so-called closed loop
experiments.1,2 A number of successful quantum control ex-
periments have been reported, some of which deal with mo-
lecular dynamics in condensed phases.3–9 They include the
photochemistry of dyes3 and coordination complexes,4,6,9

pulse propagation in liquids,5 vibrational dynamics in crys-
talline polymers,7 and energy flow in biological systems.8

Although those studies clearly show the basic principles of
quantum control, it is still unclear how efficiently the dynam-
ics in condensed phases can be coherently manipulated be-
cause quantum interferences are easily destroyed by dissipa-
tion processes. To answer this question, we conduct a case
study of the manipulation of photodissociation of I2

2 in water
by means of an optimal control method in combination with
mixed quantum/classical molecular dynamics~MD!
simulation.10,11 As the strong solute-solvent interaction cor-
responds to the most unfavorable condition, we will show
the limits of the quantum control in condensed phases.

Our theoretical analyses consist of two steps: the design
of optimal pulses and the decoding of the designed pulses.
Laser pulse design algorithms based on the optimal control
theory are expressed in the form of inverse problems, which
lead to coupled nonlinear pulse design equations with speci-
fied initial and final conditions.12 Although efficient mono-
tonically convergent algorithms within the density matrix
formalism have been proposed, their iterative solution re-
quires time-consuming computations.13–17This situation im-
poses restrictions on the theoretical treatment of condensed-
phase dynamics,18–23that is, the whole system is divided into
a ~relevant! system and a heat bath, in which the bath degrees

of freedom are explicitly or implicitly removed by appropri-
ate assumptions. In addition, the system is often approxi-
mated by a prototype model, the time evolution of which is
described by using the optical Bloch equation13,17,18and the
master equation with/without memory effects.15,19,21–23The
advantage of such modeling is that it facilitates understand-
ing of the behavior of condensed-phase dynamics and the
examination of the control mechanisms in detail, whereas the
disadvantage is that we always reach qualitative conclusions.

By restricting ourselves to a weak field regime, we have
a linearized pulse design equation expressed in terms of a
molecular response function.24–28 This approach has been
extensively developed by Wilson and co-workers.24–27 This
simplification imposes less restrictions for describing mo-
lecular dynamics in condensed phases. In fact, various ap-
proximations, such as harmonic as well as anharmonic
Brownian oscillators,24,27 classical MD simulations,25 and
the time-dependent Hartree~TDH! approximation,26 have
been implemented to calculate the molecular response func-
tions and thus the optimal pulse.

Of several available approaches, mixed quantum/
classical MD simulation is considered to be a powerful tool
for numerically investigating molecular response functions
in condensed phases.10,11,28In this case, the system is treated
quantum mechanically, whereas the heat bath is treated clas-
sical mechanically. The system~heat bath! acts on the heat
bath ~system! through the Hellman–Feynman force~mean
field!. Because of the flexibility in choosing the system size,
the time evolution of the whole system can be calculated
within reasonable computational time. According to this
pulse design scheme, Guiang and Wyatt28 studied the quan-
tum control of I2 wave packet localization in the electroni-
cally excited state in an Ar matrix within a low temperature
range. The I2 /Ar system can be regarded as a prototype sys-
tem with weak solute-solvent interactions, and therefore an
ideal condensed-phase system for quantum control.29,30

In the present work, we deal with the quantum control of
a!Author to whom correspondence should be addressed. Electronic-mail:
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a I2
2/H2O system that is characterized by strong solute-

solvent interactions. We construct an ensemble of photodis-
sociation samples using classical MD simulations. An opti-
mal pulse is designed so that it maximizes the statistical
average of a specified target yield over the ensemble. We
employ the linearized optimal control procedure in combina-
tion with mixed quantum/classical MD simulation in order to
design an optimal pulse that generates a localized dissocia-
tion wave packet of I2

2 in the excited electronic state. The
control mechanisms are interpreted by using a statistically
averaged effective dissociation potential, which is introduced
in Sec. IV.

From an experimental viewpoint, I2
2 (Br2

2) has been re-
garded as a prototype molecule for exploring photodissocia-
tion dynamics in the presence of strong solute-solvent inter-
actions since the pioneering work by Lineberger’s group31,32

who studied the dynamics using size-selected clusters.31–33

In solutions, real-time measurements of the photodissocia-
tion and the subsequent caging dynamics of I2

2 were con-
ducted by Barbara’s group.34–36 These observations31–36

were consistently interpreted by MD simulations.37–42 Be-
cause of available knowledge regarding the I2

2/H2O system,
it may serve as an ideal tool for experimentally investigating
the possibility of quantum control in condensed phases.

This paper is organized as follows: In Sec. II, the mixed
quantum/classical equations of motion and the linearized
pulse design equation are presented. After describing the nu-
merical details~Sec. III!, we discuss the numerical results in
Sec. IV, and give a summary in Sec. V.

II. THEORY

The Hamiltonian of a whole system is divided into a
~relevant! system Hamiltonian,HS

0, a heat bath Hamiltonian,
HB

0, and the interaction between them,VSB:

HT5HS
01VS

t 1HB
01VSB, ~1!

whereVS
t is the interaction between the relevant system and

a laser field,E(t). Here, the heat bath is assumed to be
optically inactive. Considering a two-electronic-state system,
we expressHS

0 as the sum of two vibronic Hamiltonians:

HS
05ug&Hg

0^gu1ue&He
0^eu, ~2!

where Hg
0 (He

0) denotes the vibrational Hamiltonian in the
ground~excited! state,ug& (ue&). For the optical interaction,
we assume the rotating-wave approximation within the semi-
classical dipole interaction:

VS
t 52m1e~ t !2m2e* ~ t !, ~3!

wherem15(m2)† is the dipole moment operator associated
with absorption~emission! processes. In Eq.~3!, we write
the laser field in the form,E(t)5e(t)1e* (t) to extract the
rotating parts fromE(t).

The time evolution of a whole system is described by a
total density operator,rT(t), which obeys the quantum Liou-
ville equation

i\
]

]t
urT~ t !&&5LTurT~ t !&&

5~LS
01KS

t 1LB
01KSB!urT~ t !&&, ~4!

where the double-space~Liouville-space! notation is used.43

The Liouvillians,LT5LS
01KS

t 1LB
01KSB, correspond to the

commutators of the Hamiltonians in Eq.~1!, i.e., @HT ,¯#
5@HS

01VS
t 1HB

01VSB,¯#. We apply the TDH approxima-
tion to the total density operator in order to factorize it in the
product form:

urT~ t !&&5ur~ t !&&urB~ t !&&, ~5!

whereur(t)&& (urB(t)&&) is the system~heat bath! density op-
erator. The system potential is modified by the mean-field
interaction due to the instantaneous coupling with the heat
bath,

^VSB~ t !&B5TrB$rB~ t !VSB%. ~6!

We have the equation of motion for the relevant system

i\
]

]t
ur~ t !&&5@LS

01KS
t 1^KSB~ t !&B#ur~ t !&&, ~7!

where ^KSB(t)&B↔@^VSB(t)&B ,¯#, with the initial condi-
tion of ur(0)&&5ur0&&. For the density operator of the heat
bath, we assume spatially localized distributions, and that the
mean value of a function of the bath coordinates is equal to
its value for the mean value of the coordinates. This assump-
tion leads to

TrB$rB~ t !VSB~r ,Q!%.VSB~r ,^Q~ t !&B!, ~8!

where r ~Q! denotes a set of the system~heat bath!
coordinates.44 If we rewrite ^Q(t)&B as Q(t) for simplicity,
the average values of thejth coordinate,Qj (t), and its con-
jugate momentum,Pj (t), satisfy the canonical equations of
classical mechanics with a classical Hamilton function,HB

cl ,

Q̇j5
]HB

cl

]Pj
, ~9a!

and

Ṗj52
]HB

cl

]Qj
. ~9b!

Here, the classical Hamilton function is defined by

HB
cl5HB

cl~Q,P!5HB
0~Q,P!1TrS$r~ t !VSB~Q!%, ~10!

whereQ andP are regarded as classical variables. The last
term in Eq.~10! gives the Hellmann-Feynman force, which
describes the action from the quantum system to the classical
heat bath.

An optimal pulse is designed so that it achieves the larg-
est transition probability from an initial state to an objective
state specified by a target operatorW subject to minimum
pulse fluence. The target operator is assumed to have a maxi-
mum expectation value when the system reaches the objec-
tive state. Then, the optimal pulse is defined by the electric
field e(t) that maximizes the following cost functional with a
specified control timet f :
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J5 ^̂ Wur~ t f !&&2lE
0

t f
dtue~ t !u2, ~11!

where a positive constantl weighs the physical significance
of the penalty due to pulse fluence. If we assume a weak
laser field, the density operator in Eq.~11! can be approxi-
mated by the second-order perturbation solution with respect
to the optical interaction,VS

t . Under the constraint of the
second-order perturbation solution, we apply calculus of
variations to Eq.~11!, and obtain the following linearized
pulse design equation:24

E
0

t f
dtM ~ t,t!e~t!5le~ t !, ~12!

where the molecular response function is given by

M ~ t,t!5
1

\2
^̂ WuGee~ t f ,t!m̂1Gge~t,t !m̃1Ggg~ t,0!ur0&&

3u~t2t !1
1

\2
^̂ WuGee~ t f ,t !m̃1Geg~ t,t!

3m̂1Ggg~t,0!ur0&&u~ t2t!. ~13!

Here theu function is defined byu(x)51 whenx.0 and
u(x)50 when x<0. The cap (m̂1) and tilde (m̃1) space
operators denote left-hand-acting and right-hand-acting op-
erators, respectively. The double-space operatorsGgg ,
Gge (Geg), and Gee, describe the time evolution forrgg

5^gurug&, rge (reg), andree, respectively, in the absence
of the system-laser interaction. The time orderings in these
operators originate from the time-dependent mean fields.

When we consider the maximization of the target expec-
tation value averaged over an ensemble constructed by MD
simulations, we employ another objective functional ex-
pressed as

J5
1

N (
k51

N

^̂ Wur~k!~ t f !&&2lE
0

t f
dtue~ t !u2, ~14!

whereur (k)(t)&& is the density operator of thekth sample, and
N is the total number of samples included in the ensemble.
Within a weak-field regime, we derive the same linearized
pulse design equation as Eq.~12!, in which, however, the
molecular response function is replaced with the statistically
averaged function:

M ~ t,t!5
1

N (
k51

N

M ~k!~ t,t!. ~15!

In Sec. IV, we numerically design optimal pulses using this
statistically averaged molecular response function.

The integral equation~eigenvalue equation!, Eq. ~12!,
has real eigenvalues,$l%, which are guaranteed by the her-
miticity of the integral kernel,M (t,t)5M* (t,t). The opti-
mal pulse is given by the eigenvector associated with the
largest eigenvalue, which leads to the largest expectation
value of the target operator normalized by the pulse fluence:

1

N (
k51

N

^̂ Wur~k!~ t f !&&5lE
0

t f
dtue~ t !u2. ~16!

Equation ~16! is proved in a straightforward manner. We
multiply both sides of Eq.~12! by e* (t), and then integrate
over tP@0,t f #. The resulting expression is rewritten using
the expression of the target expectation value within the
second-order perturbation approximation with respect toVS

t .
Utilizing the following equality, which is valid for an arbi-
trary function, f (t,t),

E
0

t f
dtE

t

t f
dt f ~ t,t!5E

0

t f
dtE

0

t

dt f ~t,t !, ~17!

we obtain Eq.~16!.
Next, we will make some assumptions in calculating the

time evolution of the system. Assuming stationary thermal
fluctuations, we neglect the time orderings in the time-
evolution operators so that they depend on only the time
intervals. Because of the stochastic nature of the system-bath
interaction, we further assume that the system is initially in
thermal equilibrium. Thus, the ground state, time-evolution
operator,Ggg , operates onur0&& to give

Ggg~ t,0!ur0&&5ur0&&, ~18!

wherer0 represents the Boltzmann distribution. After optical
excitation, we solve the coupled equations, Eqs.~7! and~9!,
to determine the time evolution of the system in the elec-
tronic excited state.

Under these approximations, the molecular response
function of thekth sample is rewritten as

M ~k!~ t,t!5
1

\2
Tr$WUe

~k!~ t f2t!m1Ug
~k!~t2t !

3r0m2Ue
~k!†~ t f2t !%. ~19!

Here, the operators,Ug
(k) andUe

(k) , describe the time evolu-
tion of the kth system in the electronic ground and excited
states, respectively. Note that the approximated integral ker-
nel in Eq.~19!, is also Hermitian,M (k)(t,t)5M (k)* (t,t).

III. COMPUTATIONAL METHODS

In this section, we introduce the potential parameters
~Sec. III A!, explain the numerical details of our MD simu-
lations ~Sec. III B!, specify control targets~Sec. III C!, and
summarize the numerical procedure for calculating optimal
pulses~Sec. III D!.

A. Model potentials

In our MD calculations, we employ a cubic main cell
that contains one I2

2 , a counter cation, Na1, and 254 water
molecules modeled by SPC/E.45 ~The density of water is
1.023 g/cm3.! The photodissociation dynamics of I2

2 is ap-
proximated by a one-dimensional, two-electronic-state
model. The electronic ground state potential of I2

2 is modeled
by a Morse oscillator, the potential parameters of which are
taken from Ref. 46. The dissociation energy, the equilibrium
distance and the range parameter are given byDe51.1 eV,
r e53.23 Å, andb51.16 Å, respectively. The harmonic fre-
quency of this potential is in good agreement with the ex-
perimentally observed value of;115 cm21 of I2

2 in water.47

The excited-state potential, on the other hand, is modeled by
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an exponential function, V0 exp@2b(r2re)# with V0

50.59 eV, r e53.23 Å, andb53.50 Å.48,49 The excess dis-
sociation energy estimated at;0.59 eV corresponds to a
dissociation time of 170 fs if we neglect solvent effects.50

Although this is rather a simple model, it is known to semi-
quantitatively reproduce the transient absorption spectra ob-
served by Klineret al.35

As I2
2 dissociates, the excess electron initially delocal-

ized over the anion becomes localized on one of the iodine
atoms. We describe such a charge separation process with a
switching function introduced by Perena and Amar,37,51

which is given by

q1,2~r !520.5e~16 1
2 $11tanh@h~r 2§!#%!, ~20!

where§ specifies the distance at which the separation occurs,
andh denotes the width of the interval over which the sepa-
ration occurs. According to their criteria,37 we choose§55.0
Å, which corresponds to the distance at which the bound
energy of the ground-state iodine is reduced to 25% com-
pared to that at the equilibrium position, andh56.0 Å21. We
neglect any delocalization of ionic charge from the anion
onto the surrounding water. The model potential and the
charge switching function are illustrated in Fig. 1.

The water-solute intermolecular potentials are approxi-
mated by a sum of Lennard-Jones and Coulomb potentials,

V~r i j !54e i j F S s i j

r i j
D 12

2S s i j

r i j
D 6G1

qiqj

r i j
~21!

with the standard combining rules

s i j 5
1
2 ~s i1s j !,

and

e i j 5Ae ie j . ~22!

As regards the Lennard-Jones parameters of the partially
charged iodine,I q (21<q<0), s is chosen ass(q)
54.98720.178q (Å), wherease has a charge-independent
value of 0.100 kcal/mol, which reproduce the parameters
given in Ref. 52 in the two limiting cases,q50 and q
521. We further assume that the parameters do not depend

on the electronic state of I2
2 . For the water-Na1 potential,

the parameters are taken from Ref. 53. The Ewald method is
used for calculating the Coulomb interaction, in which the
cutoff length, the damping parameter and the maximum mo-
mentum are set at 15.0 Å, 0.32 Å21, and 1032p/~cell-
length!, respectively.

B. Numerical simulations

An equilibrium molecular configuration is constructed
by the 15 ps classical NVT calculations using the Nose´ ther-
mostat atT5300 K. The 5 ps NVE run follows to generate a
microcanonical ensemble. The equations of motion are nu-
merically solved by the predictor-corrector method with a
0.1 fs time grid.54 In these calculations, I2

2 is assumed to be
in the ground electronic state.

The mixed quantum/classical calculation starts with the
initial configuration prepared by the classical simulation. The
classical internal motion of I2

2 is replaced with the thermal
distribution of the Franck-Condon wave packet, which is
uniformly discretized by 2048 grid points over the range of
@1.7 Å, 17.0 Å#. Its time evolution is solved by the split-
operator1fast Fourier transform scheme with a time grid of
0.02 fs. The mean-field potential and the Helmann–Feynman
force are calculated every 0.1 fs. In our simulations, the elec-
tronic transitions of I2

2 are induced by the optical interaction
but not by the mean-field interaction. Finally, to see the re-
placement effects on the following time evolution of the
wave packet, we carry out an extra NVE run using the mixed
quantum/classical calculation for several time intervals, and
find that the difference is so small that no distinction in the
shape of the wave packets can be recognized~not shown
here!.

C. Control targets

We specify the control targets after introducing the mi-
croscopic picture of the photodissociation dynamics of diio-
dine anion in a polar solvent. The photodissociation is initi-
ated by optical excitation to an antibonding state. According
to Parsonet al.41, immediately after the excitation, the excess
charge of the ion moves to the less solvated atom. This
anomalous charge flow leads to strong Coulomb interactions
that pull the solute together and prevent it from dissociating.
Thus, the dissociation only occurs after a nonadiabatic tran-
sition to an electronic state associated with ‘‘normal’’ charge
flow. This explains the low quantum dissociation yield, e.g.,
;0.12, in the case of an aqueous solution.36,55

The natural choice of the control objective may be to
increase the dissociation yield; however, it is not a trivial
target. As mentioned above, the dissociation is induced by a
nonadiabatic transition to form solvated iodine ions, which
can be attributed to charge transfer and/or solvent transfer.56

Although solvent reorganization plays an important role in
both cases, the optimal pulse cannot directly control solvent
motion because we assume an optically inactive solvent. Be-
sides, the numerical description of a nonadiabatic transition
requires more electronic states, resulting in time-consuming
computations beyond our computational resources. In the
present work, we thus restrict ourselves to the control of a

FIG. 1. ~a! One-dimensional, two-electronic-state model for I2
2 , and ~b! a

charge switching function@Eq. ~20!#.
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dissociation wave packet using the two-electronic-state
model@Fig. 1~a!#. Nonadiabatic transitions are effectively in-
cluded in simulation using the charge switching function
@Fig. 1~b!# without explicitly evaluating them.

Because of the low quantum yield of photodissociation,
we first collect the dissociation samples by using classical
MD calculations, which are described in Sec. III D. We de-
sign optimal pulses with the aim of maximizing the statisti-
cally averaged population in the regionR at a specified in-
ternuclear distance at a control time. This control objective is
denoted by the target operator

W5E
R
ur &dr^r u, ~23!

with r being the coordinate of the internuclear distance of
I2
2 . As the target operator is represented by an integral~sum!

of projectors, the control yield is not limited by the statistical
distribution of the dissociation samples.22,57

D. Summary of numerical procedure
for calculating optimal pulses

Step 1. Collecting dissociation samples: Starting with the
initial molecular configuration prepared in Sec. III B, we per-
form the classical MD simulation to collect dissociation
samples according to the scheme described below. At every 1
ps, we check if I2

2 dissociates in the given configuration, that
is, we calculate the trajectories using the excited-state poten-
tial of I2

2 instead of the ground-state potential. If the internu-
clear distance of I2

2 exceeds 6.0 Å within 300 fs, it is re-
garded as a dissociation sample. Once we find a dissociation
sample, we stop collecting dissociation samples for 5 ps in
order to remove possible statistical correlation between adja-
cent dissociation samples. According to this scheme, we col-
lect 30 dissociation samples. Based on the above criterion,
we have a dissociation yield of 8.8%, in good agreement
with the experimentally measured value of;12%. Finally,
we randomly choose 20 samples from the 30 dissociation
samples to reduce computational burden in the following
steps.

Step 2. Calculating statistically averaged molecular re-
sponse function, Eq.~15!: As shown in Eq.~19!, the molecu-
lar response function is expressed in terms of the time evo-
lution of the thermal distribution of the Franck–Condon
wave packets. The time-dependent wave functions are ob-
tained by numerically integrating the mixed quantum/
classical equations. All the data of the time-dependent mean
fields are stored in memory, which are required for evaluat-
ing control achievement in the next step. To calculate Eq.
~15!, we take the statistical average of each molecular re-
sponse function over the thermal distribution as well as the
dissociation samples.

Step 3. Calculating optimal pulse and control achieve-
ment: The diagonalization of the statistically averaged mo-
lecular response function gives the optimal pulse, which is
the eigenstate associated with the largest eigenvalue. The cal-
culated optimal pulse is used for evaluating control achieve-
ment defined by

Y~ t !5A(k51
20 ^W~ t !&~k!

(k51
20 Pe

~k!~ t !
, ~24!

where^W(t)& (k) and Pe
(k)(t) are, respectively, the target ex-

pectation value and the excited-state population of thekth
sample. We calculatêW(t)& (k) andPe

(k)(t) using the optimal
pulse and the mean fields of thekth sample ~stored in
memory!. We perform this for each sample and substitute all
the results into Eq.~24! to evaluate the control achievement.
The definition of the control achievement in Eq.~24! can be
rationalized by the fact that we always observe a statistically
averaged quantity. When all samples are equivalent, the con-
trol achievement in Eq.~24! is reduced to that defined in
previous papers.24–26

IV. NUMERICAL RESULTS AND DISCUSSION

Before discussing the numerical results, we introduce a
statistically averaged dissociation potential of I2

2 , which is
simply called an effective potential in this paper. The effec-
tive potential is defined by

Veff~r ,t !5V0 exp@2b~r 2r e!#

1
1

N (
k51

N

VSB~r ,^Q~ t !&~k!!, ~25!

whereV0 exp@2b(r2re)# is the excited-state potential of I2
2

and VSB(r ,^Q(t)& (k)) is the mean-field potential of thekth
sample. Figure 2 shows the effective potential as a function
of time and internuclear separation, which is characterized
by a huge barrier around the initial time and a flat structure
after;250 fs. This is because after;250 fs, all the samples
contributing to the dissociation must have repulsive poten-
tials, whereas around the initial time, no restrictions are im-
posed on the potential shapes. In fact, some of the samples
initially have bound potentials, and introduce the barrier into
the effective potential. The potential barrier gradually disap-
pears due to solvent reorganization that occurs on the same
time scale as the photo-dissociation of I2

2 at 300 K.
The effective potential is expected to extract the charac-

teristic properties of the ensemble. We also design an optimal
pulse using the effective potential, and refer to it as the ef-
fective optimal pulse in this paper. We substitute the effective
optimal pulse into the equations of motion to calculate the

FIG. 2. Effective potential defined by Eq.~25!.
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target expectation value and the excited-state population of
each sample. The insertion of these values in Eq.~24! yields
the statistically averaged control achievement realized by the
effective optimal pulse.

Optimal pulses are designed with the aim of generating a
localized wave packet atRP@4.0, 4.1 Å#, RP@4.5, 4.7 Å#,
and RP@5.0, 5.2 Å#, which are shown in Figs. 3, 4, and 5,
respectively. The first target region has a width of 0.1 Å,
whereas the other two regions have a width of 0.2 Å as the
control of wave packet motion at a longer internuclear dis-
tance becomes more difficult. The target region ofRP@5.0,
5.2 Å# corresponds to the internuclear distance immediately
after the charge localization occurs. All the target regions are
within the first solvation shell.~The possibility of controlling
wave packet dynamics beyond the first solvation shell is
shown in Fig. 7.!

Figures 3~a! and 3~b! show the optimal pulse and the
effective optimal pulse, respectively. Arbitrary units~a.u.!
are used for the electric field amplitudes as we assume the
weak-field regime. In Fig. 3~c! the control achievement cal-
culated by using the~effective! optimal pulse is represented
by a bold-solid~bold-dashed! line. For reference, the thin
solid line shows the control achievement associated with the
Franck–Condon wave packet, in which we do not take the
statistical average of the time evolution of the Franck–
Condon wave packet over the thermal distribution and the
samples. In Figs. 3~c!, 4~c!, and 5~c!, the timing at which the
control achievement becomes a maximum is slightly differ-
ent from the control time,t f5350 fs. This is because the
number of dissociation samples is not sufficiently large for
realizing a stationary heat bath, which is assumed in our
calculations~Sec. II!. Another reason, which may be less

important than the above, is that the target in the cost func-
tional @Eq. ~14!# is to maximize the target expectation value,
not the control achievement.

Comparing the results in Figs. 3–5, we summarize the
numerical observations as follows:

FIG. 3. For the target region,RP@4.0, 4.1 Å#, ~a! the optimal pulse,~b! the
effective optimal pulse, and~c! the control achievements calculated by the
optimal pulse~bold-solid line!, the effective optimal pulse~bold-dashed
line! and the Franck–Condon wave packet~thin solid line!. Arbitrary units
~a.u.! are used for the electric field amplitudes.

FIG. 4. For the target region,RP@4.5, 4.7 Å#, ~a! the optimal pulse,~b! the
effective optimal pulse, and~c! the control achievements calculated by the
optimal pulse~bold-solid line!, the effective optimal pulse~bold-dashed
line! and the Franck–Condon wave packet~thin solid line!. Arbitrary units
~a.u.! are used for the electric field amplitudes.

FIG. 5. For the target region,RP@5.0, 5.2 Å#, ~a! the optimal pulse,~b! the
effective optimal pulse, and~c! the control achievements calculated by the
optimal pulse~bold-solid line!, the effective optimal pulse~bold-dashed
line! and the Franck–Condon wave packet~thin solid line!. Arbitrary units
~a.u.! are used for the electric field amplitudes.
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~A! Comparing the peak values of the control achieve-
ments, the designed optimal pulses always lead to nearly two
times greater control achievements than those obtained by
the Franck–Condon wave packet@Figs. 3~c!, 4~c!, and 5~c!#.

~B! The optimal pulse has a larger temporal width for
the target region at a longer internuclear distance@Figs. 3~a!,
4~a!, and 5~a!#.

~C! The effective optimal pulses have much simpler
structures than the corresponding optimal pulses@Figs. 3~b!,
4~b!, and 5~b!#; however, the effective optimal pulses lead to
almost the same control achievements as those calculated by
the optimal pulses@Figs. 3~c!, 4~c!, and 5~c!#.

Result~A! clearly shows that the optimal pulses can ma-
nipulate wave packet dynamics by means of coherent con-
trol. They generate a localized dissociation wave packet of
I2
2 , with high probability even in the presence of strong

solute-solvent interactions as well as statistical distributions.
As the specified internuclear distance becomes longer, the
control achievement is rapidly reduced due to the solute-
solvent interactions. However, the control effects may be suf-
ficiently large for us to experimentally observe some degree
of wave packet localization. As the present case study deals
with one of the most unfavorable systems for quantum con-
trol because of the strong solute-solvent coupling, result~A!
suggests that a wide range of condensed-phase dynamics can
be coherently controlled to achieve specified targets.

We can explain observation~B! in terms of the statistical
distribution of the velocities of the wave packets, which is
due to the inhomogeneous environment induced by the heat
bath. Because an excited wave packet has nearly zero veloc-
ity immediately after optical excitation, the distribution
width increases as the time required to reach a target region
increases. Roughly speaking, wave packets with low veloci-
ties must be excited earlier than those with high velocities in
order for all of them to meet together at a target region at a
control time. Thus a temporally broader optimal pulse is
needed to localize the ensemble of the wave packets at a
longer internuclear distance.

Concerning observation~C!, we first point out that the
modulated structures in optimal pulses are largely attributed
to the statistical distribution of the dissociation samples. If
the optimal pulse is designed using one sample and not the
ensemble, we virtually see no modulation in the calculated
pulse~not shown here!. The overall structure of the optimal
pulse is determined by ‘‘typical’’ samples included in the
ensemble. In this sense, the effective optimal pulse is pre-
dicted to be a good approximation to the optimal pulse as
long as the effective potential can be regarded as a represen-
tative of the sample potentials. This prediction is supported
by the numerical results in which the effective optimal pulses
semi-quantitatively reproduce the control achievements cal-
culated by using the optimal pulses. In Fig. 4~c!, the control
achievement calculated by using the effective optimal pulse
appears with a time lag that is explained by the slight tem-
poral peak shifts between the pulses in Figs. 4~a! and 4~b!. In
the following, we examine the control mechanisms using the
effective optimal pulses.

The time- and frequency-resolved spectrum,S(v,t), of
the control pulse,e(t), is calculated by

S~v,t !5U E
t2tw/2

t1tw/2

dtH~ t2t,tw!e~t!eivtU2

. ~26!

Here, the Blackman window function,H(t,tw), is defined
by

H~t,tw!50.4210.50 cosS 2p

tw
t D10.08 cosS 4p

tw
t D ,

~27!

where the time resolution specified by the parameter,tw , is
set at 10 fs. In Fig. 6, the calculated time- and frequency-
resolved spectra of the effective optimal pulses in Figs. 3~b!,
4~b!, and 5~b!, are, respectively, shown from top to bottom.
For convenience, the frequencies are measured from the ver-
tical transition energies at the equilibrium internuclear dis-
tance, i.e., we setVeff(re,t)50. As the internuclear distance of
the target is increased, the central frequency of the pulse is
shifted to a higher frequency. This is because the wave
packet must have extra energy to complement the energy
dissipated by the heat bath during the propagation to a target.
In addition, the wave packet with larger kinetic energy takes
less time to reach the target and thus has less chances of
interacting with the heat bath, resulting in a higher control
yield.

We also see that the time- and frequency-resolved spec-
tra have characteristic chirped structures. For example, in the
case ofRP@4.0, 4.1 Å#, the effective optimal pulse shows
slight negative chirping@Fig. 6~a!#. Because this target is
located far from the first solvation shell, the solute-solvent
interactions may play a minor role in the control. In such a
system, a positively chirped pulse is often said to efficiently

FIG. 6. ~a! Time- and frequency-resolved spectrum of the effective optimal
pulse in Fig. 3~b!, ~b! that in Fig. 4~b!, and~c! that in Fig. 5~b!. For conve-
nience, the zero frequencies are chosen such that they correspond to the
vertical transition energies at the equilibrium internuclear distance,
Veff(re ,t).
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create a spatially localized wave packet on a repulsive
potential.58 In our case, on the other hand, the target is local-
ized very close to the Franck–Condon region, and also the
curvature of the repulsive potential is smaller than those of
the molecules studied so far. Because of the small curvature
of the repulsive potential, small shifts in frequency corre-
spond to large changes in the internuclear distance at which
resonant vertical transitions occur. Under these conditions, in
order to create a localized wave packet, we must first create
the wave packet components initially at a small internuclear
distance and then create those initially at a large internuclear
distance. here, we call the former~latter! components small-
distance~large-distance! components for simplicity. If both
components are generated simultaneously, there is no chance
for the small-distance components to catch up with the large-
distance components because the target region is so close to
the Franck–Condon region. Assuming resonant transitions,
the small-distance components are generated by the high-
frequency parts of the pulse, whereas the large-distance com-
ponents are generated by the low-frequency parts of the
pulse, resulting in the negatively chirped structure of the ef-
fective optimal pulse. Note that often times we numerically
observe a Franck–Condon packet propagating on a repulsive
potential being spatially squeezed at first and then becoming
broad ~not shown here!. This may also support the above-
mentioned control mechanisms.

For the target ofRP@4.5, 4.7 Å#, we do not see any
particular chirping in the effective optimal pulse@Fig. 6~b!#.
In this region, the statistical distribution as well as the dissi-
pation processes can weaken the chirping effects on the con-
trol.

In Fig. 6~c!, the effective optimal pulse associated with
the target,RP@5.0, 5.2 Å#, has an up-down chirped structure
in the time- and frequency-resolved spectrum. Because of the
low control achievement, it is difficult to say if this charac-
teristic chirped structure of the effective optimal pulse is es-
sential for the control.

To get a rough idea of the control mechanisms in the
case of theRP@5.0, 5.2 Å# target, we calculate the time
evolution of the dissociation wave packet generated by the
effective optimal pulse. In this calculation, the system is as-
sumed to be represented by a wave function under the influ-
ence of the time-dependent effective potential@Eq. ~25!#, that
is, we do not take a statistical average. Figure 7 shows the
calculated wave packet indicating that the first-half and the
second half of the effective optimal pulse create the two
separate wave packet components that meet at the target re-
gion at the control time. Note that the interference patterns
shown in Fig. 7 have no physical importance because we
ignore the statistical distribution in this analysis.

Finally, we briefly discuss the possibility of controlling
wave packet dynamics outside the first solvation shell. In
Fig. 7, we do not see any wave packet components that di-
rectly dissociate without being caught by the solvent cage.
Remembering our method to collect ‘‘dissociation’’ samples,
all the corresponding classical trajectories exceed 6.0 Å
within 300 fs. Thus, the quantum nature of the dissociation
makes it difficult for I2

2 to form independent fragment atoms
outside the first solvation shell. This suggests that the photo-

dissociation wave packet is initially trapped within the first
solvation shell, which is destroyed by dissipation, and then
the fragment atoms escape from this cage. The cage escape
occurs on a much longer time scale than what we are cur-
rently concerned with. Recently, Apkarian and co-workers
reported that the photoexcited I2 in an Ar matrix with an
excess energy of 4 eV can break the Ar cage with 50%
probability.30 This indicates that it is possible for a system
with weak solute-solvent interactions to coherently control
the dynamics of a dissociation wave packet outside a solva-
tion shell. On the other hand, it is a real challenge to coher-
ently control the wave packet outside the first solvation shell
for the I2

2/H2O system because of the strong solute-solvent
interactions.

V. SUMMARY

We have investigated the possibility of controlling the
photo-dissociation dynamics of I2

2 in water using a linearized
optimal control method. Mixed quantum/classical MD simu-
lations were used to describe the time evolution of the whole
system, in which the quantum system~solute! was coupled
with the classical heat bath~solvent! through the Hellman–
Feynman forces and the mean-field potentials. Optimal laser
pulses were designed to maximize a statistically averaged
target expectation value subject to minimum pulse fluence,
using an ensemble of dissociation samples that were col-
lected by classical MD simulations.

We numerically designed optimal pulses with the aim of
creating a localized wave packet at three regions specified by
different internuclear distances. The optimal pulses always
led to approximately two times better achievements than
those given by the thermal distribution of the Franck–
Condon wave packets~thed-function excitation!. As the tar-
get internuclear distance was increased, the control achieve-
ments were decreased rapidly; however, there remained the
coherent control effects that were experimentally observable.

We introduced an effective optimal pulse that was de-
signed using the statistically averaged dissociation potential,
called an effective potential here~Fig. 2!. We found that the

FIG. 7. Time evolution of the wave packet calculated using the effective
optimal pulse in Fig. 5~b!, in which we do not take a statistical average over
the ensemble.
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effective optimal pulses semiquantitatively reproduced the
control achievements calculated by the optimal pulses al-
though the effective optimal pulses had much simpler struc-
tures than the optimal pulses. We examined the control
mechanisms using the time- and frequency-resolved spectra
of the effective optimal pulses. Because of the dissipation,
we saw a high-energy shift in the central frequency of the
pulse as the target internuclear distance was increased. When
the target region was located at a small internuclear distance,
the effective optimal pulse had a slightly negative chirped
structure. From the time evolution of the wave packet, there
was no wave packet component that broke and went outside
the first solvation shell. It is necessary to develop new sce-
narios in order to coherently control wave packet dynamics
outside the solvation shell for systems with strong solute-
solvent interactions, such as the I2

2/H2O system.
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