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Compact optical setup for forward-box degenerate four-wave
mixing measurement

Toshio Fukaya,® Shinichiro Iwai, and Shigeo Murata
National Institute of Materials and Chemical Research (NIMC), 1-1 Higashi, Tsukuba 305-8565, Japan

(Received 22 February 1999; accepted for publication 6 August)1999

We have devised compact optics for the forward-box configuration in degenerate four-wave mixing
spectroscopy. The core of the optical setup is the successive use of a pair of polarization-based beam
splitters that divide the laser beam into four parallel beams. This setup is compact, easy to assemble,
and adaptable for laser light over a wide spectral range. Selection of the combination of beam
polarization produces two types of transient grating: either a polarization grating or an intensity
grating. © 1999 American Institute of Physids$S0034-67489)02711-2

Degenerate four-wave mixinPFWM) is widely used the rotation angle of a half-wave or quarter-wave plate. Suc-
for applications such as measuring dynamic photoexcitatiocessive use of two combinations of wave plate and calcite
and determining its rate constant as an essential laser spewystal produces four parallel beams having a square spatial
troscopy techniqué? The orthodox optical setup for DFWM configuration. The intensity ratio of any three of the four
is a forward-box configuratiof. beams is controlled individually by adjusting the rotation

The usual optics of the forward-box configuration con-angles of the two wave plates.
sists of multiple beam splitters and mirrors separating a laser According to our measurement in the visible region us-
beam wave front into three waves. After being delayed aping a displacer 30 mm long, the extraordinary ray has an
propriately, these waves are combined at one spot. Use ofa&dvanced phase of 3.3 mm compared to the ordinary ray
partially reflecting mirror as a beam splitter causes powefFig. 1, insel. Simple geometrical calculation using the data
loss in rear surface reflection and often creates stray lighof refractive indices 1.6584 for the ordinary ray and 1.4864
Many optical components are required to realize the forwardfor the extraordinary ray yields a phase difference of 3.2924
box configuration and optical components are very difficultmm.
to coordinate because optics must be three dimensional and The four parallel beams are focused onto one spot after
are complicated. If the optical setup becomes larger, bearpassing through optical delays. Where the DFWM signal ap-
quality deteriorates over long distances and the DFWM sigpears is determined easily by selecting one beam as a moni-
nal becomes difficult to find. Setting up a mask filter totor. During measurement, the monitor beam is steered off
eliminate stray light requires observation of the beam path iffom the mixing and guided to a light intensity sensor. The
the dark from the sample to the sensor. Tunable lasers witRFWM signal appears at the same position where the moni-
ultrashort pulses are currently used in laser spectrostégy. tor beam was pointed. The holes of the mask that are placed
the laser pulse duration becomes shorter, beam energy dedfter the focusing lens have a 1.0 or 0.8 mm diameter, but the
sity becomes higher and partially reflecting mirrors adaptablgesulting diffraction is negligible. Furthermore the diffracted
to such pulses become extremely difficult to fabricate over dight can be removed by using masks, because diffracted
wide spectral range. light and DFWM signal light propagate in different direc-

We devised a compact optical DFWM setdpig. 1)  tions.
whose major innovation is the use of calcite crystals as dis- Of the four linearly polarized beams, two are horizon-
placers to divide the laser beam into two parallel beams that
are mutually cross polarized. The length of the calcite crystal Steering Wave Optical delay PD PD
determines the distance between displaced beams. Because e plate Calcite A g
calcite dispersion is small, the distance changes slightly over NCR /, \

a wide spectral range. This change does not affect measure- C y PD
ment, because the size of holes in the mask is slightly ,m Optical delay

smaller than that of the laser beams. A calcite crystal 30 mm

long typically separates a beam to a distance of 3.3 mm and Calcite (beam diSPlace;) A l

is transparent from 350 to 2300 nm and semitransparent up RWAV. NN

to 215 nm. The amplitude ratio of horizontal and vertical —3 L s
polarization components of input light determines the power <30 mm%ﬁ,\am

ratio of the two output beams. This is controlled by adjusting
PD: photo detector

dpresent address: Optical Memory Group, National Institute for AdvancedIG. 1. Compact optical DFWM setup. The inset shows the beam displace-
Interdisciplinary ResearciNAIR), 1-1-4 Higashi, Tsukuba 305-0046, Ja- ment and phase difference between extraordinary and ordinary rays in a
pan; electronic mail: fukaya@nair.go.jp 30-mm-long calcite crystal.
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