PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 3, Pages 939–941 S 0002-9939(99)05580-X Article electronically published on October 25, 1999

A GLOBAL CORRESPONDENCE BETWEEN CMC-SURFACES IN S^3 AND PAIRS OF NON-CONFORMAL HARMONIC MAPS INTO S^2

R. AIYAMA, K. AKUTAGAWA, R. MIYAOKA, AND M. UMEHARA

(Communicated by Christopher Croke)

ABSTRACT. We show there is a global correspondence between branched constant mean curvature (i.e. CMC-) immersions in $S^3/\{\pm 1\}$ and pairs of nonconformal harmonic maps into S^2 in the same associated family. Furthermore, we give two applications.

Let x be a conformal immersion of a Riemann surface M into the Euclidean 3-sphere $S^3(c^2)$ of radius 1/c, or the real projective space $P^3(c^2)$. The generalized Gauss map $\mathcal{G}: M \to G_{2,2}$ is defined by $\mathcal{G}(z) = [x_u \wedge x_v]$, where $G_{2,2}$ is the Grassmann manifold of oriented 2-planes in \mathbf{R}^4 and z = u + iv is a complex coordinate on M. Since $G_{2,2}$ is isometric to the product of two unit spheres, \mathcal{G} splits into $\mathcal{G} = (g_1, g_2): M \to S^2 \times S^2$. When x is a non-totally umbilic CMC-H immersion, g_1 and g_2 are both non-conformal harmonic maps in the same associated S^1 -family (see [1], [5], [8] and [9]). More precisely, the holomorphic quadratic differential φ_j (j = 1, 2) of g_j satisfies the relation $\varphi_2 = e^{2i\alpha}\varphi_1$ ($\alpha := \arg(H + ic) \in (0, \pi/2]$). In this case, we express $g_2 = g_1^{\alpha}$. Conversely, we prove the following:

Theorem. Let $g: M \to S^2$ be a non-conformal harmonic map. Suppose that there exists a real number $\alpha \in (0, \pi/2]$ such that the associated harmonic map g^{α} is single-valued on M. Then there exists a branched conformal CMC-H immersion x of M into $P^3(c^2)$ with $\mathcal{G} = (q, q^{\alpha})$, where $H = c \cot \alpha$.

Proof. There exists a CMC-H immersion $x: \tilde{M} \to S^3(c^2)$ having the generalized Gauss map $\tilde{\mathcal{G}} = (g \circ \pi, g^{\alpha} \circ \pi)$ (see, for instance, [1] and [8, §4 (replace H by H_1)]), where $\pi: \tilde{M} \to M$ is the universal cover. Let U_1 and U_2 be domains in \tilde{M} such that $\pi(U_1) = \pi(U_2)$. Then $x(U_1)$ is congruent with $x(U_2)$ by an isometry Φ of $S^3(c^2)$. Since the tangent planes at the corresponding points are parallel to each other because $\tilde{\mathcal{G}}$ has the same value, we must have $\Phi = \pm id$.

Remark. The theorem also follows from Bobenko [2, Theorem 14.1]. The parallel branched CMC-immersion arising as the Bonnet pair has the reversed orientation. Taking a finite cover, we get a branched CMC-H immersion into $S^3(c^2)$. However, x is non-branched when M is a torus [5, (4.35)].

Received by the editors April 15, 1998.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C42; Secondary 53A10.

For a non-conformal harmonic map $g:M\to S^2$, there exists uniquely the branched CMC-1 immersion $x_g:\tilde{M}\to {\bf R}^3$ with the Gauss map g (see [6]). Let $\rho_\alpha:\pi_1(M)\to SO(3)$ be the monodromy representation of g^α .

Corollary 1 ([3, §5]).
$$x_g$$
 is single-valued on M if and only if $\frac{d\rho_{\alpha}}{d\alpha}\Big|_{\alpha=0}=0$.

Proof. For any α , there exists a branched CMC-immersion $x^{\alpha}: \tilde{M} \to S^{3}(c^{2})$ ($c = \sin \alpha$) with $\mathcal{G} = (g \circ \pi, g^{\alpha})$. By the stereographic projection, x^{α} is considered as a map into \mathbf{R}^{3} . Using the deformation of the Lie group SO(4) into $SO(3) \times \mathbf{R}^{3}$ as in [10], we can obtain $\lim_{\alpha \to 0} x^{\alpha} = x_{g}$. Then the monodromy of x_{g} can be seen as a limit of that of x^{α} when $\alpha \to 0$, which yields the assertion.

There are at most two distinct isometric immersions of a closed surface with the same non-constant mean curvature function H (see [7]). In the CMC case, we obtain:

Corollary 2. Let (M, ds^2) be a closed Riemannian 2-manifold and $x: M \to S^3(c^2)$ or \mathbf{R}^3 an isometric immersion of constant mean curvature H. Then the number N_x of congruent classes of isometric CMC-H immersions is finite. In particular, there exist no global non-trivial isometric deformations of x preserving the mean curvature

Proof. Suppose $N_x = \infty$. Then for countably many $e^{i\theta} \in S^1$, there exist isometric CMC-H immersions $x^{\theta}: M \to S^3(c^2)$ (resp. \mathbf{R}^3) with the generalized Gauss map $\mathcal{G} = (g,g^{\theta})$ (resp. Gauss map g^{θ}). Since such $e^{i\theta}$ has accumulation points, g^{θ} is single-valued on M for all $e^{i\theta} \in S^1$, which contradicts the fact that there exist no non-conformal harmonic maps from M to S^2 with single-valued associated S^1 -families (see, for instance, [4, Proposition 2.3]).

ACKNOWLEDGEMENT

The authors are very grateful to Y. Ohnita, A. Bobenko, M. Sakaki, J. Inoguchi and A. Fujioka for their valuable information.

References

- 1. R. Aiyama and K. Akutagawa, Kenmotsu type representation formula for surfaces with prescribed mean curvature in the 3-sphere, to appear in Tôhoku Math. J.
- A.I. Bobenko, Constant mean curvature surfaces and integrable equations, Russian Math. Survey 46 (1991), 1–45. MR 93b:53009
- A.I. Bobenko, Surfaces in terms of 2 by 2 matrices: Old and new integrable cases, Harmonic maps and integrable systems (Eds. P. Fordy and J. C. Wood), Vieweg, (1994), 83–127. MR 95m:58047
- N.J. Hitchin, Harmonic maps from a 2-torus to the 3-sphere, J. Differential Geom. 31 (1990), 627–710. MR 91d:58050
- D.A. Hoffman, Jr. and R. Osserman, On the Gauss map of surfaces in R³ and R⁴, Proc. London Math. Soc. 50 (1985), 27–56. MR 86f:58034
- K. Kenmotsu, Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann. 245 (1979), 89–99. MR 81c:53005b
- H.B. Lawson, Jr. and R.A. Tribuzy, On the mean curvature function for compact surfaces, J. Differential Geom. 16 (1981), 179–183. MR 83e:53060
- R. Miyaoka, The splitting and deformations of the generalized Gauss map of compact CMC surfaces, Tôhoku Math. J. 51 (1999), 35–53. CMP 99:08
- W. Seaman, On surfaces in R⁴, Proc. Amer. Math. Soc. 94 (1985), 467–470. MR 86m:53011

10. M. Umehara and K. Yamada, A deformation of tori with constant mean curvature in ${\bf R}^3$ to those in other space forms, Trans. Amer. Math. Soc. 330 (1992), 845–857. MR 92f92f:53013

Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan $E\text{-}mail\ address:}$ aiyama@sakura.cc.tsukuba.ac.jp

Department of Mathematics, Shizuoka University, Shizuoka 422-8529, Japan $E\text{-}mail\ address:}$ smkacta@ipc.shizuoka.ac.jp

DEPARTMENT OF MATHEMATICS, SOPHIA UNIVERSITY, TOKYO 102-8554, JAPAN $E\text{-}mail\ address$: r-miyaok@hoffman.cc.sophia.ac.jp

DEPARTMENT OF MATHEMATICS, HIROSHIMA UNIVERSITY, HIROSHIMA 739-8526, JAPAN $E\text{-}mail\ address:}$ umehara@math.sci.hiroshima-u.ac.jp