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Late stage dynamics of phase separation processes of immiscible binary mixtures containing 
surfactants (amphiphilic molecules) is investigated by computer simulations on the hybrid 
model proposed by the present authors [T. Kawakatsu and K. Kawasaki, Physica A 167, 690 
(1990)]. With use of this hybrid model, one can investigate large scale phenomena while 
retaining the intramolecular structures of surfactant molecules. Simulations are performed both 
for irregular bicontinuous and mice&r domain formation processes taking the thermal 
fluctuation effects into account. In the very late stage, the coarsening of the domain strnctures 
is considerably slowed down both for bicontinuous and micellar domain formation processes due 
to the low inter-facial tension of the surfactant-adsorbed interfaces. Scaled scattering structure 
functions are also calculated, which possess the characteristic features of the experimentally 
observed scattering functions of microemulsions and polymer blends containing amphiphilic 
block copolymers. We found that the calculated structure function for the system containing 
surfactants is different from that for the simple binary mixture without surfactant. Also reported 
are the important effects of thermal fluctuations on micellar domain structures, where the 
domain formation is considerably accelerated by the thermal fluctuation. 

1. INTRODUCTION 

Recently, more and more attentions have been being 
focused on the slow relaxation processes in complex sys- 
tems.“’ Dynamics of glasses, polymer melts and micro- 
emulsions, which are generally called “complex fluids,” are 
well-known examples.2 Although simple theoretical ap- 
proaches to such problems, like scaling arguments by de- 
Gennes,3 give us a conceptually important understanding 
of the systems, various complications associated with the 
complex fluids have been preventing us from obtaining 
quantitative understanding of the phenomena in micro- 
scopic and mesoscopic scales. Computer simulation meth- 
ods, which have become very popular in the last decade in 
the field of complex fluids, are a powerful tool to attack 
such complex problems. 

We have been investigating the dynamics of binary 
mixtures containing surfactants, such as microemulsions or 
polymer blends containing amphiphilic block copolymers, 
using several computer simulation techniques; the hybrid 
model proposed by the present authors,ti a Monte Carlo 
simulation of a spin mode1,7f8 and a molecular dynamics 
simulation of a molecular model.’ The hybrid model, 
which is discussed in detail in the present paper, is a phe- 
nomenological semimicroscopic model, where the binary 
mixture and the surfactant are treated as continuous field 

‘)Author to whom correspondence should be addressed. 

and discrete molecules, respectively. Using the above- 
mentioned three models, we have mainly investigated the 
early stage dynamics of the phase separation processes in 
the presence of surfactants. We also investigated the late 
stage dynamics using the hybrid model. Since the model is 
based on a coarse-grained picture, it allows us to simulate 
long time behavior of large scale systems. 

In this paper, taking such advantages of the hybrid 
model, we extensively investigate the late stage dynamics 
of the phase separation processes in the presence of surfac- 
tants in detail. We also include the effects of thermal fluc- 
tuations in this work. Recently, Laradji et al. performed a 
computer simulation on the similar problem.’ In their 
works, they adopted a pure continuum description, where 
both the binary mixture and the surfactant are described 
by two continuous fields,” and therefore the microscopic 
details of the surfactant molecules, e.g., the molecular size 
or the head-to-tail ratio, are averaged out in their model. 
On the contrary, the main advantage of our hybrid model 
is that the model can directly take the molecular details of 
the surfactant into account. We have shown that such mo- 
lecular details of the surfactant cannot be neglected in the 
early stage of phase separation processes, especially for 
large surfactants like block copolymers6 The effects of the 
molecular details of the surfactant also appear in the late 
stage of the phase separation through the mechanical prop- 
erties of the surfactant adsorbed interfaces, such as the 
bending elasticity of the interface, and the spontaneous 
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curvature of the surfactant-adsorbed interfaces due to the 
head to tail unbalance of the surfactant molecule.” Such 
features can easily be taken into account in the hybrid 
model.12 Therefore, the hybrid model can be applied both 
for the early stage dynamics and the late stage dynamics 
with a reasonable computational efficiency. 

Although there have been very few real experiments on 
the surfactant effects on the dynamics of phase separation 
processes, some attempts have just been started recently 
using polymer blends and amphiphilic block copoly- 
mers.‘3*‘4 Such polymer blends/block copolymer systems 
are suitable targets of our hybrid model as will be men- 
tioned in Sec. II and in Appendix A, and it is a crucial test 
for the hybrid model to compare the results of our simu- 
lations, which will be given in the present paper, with those 
of the real experiments. 

This paper is organized as follows. In the next section, 
we describe the hybrid model briefly and introduce thermal 
fluctuation effects into the model. We also give a brief re- 
view of the results obtained in our previous works.b8 In 
Sec. III, the results of the computer simulations on the late 
stage dynamics are shown, which are discussed in connec- 
tion with the other relevant simulations’ and experi- 
ments.‘3”4 We also give an intuitive explanation for the 
results of the simulation. Various characteristic time scales 
associated with the coarsening process are discussed in Sec. 
IV and the results are compared with those of the real 
experiments using polymer blends and block copolymers. 
Finally, we conclude our results in Sec. V. 

II. THE HYBRID MODEL 

In this section, we describe the hybrid model briefly 
and give a summary of the results obtained so far by the 
computer simulations and analytical treatments using this 
model. In the present work, we include the thermal fluc- 
tuation into our hybrid model, which were entirely ne- 
glected in our previous worksU 

We consider an immiscible binary mixture, whose 
components are denoted as A and B, and surfactant mol- 
ecules immersed in the binary mixture. In general, a sur- 
factant molecule in an A/B binary mixture consists of an 
A-philic part and a B-philic part, and therefore the surfac- 
tant molecule has an amphiphilic nature. Now, we con- 
sider a large surfactant molecule in comparison with the 
molecules of the binary mixture. For example, readers can 
imagine an amphiphilic block copolymer molecule solubi- 
lizecl in a binary mixture composed of molecules with a 
relatively low molecular weight (For possible experiments 
using polymers which correspond to the situation dis- 
cussed in the present paper are given in Appendix A.) 
Such a separation in length scales of the sizes of the mol- 
ecule of the binary mixture and the surfactant molecule 
allows us to describe the binary mixture and the surfactant 
in diierent manners. In the hybrid model, the binary mix- 
ture is described by a continuous scalar field X( r ) which is 
defined as 

X(r) =pA(r) -pB(r), (2.1) 

where p”(r) and pB(r) are the densities of the A and the 
B components of the binary mixture at a position r. On the 
other hand, the surfactant is described by discrete mole- 
cules each of which has a spin variable called a director, 
i.e., a unit vector pointing the direction from the B-philic 
center to the A-philic center. A surfactant molecule is spec- 
ified by its position ri and its director &, i being the index 
of the surfactant molecule. 

These variables X(r), ri and li are assumed to obey the 
following phenomenological equations of motion, which 
are purely dissipative: 

$ X(r,t)=LXV2 &+f(‘. t>, (2.2) 

(2.3) $rj(t)=-LPg+g(t), 
I 

~~~Cf)=-L’~-($ *ii)i?,]+hi(t). (2.4) 

Equation (2.2) is the so-called time dependent Ginzburg- 
Landau model and Eqs. (2.3) and (2.4) are equations of 
motion for a particle moving in a viscous medium and we 
have temporarily neglected hydrodynamic interactions, 
which can be justified for a two-dimensional system of a 
thin fluid layer placed between two parallel glass plates 
(Helle-Shaw cell, see Appendix A). Of course, such a hy- 
drodynamic interaction cannot be neglected for a three- 
dimensional system and should be included in a standard 
mariner.... In Eqs. (2.2)-(2.4), Lx, LP, and L” are On- 
sager coefficients, H is the total free energy functional and 
f(r,t), pi(t) and hi(t) thermal fluctuations which obey 
the following fluctuation-dissipation relations: 

(f(r,t)f(r’,t’))=-2LXTV26(r-r’)6(t-t’), 
(2.5) 

(gi(t)g~(t’))=2LPT6j,8(t-t’)l, (2.6) 

(h,(t)h~(t’))=2LS7’Gi~8(t-t’)(l--L$i). (2.7) 
The other cross-correlations are vanishing because of our 
neglection of the cross-couplings in Eqs. (2.2)-(2.4). In 
Eqs. (2.5)-( 2.7)) T is the temperature measured in unit of 
the Boltzmann’s constant kg, and 1 is the unit tensor. The 
thermal fluctuation on the field X(r) becomes negligible in 
the late stage of the phase separation where the system is 
divided into large domains separated by sharp interfaces. 
The same is true for the noise on the surfactant molecules 
in our hybrid model, because the surfactant molecule is 
regarded as a meso-scale object which has also been coarse- 
grained on the same length scale as that of the field X(r) 
(see Appendix A). On the other hand, in the early stage, 
the thermal fluctuation on both the field X(r) and surfac- 
tant molecules cannot be neglected and it plays an impor- 
tant role on the dynamics of the phase separation.16 Since 
we are interested in both early stage and late stage of the 
phase separation processes, we here included the thermal 
fluctuations on the field X(r) and on the surfactant mole- 
cules. Note also that the temperature T can vary indepen- 
dently of the quench depth, the temperature difference be- 
tween the temperature of the system under consideration 
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and the critical temperature. For example, thermal fluctu- 
ation is negligible for polymer blends,” while it cannot be 
neglected for systems consisting of molecules with low mo- 
lecular weights. ‘* 

Total free energy functional H is the same as that used 
in our previous works,U whose explicit expressions are 
given as the following: 

a and /3 should in principle be determined from the micro- 
scopic considerations (Appendix A). Such a repulsive in- 
teraction leads to the saturation of interfaces by the ad- 
sorbed surfactant molecules in the late stage of the 
coarsening process. The second and the third terms on the 
r.h.s. of Eq. (2.11) account for the bending elasticity of the 
interface onto which surfactant molecules are adsorbed. 

H=Hxx+Hxs+Hss, (2.8) 

Hxx= 
J 1 

dr fDX(VX)2-i X2+: p , 1 (2.9) 

H,,=p,Ns+c & s drV_(r-ri)&*VX(r), 
I 

(2.10) 

Hss=$ 2 2V+(rii) +; (s,s,):W4(r,) 
i<j 1 

l2 
+T (S~S$>:W$t(rij) 9 1 (2.11) 

where D,, c, U, ps, q, and I are positive constants, iVs is 
the total number of surfactant molecules in the system, 
s~~li~~jand’ij~lri-rjl, Zisthemeasureofthelinear 
dimension of the surfactant molecule, q is the measure of 
the strength of the interaction between a surfactant mole- 
cule and the binary mixture, and c is the measure of the 
quench depth. #(r) and t+4( T) are interaction potentials 
between surfactant molecules and the field X, where 4(r) 
is the attractive interaction between chemically similar 
parts and q(r) is the repulsive interaction between chem- 
ically dissimilar parts, and V, ( r) = 4 (r) f+(r). We as- 
sume the functional forms of 4 and $ as, 

In our previous publications, we performed computer 
simulations on the hybrid model but neglected the thermal 
fluctuations.4-6 We succeeded in reproducing typical do- 
main structures, e.g., irregular bicontinuous, micellar, 
lamellar and bilayer structures, depending on the compo- 
sition of the binary mixture and the number density of the 
surfactant.4Ps The early stage dynamics of the phase sepa- 
ration has been investigated both analytically and by com- 
puter simulations.6 We found that the phase separation is 
assisted by the added surfactant when the size of the sur- 
factant molecule is comparable to the natural wavelength 
of the early stage phase separation (i.e., correlation length 
of the binary mixture). Such an assistance is due to the 
amphiphilic effects of the surfactant molecule, which plays 
the role of a nucleus for the phase separation.6 This feature 
was confirmed by molecular dynamics simulations on bi- 
nary soft-sphere systems containing an amphiphilic block 
copolymer chain.’ On the other hand, when the surfactant 
molecule is small compared to the wavelength of the phase 
separation, the surfactant molecules can be regarded as 
impurities, which decelerate phase separation.6 Such a de- 
celeration was confirmed by Monte Carlo simulations on a 
spin system containing small surfactant molecules.7 

d(r)=--aexp(-r/6), 

$(r)=Pexp(--r/S). 
(2.12) 

In deriving Eqs. (2.8)~( 2.11), we assumed that the sur- 
factant molecule is symmetric with respect to the exchange 
between its A-part and the B-part [an extension to an 
asymmetric case can easily be done (Ref. 12)], and we 
neglected the excluded volume effects of the surfactant 
molecule, which is expected not to be important in the late 
stage of the phase separation where the interfacial region 
becomes negligibly small. [The effects of the excluded vol- 
ume of the surfactant molecule cannot be neglected in the 
early stage (see Refs. 6 and 7) .] Intuitive explanations of 
the terms in Hxs and H,, are as follows: the first term on 
the right-hand side (r.h.s.) of Eq. (2.10) is the chemical 
potential of the surfactant molecule and the second term 
accounts for the attractive interaction between surfactant 
molecules and interfaces, where 1 VX] is large. The first 
term on the r.h.s. of Eq. (2.11) is the interaction between 
centers of mass of two surfactant molecules. As two sur- 
factant molecules cannot completely overlap due to the 
excluded volume interaction, the potential Y, should be 
repulsive at a short distance. In order to take such an 
excluded volume effect into account phenomenologically 
we assume that B> a in Eq. (2.12), although the values of 

In the above-mentioned results on the early stage dy- 
namics, the main feature of the surfactant molecule, i.e., 
the role of lowering the interfacial tension, does not play a 
role because of the absence of sharp interfaces in the sys- 
tem. However, it is obvious that such a role of lowering the 
interfacial tension is extremely important in the late stage 
of phase separation, where the phase separation dynamics 
is dominated by the motion of interfaces driven by the 
interfacial tension. In the next section, we present the re- 
sults of the computer simulations on the late stage dynam- 
ics of phase separation processes. In our previous work,6 a 
slowing down of the phase separation in the late stage has 
been observed for micellar formation processes, which 
originates from the saturation of the surfactant molecules 
on the interfaces. However, we could not observe such a 
slowing down in the bicontinuous case, where the total 
length of interfaces (the system used in our simulation is 
two-dimensional) is much longer than the micellar case 
and the saturation of the interfaces by surfactant molecules 
has not been achieved yet. Therefore, it is necessary to 
perform longer computer simulations with a larger system 
size in order to confirm the validity of our hybrid model in 
the late stage of phase separation processes. 

III. RESULTS OF COMPUTER SIMULATIONS 

We have performed extensive computer simulation 
runs using the hybrid model to investigate the late stage 
dynamics of formation processes of irregular bicontinuous 
structures and micellar structures starting from uniformly 
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mixed initial states. We investigate two cases, one is the 
case without thermal fluctuation and the other is the case 
including thermal fluctuation. In the following, we present 
the results of these simulations for bicontinuous case and 
micellar case, separately. 

Computer simulations are performed in the same way 
as the previous works,M but with an improved computing 
e5ciency by introducing an “implicit method” described in 
Appendix B to solve the partial differential equation for the 
field X(r). The system is a two-dimensional square box 
with periodic boundary conditions imposed on each side 
and is divided into 256X 256 square meshes with a mesh 
size a=0.3 to calculate the field X(r). The effects of the 
thermal fluctuation are calculated using the standard 
method.le2i The parameters used are the same as those 
used in our previous works; Dx= c= u = 1.0, Lx=0.09, 
P=5.0, L”=l.O, q=O.l, I=l.O, a=l.O, /3=5.0, and 
c= 1.0, respectively. Three choices of the temperature T 
was used, T= 0.0, 0.01, and 0.1. The unit of the tempera- 
ture is taken to be the Boltzmann’s constant, which has the 
same order as the interfacial free energy per unit length 
(correlation length) of the binary mixture. 

Initial state for the computer simulation was chosen as 
a completely mixed state of the binary mixture and surfac- 
tant molecules. As the initial configuration for the field 
X(r), we used uncorrelated Gaussian random numbers 
with a mean Xc and a standard deviation 0.2, Xc taking the 
value 0 for the bicontinuous case and - 0.5 for the micellar 
case. Note that Xc denotes the total composition of the 
system and is conserved during the simulation run. 

The introduction of the implicit method allows us to 
choose a larger time mesh At than the explicit scheme 
without causing any instabilities of the computational 
scheme. However, a selection of too large At changes the 
time scale although the qualitative features of the solution 
are kept unchanged. (A further discussion on this problem 
is given in Appendix B.) As we are interested only in the 
qualitative features of the model in this work, we selected 
rather large At, that is At =0.5, in order to cover a longer 
time regime from the early stage to the very late stage. 
(This selection of At causes a change in the time scale by 
a factor of 3.6.) For the bicontinuous case, ten independent 
runs were performed up to t =2000.0 (4000 iterations) 
and usually five independent runs were performed up to 
t = 25 000.0 (50 000 iterations), respectively. For the mi- 
cellar case, we performed five independent runs up to 
t = 10 000.0 (20 000 iterations). The data shown in the 
following are averaged over these independent runs. The 
time regime covered by the present simulation runs is 7-20 
times longer than that of the previous simulations.4 

In order to show the effects of added surfactant sys- 
tematically, we performed several simulation runs chang- 
ing the number of surfactant molecules, i.e., Ns=O, 2048, 
and 4096, which correspond to the total number density of 
the surfactant ps as ps=O.O, 0.347, and 0.694, respec- 
tively. All the other parameters and initial configurations 
for the field X(r) are set to be unchanged. 
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FIG. 1. Snapshot pictures of the system (l/9 of the total simulation box) 
obtained by the computer simulations for irregular bicontinuous struc- 
tureS (a) T=O.O and (b) T=O.l, and for micellar structures (c) T=O.O 
and (d) T=O.l, respectively. All pictures are taken at t=2000.0 for 
~~30.347. Dotted and white regions correspond to A-rich domains and 
B-rich domains, respectively, and the surfactant molecule is shown by a 
small circle with a short line. 

A. Domain structures 

Figure 1 shows the snapshot pictures of the system 
obtained by the computer simulations for the four typical 
cases, i.e. (a) the irregular bicontinuous case without ther- 
mal fluctuations (X,=0.0 and T=O.O); (b) the irregular 
bicontinuous case with thermal fluctuations (X,=0.0 and 
T=O. 1); (c) the micellar case without thermal fluctua- 
tions (Xc= -0.5 and T=O.O); (d) the micellar case with 
thermal fluctuations (X0= -0.5 and T=O. 1). In all these 
figures, the surfactant number density is taken to be ps 
=0.347. Each snapshot picture is a part of the total system 
(l/9 of the total area) at t=2000.0. Dotted regions and 
white regions correspond to A-rich domains and B-rich 
domains, respectively, and the surfactant molecules are 
shown by small circles each with a short line directed along 
-Li * In cases (a) and (b), the A-domains and the 
B-domains are separated by surfactant layers and are mu- 
tually interconnected in a irregular manner. Such a struc- 
ture is called the irregular bicontinuous structure. In cases 
(c) and (d), the minor phase (A-phase) forms small glob- 
ules covered by surfactant molecules, which are normally 
called micelles. 

In the absence of the thermal fluctuation effects [(a) 
and (c)l, one can confirm that almost all the interfaces 
have already been covered by adsorbed surfactant mole- 
cules, which form regularly-aligned single layers on the 
interfaces. This result shows that the time range covered by 
our previous simulationsM are too short to reach the final 
configuration, especially for the bicontinuous case, because 
surfactant molecules still formed clusters on interfaces in 
the previous simulations (see Fig. 3 in Ref. 4). 
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On the other hand, for the case with thermal fluctua- 
tion effects [(b) and (d)], surfactant molecules no longer 
form regularly-aligned single layers although most of the 
surfactant molecules are adsorbed onto interfaces. In these 
cases, surfactant molecules can easily be exchanged be- 
tween different parts of interfaces due to the activation by 
the thermal fluctuation. Such an activation never occurs in 
the case with T=O and, therefore, all the surfactant mol- 
ecules are trapped onto interfaces and cannot escape from 
the interfacial region. This point is particularly crucial for 
the micellar case, where the number of surfactant mole- 
cules in each micelle cannot change without activation pro- 
cesses and it becomes difficult for the system to escape 
from a metastable configuration. In the bicontinuous case, 
this is pot so serious because interfaces are mutually con- 
nected and the surfactant molecules can diffuse along in- 
terfaces, which allows the density of surfactant molecules 
on interfaces to change easily. This point will later be dis- 
cussed in detail. 

We should note the fact that the temperature T is a 
measure of the importance of the thermal fluctuation in the 
phase separation process and can be greatly different from 
system to system. One might imagine that the case Fig. 
1 (b) can be achieved by heating the system in Fig. 1 (a); 
this is not correct. The quench depth, which is measured 
by the parameter c in Eq. (2.9), is much sensitive to the 
temperature change than the parameter T itself and there- 
fore heating the system greatly changes this parameter c, 
which can totally alter the situation of the phase separation 
process. Therefore, the case with finite T should be re- 
garded as a different system from the case with T=O. For 
example, the case T=O can be regarded as a polymer sys- 
ternI while the case T > 0 corresponds to a system consist- 
ing of molecules with low molecular weights, like critical 
binary fluids.‘* 

B. Dynamics of formation processes of irregular 
bicontinuous structures 

In this section, we consider formation processes of ir- 
regular bicontinuous structures, that is, the case with the 
equal volume fractions of the A and the B components of 
the binary mixture pigs. 1 (a) and 1 (b)]. 

7. The case without thermal fluctuations 
First we discuss the case without thermal fluctuations 

( T=O.O) . In Fig. 2, we show snapshot pictures of the total 
system at t =2 000.0 and 20 000.0 for cases (a) ps=O.O; 
(b) ps=0.347; and (c) ps=0.694, respectively. (As we 
will see below, both t = 2 000.0 and 20 000.0 are in the late 
stage of the phase separation.) Here the system is too large 
to distinguish each surfactant molecule. They are shown by 
black stripes on the A/B-interfaces. 

One can recognize the differences in the domain struc- 
tures between Figs. 2(a)-2(c). In the case of a simple 
binary mixture without surfactant Fig. 2(a)], the domain 
structure is kept self-similar during a long time period, 
which is the origin of the dynamical scaling. However, 
when we add the surfactant [Figs. 2(b) and 2(c)], the 
domain structures seem to be time-dependent. In the later 
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FIG. 2. Snapshot pictures of the total system at f = 2 000.0 and 20 COO.0 
for the bicontinuous cases (T=O.O) with (a) ps=O.O; (b) ps=O.347; 
and (c) ~~30.694, respectively. Surfactant molecules are shown by black 
stripes on the A/B-interfaces. 

time regime, there appear considerable number of small 
micelles in large domains, because the micelles are stabi- 
lized by the surfactant layer surrounding themselves. This 
can lead to a breakdown of the dynamical scaling for the 
system with added surfactant. In the absence of such sur- 
factant layers, the micelles are not long-lived and will dis- 
appear through the evaporation-condensation process. 

In order to discuss the phase separation process quan- 
titatively, we calculated the circularly averaged scattering 
structure function of the field X(r), denoted as S( k, t), 
which is defined as 

277 

s s 
de dr(X(r,t)X(O,t))exp(ik*r) 

0 

d&S&, t), (3.1) 

where 8 is the angle between the wave vector k and an 
arbitrarily chosen base direction, k= I k I, L is the side 
length of the system and S (k, t ) is the noncircularly aver- 
aged scattering function. In Fig. 3, temporal evolutions of 
S( k, t) calculated from the simulation data are shown for 
(a) ps=O.O; (b) ps=0.347; and (c) ~~30.694, respec- 
tively. These scattering functions are calculated during the 
time interval ranging from the early stage to the late stage 
(O.O<t(2000.0) and are averaged over ten independent 
runs. As is expected for coarsening systems, the peak of 
S( k, t) shifts to the smaller wave number side with its 
peak height also increasing. Note that as was discussed in 
our previous papers,‘v6 the growth of S( k, t) is accelerated 
in the early stage by adding surfactant molecules. Also one 
can confirm that the initial peak position shifts to the 
higher wave number side as the concentration of the added 
surfactant is increased.s’6 

In order to see the coarsening process in the late stage 
more clearly, we calculated the characteristic wave num- 
ber. The characteristic wave number (k(t)), the inverse of 
which is a measure of the average domain size, is defined as 
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k 

FIG. 3. Temporal evolutions of the structure function S( k, t) calculated 
from the simulation data (averaged over ten independent runs) are shown 
for bicontinuous cases (T=O.O) with (a) ps=O.O; (b) ~~30.347; and 
(c) ps=0.694, respectively. Ties are, from bottom to top, t=O.O, 
200.0 ,..., 2C00.0, respectively. 

= 
f 

S(k,t)dk Ikj -‘S(k,t)dk, (3.2) 

where we have used the definition of S(k) in Eq. (3.1) in 
the second line. In Fig. 4, we show the temporal change of 
(k( r) ) in double-logarithmic plot. The data are averaged 

A 
CT I ’ ’ 7 *,a**, ’ 1 * **,*,I 1 ’ 
z . p.q = 0.694 V I 0 ps = 0.347 I 
& 
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FIG. 4. Temporal changes of the characteristic wave number (k(f)) for 
various surfactant densities are shown in a double logarithmic scale for 
the bicontinuous case (T=O.O). Data for ps=O.O and 0.347 are averaged 
over five runs, while the data for p,=O.694 are averaged over three runs. 

over five independent runs, except for the case ps=0.694 
where the data are obtained from three independent runs. 

For the case without the surfactant (ps=O.O), there 
are two different time regimes. The first one is the so-called 
linear regime. In this linear regime, the characteristic wave 
number does not change and only the peak height of 
S( k,t) grows. Such a behavior is shown in Fig. 4 as a 
plateau around t < 500.0. After this linear regime, (k( f ) > 

decreases proportionally to t-*‘3 due to the nonlinear ef- 
fects. Such an exponent, - l/3, is well-known for the spin- 
odal decomposition in binary mixtures without the hydro- 
dynamic interaction.22 

For the case with added surfactant (ps=0.347 and 
0.694), one can observe that the added surfactant have 
remarkable effects on the dynamics. In this case, the linear 
regime appears to be too short to be observed in Fig. 4. As 
was discussed in our previous papers, ‘$ the initial peak 
starts to grow at a higher wave number than that for the 
case without surfactant and the growth of the peak height 
of S( k, t) is considerably enhanced [see also Figs. 3(b) 
and 3(c)]. Thus, in the early stage, a sharp domain struc- 
ture is already formed for the case with surfactant but the 
spatial pattern itself is much more fine-grained than the 
case without surfactant. After this initial stage, one can see 
that (k(t) ) decreases as t-1’3 also for the case with sur- 
factant, which means that the domain growth is dominated 
by the interfacial tension as in the usual spinodal decom- 
position. In this regime, the surface tension is of course 
reduced by the adsorbed surfactant molecules but it is not 
so low as to alter the growth exponent. However, in the 
late stage, a slowing down of the phase separation can be 
seen especially for the case with a higher surfactant density 
(ps=0.694) and the growth exponent gradually changes 
to a slower value than l/3. Such a slowing down originates 
from the decrease in the interfacial tension of the 
surfactant-adsorbed interfaces. 

The gradual change from the t-1’3 regime to the final 
slowing-down regime can be understood by an effect of the 
interfacial tension, where the interfacial tension is usually a 
monotonously decreasing function of the surfactant density 
on the interface.23 As the coarsening process proceeds, the 
total length of interfaces decreases and the average surfac- 
tant density on the interfaces increases, which results in the 
lowering of the interfacial tension. Noting the fact that the 
interfacial tension is the main driving force of the domain 
growth in the usual spinodal decomposition processes 
without surfactant,” such a decrease in the interfacial ten- 
sion leads to a slowing down in the coarsening of the do- 
main structure. (An intuitive explanation of this behavior 
is given in Sec. III C.) When the surfactant molecules are 
adsorbed onto interfaces and the interfacial tension be- 
comes small compared with the bending free energy of the 
interface, the bending energy can affect the dynamics of 
interfaces. Such a possibility is also considered in Sec. IV. 

Actually, such a slowing down of the coarsening and 
the branching of the curves in the late stage shown in Fig. 
4 have been observed in a real experiment using a polymer 
blend containing an amphiphilic block copolymer.14 We 
should note that in a real three-dimensional polymer blend, 
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FIG. 5. Scaled structure functions s”(x) are shown for the bicontinuous 
case (T=O.O) with (a) ps=O.O; (b) ps=0.347; and (c) ~~330.694, 
respectively. Data are plotted for t= 1500.0, 1600.0,...,2000.0 (averaged 
over ten runs). 

the coarsening process proceeds not as (k(t) ) - t-“3 but 
as (k(t)) -t-l due to the hydrodynamic interactionI 

Recently Laradji ef al. performed computer simula- 
tions on a similar problem and reported that they did not 
observe the behavior (k(t)) -t-1’3 but a behavior 
(k(t)) - --In t before equilibration.’ Such a logarithmic 
time regime, which is slower than the t-1’3 growth, can be 
identified with the final slowed-down regime in our simu- 
lation results. The transient t- 1’3 regime may be too short 
to be observed in their system. 

The characteristic features of the domain structure can 
well be_ extracted by calculating the scaled scattering func- 
tion, S(X), which is defmed through the following rela- 
tion: 

s(k,r)=(k(t))-ds[k/(k(t))l, (3.3) 
where d is the dimensionality of the system. We show the 
calculated scaling functions in Fig. 5, each being averaged 
over ten independent runs. As the functional form of the 
scaling function is sensitive to the finite size effects of the 
system, we used the data in the time period 
1500.0(t<2000.0, which is at the beginning of the late 
time regime (see Fig. 4). Even for the case with the sur- 
factant, all the data he on a single master curve, which can 
be a sign of the existence of the dynamical scaling. Such a 
dynamical scaling property for the surfactant system was 
also reported by Laradji et aL9 We should note that the 
time interval used to calculate the data in Fig. 5 is not so 
long enough to insist that Fig. 5 shows the dynamical scal- 
ing. As the scaling function is sensitive to the finite size 
effects of the system, the data in the very late stage cannot 
be used to discuss the functional form of the scattering 
function due to the small system size used in our simula- 
tions. 

-0.5 0.0 0.5 
~WIO x 

FIG. 6. Scaled structure functions in Fig. 5 are plotted in double 
logarithmic scales. 

To discuss the details of the functional forms of these 
scaling functions, it is useful to plot these functions on 
double-logarithmic scales. Such plots are shown in Fig. 6. 
One can observe a shoulder at x= 3 ( loglo x=0.477) for 
all cases (a)-(c). Such a shoulder is actually observed in 
real experiments on microemulsions and is regarded as a 
sign of local ordering in the domain structures, for exam- 
ple, local lamellar structures2” We should note here that 
such a shoulder is not unique in the surfactant systems but 
is widely seen in spinodal decomposition phenomena.22126 

We found that in case (c) this shoulder becomes less 
pronounced at the later time while in case (a) the shoulder 
remains. To show this, we present the scaled scattering 
function calculated at t=2000.0 and 3000.0 in Fig. 7. One 
can observe that the scaling function is time dependent 
especially in case (c) and the bump is becoming less and 
less noticeable in the later time, which indicates that the 
dynamical scaling does not hold strictly in this time regime 
for the case with the surfactant. One can understand this 
from Fig. 2, where the morphology of the domain structure 
changes and the distribution of the domain width becomes 
more and more random as time goes on. 

The most important feature of the scaled scattering 
functions in Fig. 6 is that the main peak becomes broader 
when we add the surfactant into the binary mixture. This 
broadening of the main peak shows that the configuration 
of the interfaces becomes more random when the surfac- 
tant is added. When the surfactant molecules are adsorbed 
onto interfaces, the surfactant molecules form almost in- 
compressible fluid layers on the interfaces, which prevent 
the interfaces from shrinking. This is of course the origin of 
the slowing down of the coarsening in the late stage, and 
moreover, such surfactant fluid layers cause undulations of 
the interfaces, which leads to the broadening of the main 
peak.27 
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FIG. 7. scaled structure functions at later times (t=2000.0 and 3oo0.0). 
Data shown are averaged over five runs in (a) and (b) and over three 
runs in (c). 

So far, we have concentrated on the data in the Fourier 
space. In the following we turn our attention to the real 
space analyses. An important quantity to characterize the 
growth of the domain structure, which can be calculated in 
the real space, is the perimeter length ZP( t) which is de- 
fined as the total length of interfaces in the system. We 
show the temporal evolution of ZP( t) in Fig. 8, which 
shows a similar behavior to that of (k(t)) in Fig. 4. Ac- 
tually, the quantity L2/Z,( t) (L is the side length of the 
system) is often used as a characteristic length of the do- 
main structure instead of 27r/( k( t) ), because L2/Z,( t) is 
proportional to the average domain size. In this figure, one 
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FIG. 8. Temporal evolution of the perimeter length lp( t) for bicontinu- 
ous case ( T=O.O) are shown in double logarithmic scales. Data for ps 
=O.O and 0.347 are averaged over five runs, while the data for ps=0.694 
are averaged over three runs. 
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FIG. 9. Normalized curvature distribution functions f(F) in a bgarith- 
mic scale as a function of square of a scaled curvature, F, defined as 
F= c[L*//,( t)]-‘, c being the unnormalized interfacial curvature. Data 
are averaged over the time interval 4 OOO.O<t<12 000.0. Data for ps=O.O 
and 0.347 are averaged over five runs, while the data for ps=0.694 are 
averaged over three runs. 

can see a crossover from Z,(t) -t-1’3 regime to 
Z,(t)-~t-n(O<a<1/3)regimewhichissimilartothatin 
Fig. 4. The slightly different behavior of ZP( t) from that of 
(k(t) ) in Fig. 4 originates from the fact that the perimeter 
length ZJ t) is less sensitive to the finite size effects of the 
system than the characteristic wave number (k( t ) ). From 
Fig. 8, one finds that the perimeter length at the onset of 
the slowing down of the domain growth takes the value 
- 1500.0 for the case ps=0.694 and - 1200.0 for the case 
ps=0.347, respectively. The values of the average separa- 
tion distance between surfactant molecules on the interface 
calculated from these perimeter length values are 0.38 for 
the case ps=0.694 and 0.6 for the case ps=0.347, both of 
which are the same order as the interaction range of the 
surfactant molecule. This indicates that the slowing down 
of the domain growth takes place when the entire interface 
is fully saturated by surfactant molecules, which prevent 
the interface from shrinking due to the repulsive interac- 
tion between adjacent surfactant molecules. 

Another important information on the domain config- 
uration in real space is the interfacial curvature, because 
the curvature is the main driving force for the coarsening. 
Moreover, the bending energy of the interface, which is 
normally written in a quadratic form of the curvature,28 
has an important contribution to the equilibrium interfa- 
cial configuration in microemulsions. It may also be pos- 
sible to measure the interfacial curvature in microemul- 
sions by scattering experiments.30 We calculated the 
curvature distribution using the method described in the 
Appendix C. In Fig. 9, we show the normalized curvature 
distribution function f(z) in a logarithmic scale as a func- 
tion of square of a scaled curvature, C, which is defined as 
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CE c[L’/I,( t)]-‘, c being the unnormalized interfacial 
curvature. Here, the distribution function is normalized as 
J,$‘f(F))dc=l and the data during 4OOO.O<t(12 000.0 

are superposed on the figure. This normalized curvature 
distribution function should be time invariant for the sim- 
ple binary mixture without surfactant Fig. 9 (a)] because 
of the existence of the dynamical scaling and the self- 
similar nature of the domain structure. One can actually 
observe a master curve in case (a). The linear dependence 
in case (a) shows that f(Z) is a Gaussian function of C. 
We also find an almost time invariant functions in the cases 
(b) and (c), the cases with added surfactant. At the 
smaller curvature region, one can also observe a linear 
dependence, which shows the Gaussian distribution, simi- 
lar to the case without surfactant. However, at the larger 
curvature region, there is a plateau, which shows that there 
are considerable short range undulations of interfaces due 
to the adsorbed surfactant effects. The crossover points 
from the linear part at small curvature region to the pla- 
teau at larger curvature region in cases (b) and (c) are at 
about (b) c-O.38 and (c) c-O.34 (both are unscaled 
curvatures), respectively. Therefore the plateau at larger 
curvature region indicates interfacial undulations with a 
radius of curvature R-3.0. In Figs. 2(b) and 2(c), we 
8nd many small micelles and small wavelength undula- 
tions of the interfaces whose characteristic lengths are the 
same order as the radius of curvature R-3.0 obtained 
above. Such micelles and small undulations are not so fre- 
quent for the case without the surfactant [Fig. 2(a)]. This 
result corresponds to the broadening of the main peak of 
the scattering function shown in Fig. 6(c). We evaluated 
the slope of the linear part at small curvature region and 
obtained the values (a) -0.28*0.01; (b) -0.26=+=0.01; 
and (c) -0.26*0.01. Therefore, the slopes are the same 
for these three cases. This means that the large scale do- 
main structure is essentially insensitive to the existence of 
the added surfactant and only small scale structure is 
changed. This may be due to the fact that our simulation 
runs have not yet reached the linal stage where the inter- 
facial tension vanishes due to the adsorbed surfactant and 
the domain structure is frozen (see Figs. 4 and 8). 

c(s) is replaced by the mean curvature, as long as there is 
no topological changes in the domain structure. [In the 
presence of topological changes, one has to add the Gauss- 
ian curvature term to Eq. (3.4) .] In the equilibrium state, 
one finds that the Helfrich free energy Eq. (3.4) leads to 
the Gaussian distribution of the curvature as a result of the 
equipartition relation. On the other hand in the present 
situation, the system is far from equilibrium and one can- 
not assume the equipartition relation. However, the Gauss- 
ian form of the curvature distribution may suggest a pos- 
sible relation between the equilibrium statistics of the 
interfacial configuration and that of a growing domain pat- 
tern. For example, the Gaussian distribution of the curva- 
ture may indicate that the small wavelength undulations of 
interfaces are already equilibrated while the large scale do- 
main structure is still growing. 

The result shown in Figs. 9(b) and 9(c) indicates that 
there are two different length scales in the system for the 
case with the surfactant, one is the domain size and the 
other is the short wavelength undulations of interfaces. As 
is easily understood, the latter length scale is rather time- 
independent in the late stage and cannot be scaled in the 
same manner as the domain size. This suggests that the 
dynamical scaling does not hold until the domain size be- 
comes much larger than the persistence length. Another 
possibility for the scaling nature to hold is the case where 
the growth of the domain stops at a certain time. In this 
case, we will have a frozen domain structure rather than a 
growing self-similar domain structure. 

In microemulsions, the persistence length is of the 
same order as the domain size due to the very low inter- 
facial tension,3 ’ and we expect that one cannot get a dy- 
namical scaling in the formation processes of microemul- 
sions. In this sense, we cannot interpret the data shown in 
Fig. 5 with the dynamical scaling in strict manner. Actu- 
ally, in the presence of the added surfactant, we observed 
that the scattering function changes its functional form as 
the coarsening proceeds (see Figs. 6 and 7). 

2. The case with thermal fluctuations 
At present, we do not know the origin of the Gaussian 

form of the curvature distribution because the present sys- 
tem is far from equilibrium. If the system is in equilibrium, 
the Gaussian distribution can be expected by considering 
the two-dimensional analog of the interfacial free energy 
functional proposed by Helfrich;28 

We also performed a series of simulation runs on the 
irregular bicontinuous structures with thermal fluctuation 
effects (T=O. 1). In the late stage of the phase separation 
process, the results are almost the same as those for the 
case without thermal fluctuations presented in the previous 
subsection. Therefore, we will give only a summary of the 
results for this case. 

(3.4) 

where s is the natural coordinate, i.e., the contour length 
along the interface, ~7 is the interfacial tension, c(s) is the 
curvature at point s on the interface, and K is the bending 
modulus of the interface. [For a more general case with an 
asymmetry between the A-species and the B-species, e.g., 
the case of a surfactant with head to tail unbalance, c(s) in 
Eq. (3.4) should be replaced by c(s) - cc, where c,, is the 
spontaneous curvature.] The expression Eq. (3.4) is also 
valid for three-dimensional case, where the line curvature 

In Fig. 10, we show the temporal evolution of the pe- 
rimeter length ZP( t) for different surfactant densities. The 
behavior is in almost quantitatively agreement with that of 
the case T=O.O (Fig. 8). We also calculated the scaled 
scattering function for these cases, and the results are 
shown in Fig. 11 in double-logarithmic plots. The data 
presented are calculated during the same time interval as 
that in Fig. 6. Again the overall properties of the scaled 
scattering function are similar to those in Fig. 6. 

From these results, we concluded that the thermal 
fluctuation does not play an important role in the late 
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FIG. 10. Same as Fig. 8, but for the case with thermal noise ( T=O.l). 
Data for ps=O.O and 0.347 are averaged over five runs, while the data for 
ps=0.694 arc averaged over two runs. 

stage dynamics of the phase separat ion process of the 
bicontinuous case. 
C. Intuitive explanation for the bicontinuous case 

In this section we give simple explanation of the be- 
havior of the characteristic length Z(t) (or the character- 
istic wave number  (k(t)) which is related to Z(t) by the 
relation Z(t) -2~/( k( t)) > for the formation processes of 
irregular bicontinuous structures based on  a  simple dimen- 
sional analysis. The  argument does not depend on  the di- 
mensionality of the system. 

Kawakatsu et a/.: Binary mixtures with surfactants 8209 

Following Kawasaki and  Ohta,z4 the velocity of the 
interface normal to itself, v(a), at the point a on the inter- 
face is given by the curvature of the interfaces through the 
following relation: 

(2X,)2 s da’G[r(a>,r(a’>]v(a’> 

=LQ(a)c,(a), (3.5) 

where X, is the equil ibrium value of the filed X(r) def ined 
using the coefficients in Eq. (2.9) as X:=c/u, a is the 
coordinate specifying the point on  the interface [for a  one-  
dimensional interface embedded in a  two-dimensional 
space, the coordinate a  reduces to the natural coordinate s 
used in Eq. (3.4)], r(a) is the position of the point speci- 
fied by the coordinate a, 2(a) and  c,(a) are the interfacial 
tension and  the mean  curvature of the interface at a, re- 
spectively, and  G(r,r’) is the Green’s function of the dif- 
fusion field which satisfies 

-V2G(r,r’) =6(r-r’). (3.6) 

Assuming that there is only one  characteristic length scale 
in the system, i.e., I(t), we apply a  simple dimensional 
consideration to find v(a) -dZ( t)/dt and c,(a) - l/1( t), 
respectively. Substituting these relations into Eq. (3.5), we 
obtain 

LX 

g Z(t)-(,, (xt))z(t)-2, (3.7) 
e  

where (B ( t) ) is the interfacial tension averaged over the 
interfaces. 

It is well-known that the interfacial tension of 
surfactant-adsorbed interfaces is a  function of the surfac- 
tant density on  the interface.23’32 Let os and  Z(as) be  the 
surface density of surfactant mo lecules on  the interface and  
the corresponding interfacial tension. As long as the sur- 
factant density is low, the interfacial tension is a  linear 
function of us, 

W~s)=Wl--y~sl, (3.8) 

where Bc is the bare interfacial tension of the interface onto 
which no  surfactant mo lecules are adsorbed and y is some 
constant which should be  determined from the m icroscopic 
details of the system.23132 The  same behavior as Eq. (3.8) 
can also be  obtained from the hybrid mode l.5 

On  the other hand, the decrease in the interfacial ten- 
sion stops by saturation when the surfactant density ex- 
ceeds some critical value, which corresponds to the so- 
called critical m icelle concentration. In m icroemulsions, 
such a  saturated value of the inter-facial tension is almost 
vanishing, which is the origin of the thermodynamic sta- 
bility of m icroemulsions. Noting these two lim iting be- 
haviors, we make the following ansatz for the interfacial 
tension: 

l%,o x 
FIG. 11. Scaled scattering functions for the bicontinuous cases with ther- 
mal noise (T=O.l). (a) ps=O.O, (b) p9=0.347; and (c) ps=O.694, 
respectively. Data are plotted for l== 1500.0, 1600.0,...,2ooO.0 (averaged 
aver ten runs). 

E(as) =X0 exp( -a,/&), (3.9) 

where 0”s is the saturation density of the surfactant mo le- 
‘cules. The  exponential functional form of the above ansatz 
is nothing but a  one  possible interpolation between the two 
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limits os4& and ai4 us. The assumed functional form at 
large o’s can affect the final result as is discussed in the 
following. 

(b) 

Using the ansatz, Eq. (3.9), we can estimate (Z(t)) in 
Eq. (3.7). If almost all the surfactant molecules are ad- 
sorbed onto interfaces, the average surfactant density on 
interfaces is expressed as (as) - I ( t ) . Using this estimate 
and Eq. (3.9), we obtain 

(H(f))-~Oexp[-ZI(t)/~“l, (3.10) 
where lc is the value of I(t) where the saturation of sur- 
factant molecules on the interfaces occurs. Substituting Fq. 
(3.10) into Eq. (3.7) leads to a closed equation for I(t), 
which can be solved easily to give the following results: 

l(r)-P3 [Z(t)4101 

--In c [rod(t)]. (3.11) 
This result shows that the phase separation process pro- 
ceeds in the same manner as the usual spinodal decompo- 
sition as long as the surfactant density on the interfaces are 
not so large. However, when the surfactant molecules be- 
come saturated on the interfaces, the growth exponent 
changes gradually from l/3 to 0, the latter being the as- 
ymptotic behavior of the logarithmic function, and the do- 
main structure is frozen or equilibrated asymptotically. 
Therefore, we conclude that the logarithmic behavior ob- 
served by Laradji et aL9 corresponds to a transition from 
the t1’3 regime to the flnal frozen (or equilibrium) regime. 
Also note that the logarithmic behavior in Eq. (3.11) orig- 
inates from the ansatz, Eq. (3.9), where the functional 
form of the interfacial tension is assumed to be an expo- 
nential one. The logarithmic behavior in Eq. (3.11) has 
nothing to do with any activation processes while the usual 
logarithmic behavior in phase separation processes in the 
presence of moving impurities originates from a kind of 
activation process.33 

FIG. 12. Snapshot pictures of the total system at t=2 000.0 and 10 OMl.0 
for the mice&r casts with ps=0.347 and with (a) T=O.O; (b) T=O.Ol; 
and (c) T=O. 1, respectively. 

in our previous works,5’6’8 the added surfactant molecules 
play the role of nuclei and initiate the phase separation 
process when the molecular size is at least comparable to 
the correlation length of the phase separating binary mix- 
ture. In the following, we give results only for the cases 
with ps=0.347, where all data are averaged over five in- 
dependent runs. 

D. Formation of micellar structures 

In the previous subsections, we studied the bicontinu- 
ous case, where effects of the thermal fluctuation on the 
phase separation process were minor. Here we show results 
of another important case, i.e., the micellar formation pro- 
cesses. We will show importance of effects of the thermal 
fluctuation in such micellar formation processes. 

We performed computer simulation runs for the case 
with the composition of the binary mixture A:B= 1~3 (i.e., 
X,=--OS), for temperatures T=O.O, 0.01, and 0.1, re- 
spectively. In these simulations, we can observe micellar 
formation processes whenever surfactant molecules are 
added. However, within the same time regime, we could 
not observe any appreciable phase separations in the case 
without surfactant molecules. This fact shows that the uni- 
formly mixed state of the binary mixture at this composi- 
tion is almost metastable when there is no surfactant 
added. (Using the mean-field approximation, one can show 
that the parameter point is very close to the spinodal line, 
which is a boundary between the metastable region and the 
unstable region in the phase diagram.) As was mentioned 

Snapshot pictures of the system in the late stage of the 
phase separation process are shown in Fig. 12 for cases (a) 
T=O.O; (b) T=O.Ol; and (c) T=O.l, respectively, at 
t=2 000.0 and 10 000.0. As was reported previously,4 lo- 
cal triangular-lattice structures of circular micelles with 
almost same sizes are formed in the case without thermal 
fluctuation at t=2000.0 [Fig. 12(a)]. However, such 
triangular-lattice structures are easily destroyed by thermal 
fluctuation [Fig. 12 (c)l. Moreover one can observe that the 
shape and the size of the micelles are greatly altered by 
thermal fluctuation. In order to show this more clearly, we 
calculated the distribution functions of the micellar radius, 
which are scaled by the average micellar radius and the 
results are shown in Fig. 13. The data are averaged over 
the time interval 5 000.0~ t<lO 000.0 and also over five 
independent runs. Figure 13 shows that the micelles are 
more or less monodispersed in the absence of the thermal 
fluctuation [Fig. 13 (a)] while they are rather polydispersed 
under the thermal fluctuation [Figs. 13(b) and 13(c)]. 
Such a difference originates from the activation due to 
thermal fluctuation. As the added surfactant shifts the crit- 
ical temperature upwards, the system is brought into the 
spinodal region, because the phase point of the binary mix- 
ture was originally close to the spinodal line. Thus the 
phase separation process is initiated similarly to the spin- 
odal decomposition (bicontinuous case) mentioned in the 
previous subsections, leading to an emergence of an almost 
spatially periodic composition fluctuations, which later 
grow to be the micelles. Therefore, the initial micellar size 
distribution is almost monodisperse. However, in the pres- 
ence of thermal fluctuation, the micellar size distribution 
gradually becomes polydisperse due to exchanges of sur- 
factant molecules between micelles. Note that the activa- 
tion process is crucial for the domain growth in this mi- 
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FIG. 13. Scaled and normalized mice&u radius distribution functions. 
The horizontal axis is scaled by the average micellar radius. Data shown 
are averaged over the time interval 5 MlO.O< t< 10 000.0 and also averaged 
over five runs. The solid curve is the theoretical prediction for a two- 
dimensional Cktwald ripening without surfactant by Rogers and Desai 
(Ref. 34). 

cellar case, because the surfactant molecules can transfer 
from one micelle to another only by such activation pro- 
CesS~. 

In Fig. 13, we also show the theoretical prediction of 
the droplet size distribution for the two-dimensional Ost- 
wald ripening, i.e., the case without surfactant, given by 
Rogers and Desai.34 Obviously the micellar size distribu- 
tion of our surfactant system is broader and more symmet- 
ric than that of the Ostwald ripening. A possible reason for 
the broad and symmetric distribution is the effect of the 
linite volume fraction of the micelles.35’36 Another possibil- 
ity is the stabilizing effect of the surfactant layer coating 
the micelles, which allows smaller micelles to survive for a 
long time and shifts the peak of the distribution function to 
the smaller side. 

In Figs. 14 and 15, we show temporal evolutions of the 
circularly averaged structure function S( k,t) and the 
characteristic wave number (k( t) ), defined by Eqs. (3.1) 
and (3.2), respectively. The phase separation process 
seems to be almost frozen in the late stage in all cases. 
However, the resulting mean micellar radius is consider- 
ably larger in the case with a higher temperature ( T=O. 1) 
than that in the cases with lower temperatures (T=O.O 
and 0.01). This is due to the activation processes men- 
tioned above. It should be noted that the usual growth 
exponent - l/3 characterizing the Ostwald ripening pro- 
Cessna cannot be observed in both cases due to the satura- 
tion of the surfactant molecules on the interfaces, which 
reduces the interfacial tension considerably. 

From Fig. 15, one can find that the cases with T=O.O 
and 0.01 behave in almost the same manner, which is dif- 
ferent from that for the case with T=O.l. We can attribute 
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FIG. 14. Temporal evolution of the circularly averaged scattering func- 
tions for the micellar case with (a) T=O.O; (b) T=O.Ol; and (c) T=O.l, 
respectively. Times are from bottom to top, t=O.O, 500.0 ,..., 5ooO.0, re- 
spectively (averaged over five runs). 

this property to the fact that the escape events of surfactant 
molecules outside the micelles due to the thermal activa- 
tion are essentially absent in the case T=O.Ol [Fig. 12(b)], 
because the thermal noise level is much smaller than that 
of the attractive force between a surfactant molecule and 
an interface, which is of the order of unity. 

Recently, Brown and Chakrabarti reported a sponta- 
neous pinning of domain growth in off-critical binary poly- 
mer blends by computer simulation.38 In the case of poly- 
mer blends, the thermal activation effect is largely 
suppressed due to the small entropic contribution from the 
translational degrees of freedom of polymer chains to the 
free energy. Thus the growth of droplets is sensitive to the 
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FIG. 15. Temporal evolution of the characteristic wave number (k(t)) 
for the micellar cases (averaged over five runs). 
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thermal noise. In the absence of thermal noise, they found 
a freezing of the droplet growth, while the droplet growth 
still continues in the presence of thermal noise. Such a 
situation is very similar to the present situation of’the mi- 
cellar case, which cannot be observed in the bicontinuous 
domain formation processes. 

IV. VARIOUS CHARACTERISTIC TIME SCALES 
ASSOCIATED WITH THE COARSENING PROCESS 

In this section, we evaluate different time scales which 
exist in the phase separation system under consideration. 
Relevant time scales which should be discussed are ( 1) 
characteristic time scale of the phase separation of the bi- 
nary mixture without surfactant to; (2) time scale of the 
adsorption of surfactant molecules onto interfaces t,; (3) 
crossover time from the regime dominated by the diffusion 
process to that dominated by the hydrodynamic interac- 
tion t, ; (4) the time when interfaces are saturated by sur- 
factant molecules t,; (5) characteristic times of the inter- 
facial motion due to the interfacial rigidity t,. As a 
particular example, we consider the bicontinuous domain 
formation process in a binary liquid mixture containing 
amphiphilic block copolymer, which is discussed in detail 
in Appendix A. We also evaluate the corresponding time 
scales in the real experiment.14 
A. Characteristic time of the phase separation 

The characteristic time scale of the phase separation of 
the binary mixture, to, is given by the growth rate of the 
scattering function S( k, t) in the initial linear regime as39 

*0 -‘=wkJ=k20Dapp, (4.1) 
where U(k) is the growth rate of S( k, t) in the linear 
regime defined by the relation S( k, t) -exp[2,l( k) t], k, is 
the initial peak position of S( k, t), and DaPP is the mutual 
diffusion coefficient of the binary mixture. Using the pa- 
rameter of the hybrid model, to can be rewritten as 

2 T x 
-, L- to =- 20 - (4.2) 

B. Time scale of surfactant adsorption 

The time scale of the surfactant adsorption onto inter- 
faces can be identified with the time scale for a surfactant 
molecule to diffuse over the domain size in the initial stage 
kg t . If the polymerization index of the surfactant molecule 
(block copolymer chain) is Zs times as that of the con- 
stituent molecule of the binary mixture, the self-diffusion 
coefficient of the surfactant molecule is given by Ds= DC/ 
Z, using the Rouse description.3 Here, D, is the self- 
diffusion coefficient of the binary mixture, which is related 
to the mutual diffusion coefficient Dapp by DC= Dapdc,39 
where E is the quench depth measured by the parameter c 
in Eq. (2.9). (A precise argument gives the relation 
e=4c/3u.) Then using Eq. (4.1), the characteristic ad- 
sorption time t, is given by 

t;‘=~Ds=~ZStO. (4.3) 

Therefore, t, is of the same order as to when EZ,- 1 holds. 
On the other hand, if EZ+ 1, tA can be much larger than 
to, and the surfactant molecules are adsorbed onto inter- 
faces only after sharp interfaces are formed. 

C. Crossover from the diffusion regime to the 
hydrodynamic regime 

Once well-defined interfaces are formed, the interfacial 
motion is driven either by the diffusion process or by the 
hydrodynamic interaction as long as the interfaces are not 
saturated by the surfactant molecules. As was discussed in 
our previous paper,4 a crossover from the diffusion- 
dominated regime to the hydrodynamics-dominated re- 
gime takes place at the time t, given by 

Z( tc) - ( Lxq)“2/AX, (4.4) 
where Z(t) is the average domain size at time t, 7 is the 
viscosity of the binary mixture, and AX is the difference 
between the two equilibrium values of the filed X(r), 
which is given by AX=2( c/u)“~. 

Before the crossover, the coarsening process is domi- 
nated by the diffusion process and therefore using Eq. 
(3.7) we obtain an explicit expression for Z(t) as 

(diffusion dominated regime). 

(4.5) 
Combining Eqs. (4.4) and 

t =6ko(Lxv)3’2 
’ Da,,(AX)3 ’ 

(4.5), t, is given by 

(4.6) 

As was shown previously,4 this crossover time is valid even 
if the driving force for the interface is not the interfacial 
tension but the interfacial rigidity. 

After this crossover time t,, the coarsening process is 
dominated by the hydrodynamic interaction. Using Eqs. 
(3.24) and (3.30) of Ref. 4 and neglecting the contribution 
from the bending rigidity, one finds that Z(t) is given by 

Z ( t ) -z t (hydrodynamics dominated regime). 

(4.7) 
where I: is the interfacial tension. Equation (4.7) is valid 
when the interfacial tension is large compared with the 
bending energy of the interface. 

Here, we note that the interfacial motion driven by the 
diffusion can be observed only in very viscous fluids like 
polymer melts with large molecular weights. For critical 
binary fluids with low molecular weights, a Brownian co- 
agulation process is dominant instead of the diffusion con- 
trolled inter-facial motion,40 both mechanisms leading to 
the same t1’3 domain growth with a coefficient which is the 
same order as that of Eq. (4.5). 

D. Time scale of surfactant saturation 

The time scale of the surfactant saturation on the in- 
terface t, is given by 
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A(f,)=N&, (4.8) 

where A(t) is the total interfacial area at time t, Ns is the 
total number of surfactant molecules, and As is the inter- 
facial area occupied by a surfactant molecule at the close 
packing density of the surfactant molecules on the inter- 
face. The total interfacial area A ( t) is given by the average 
domain size I(t) as A(t) - V/Z(t), where V is the system 
volume. Using this relation and the definition ps= Ns/V, 
one finds 

,(t,) = (ps&)-‘, (4.9) 

where I( t) is given either by Eq. (4.5) (diffusion domi- 
nated regime) or by Eq. (4.7) (hydrodynamics dominated 
regime). 

In the case with a block copolymer as a surfactant, the 
molecular cross section of a surfactant molecule As is de- 
termined by considering a block copolymer layer adsorbed 
onto an interface. At the close packing density, the sub- 
chains of the block copolymer form a polymer brush ad- 
sorbed onto the interface. Denoting the height of such a 
brush as hs, A, is given by A,=$s/(~shs), where $s is 
the surfactant volume fraction. Substituting this relation 
into Eq. (4.9) leads 

(4.10) 

If t, < t,, the domain growth is dominated by the dif- 
fusion process and the 1.h.s. of Eq. (4.10) should be. re- 
placed by Eq. (4.5). Therefore, we obtain 

6ko hs 3 t,-- - D ( 1 
(t,<t,). 

aPP 4s 
(4.11) 

Otherwise, the domain growth is already dominated by the 
hydrodynamic interaction and we obtain using Eqs. (4.7) 
and (4.10) 

vhs 
fs-z& (t,<t,). (4.12) 

E. Characteristic relaxation time due to the 
interfacial rigidity 

Once almost all the interfaces are saturated by surfac- 
tant molecules, the interfacial motion is dominated by the 
bending rigidity of the interface. Using Eqs. (3.24) and 
(3.30) of Ref. 4 and neglecting the contribution from the 
interfacial tension, one obtains the interfacial velocity u as 
follows: 

LxK 

v-m1 
-4 (diffusion dominated) 

-i I -’ (hydrodynamics dominated), (4.13) 

where K is the bending modulus. Thus the characteristic 
time scale of the motion due to the bending rigidity, t,, is 
given by 
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FIG. 16. A schematic representation of the various characteristic time 
scales both for the simulation and for the experiment is shown. 

-’ (diffusion dominated) 

-% IV3 (hydrodynamics dominated). (4.14) 

F. Actual time scales in real experiment and 
computer simulation 

Now, we evaluate the characteristic time scales in the 
real experiment done by Hashimoto and Izumitani on 
polymer blends containing block copolymers.14 In their ex- 
periment, they obtained k,- 1.0X lo-= (nm-‘), Dapp- 10 
(nm2/s), E-2.5, 2, - 1.0, and #s=0.03a.06, respec- 
tively. As the actual value of hs is not known to us, we 
assume it as the gyration radius of the block copolymer 
chain which is estimated as hs- lo2 (nm). Using these 
parameters, we estimate the characteristic times as 
to- to- lo3 (s) and t ,-lo7 (s). As we do not have the 
data of v and Z, we used ECq. (4.11) to estimate I,, al- 
though the actual domain growth is dominated by the hy- 
drodynamic interaction in the late stage. They performed 
the experiment up to t/to- 102, which is far below the 
estimated value of t,. Therefore, we expect that the inter- 
faces are not yet saturated by surfactant molecules in this 
case. Such an prediction is justified by the experimental 
observation that the domains still grow although a slowing 
down of the coarsening due to the surfactant adsorption is 
observed. 

The situation is almost the same for our simulation, 
where the saturation time t, is much larger than the time 
scales of the phase separation and the adsorption, i.e., 
to- t,4 t, . One difference is that the domain growth in our 
simulation is dominated by the diffusion process, while the 
domain growth in the experiment by Hashimoto and Izu- 
mitani is dominated by the hydrodynamic interaction. A 
schematic representation of these characteristic time scales 
both for the simulation and for the experiment is shown in 
Fig. 16. 

V. CONCLUSIONS AND DISCUSSIONS 

In this paper, we presented results of extensive com- 
puter simulations on the phase separation process in the 
presence of surfactant molecules using the hybrid model. 
Behavior of the scattering functions and characteristic 
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wave number (or characteristic length) observed in these 
simulations are corresponding to the experimental results 
and also to other simulation results. We found that there is 
a crossover in the temporal evolution of the characteristic 
length of the pattern, I( t), from the usual I(t) - t1’3 be- 
havior, which characterizes the spinodal decomposition, to 
slower growth. Such a crossover occurs at the point where 
the surfactant molecules are saturated on the interfaces. 
We also gave an intuitive explanation of these results based 
on a dimensional analysis, which can successfully repro- 
duce the observed behavior. Curvature distribution fnnc- 
tions are also calculated from the simulation data, which 
show that the curvature distribution function can well be 
described by the Gaussian form both for the cases with and 
without surfactant. 

fully continuum approaches where the surfactant is also 
described by a continuous density field9”o’41 with some ad- 
ditional supplementary fields, e.g., the director vector field 
of the surfactant molecules.10V41 However, in such ap- 
proaches, one has to adopt phenomenological assumptions 
on the static/dynamic features of such supplementary 
fields. Our hybrid approach will also be used to provide 
microscopic explanations of such phenomenological as- 
sumptions. 

We also showed a possible understanding of our sim- 
ulations on a microscopic ground and relationship between 
the parameters of the hybrid model and the parameters in 
these real systems (Appendix A). Experiments using poly- 
mer blends and block copolymers will be a good test for 
our theory and computer simulations. 

Another important feature of the surfactant system 
which we did not discuss in this article is the effect of the 
spontaneous curvature.” If the surfactant molecule is not 
symmetric with respect to its two chemically distinct parts, 
such as head and tail of a soap molecule, the surfactant- 
adsorbed interface in general has a spontaneous curvature. 
Due to this spontaneous curvature, a transition from a 
bicontinuous structure to a micellar structure is expected. 
Such an effect can easily be incorporated into our hybrid 
model and simulation taking the spontaneous curvature 
into account is now under way.12 

We also believe that the hybrid approach can be a 
suitable method to describe systems like complex fluids 
where large scale phenomena and small scale phenomena 
coexist. For example, one can consider the dynamics of a 
protein molecule in water, where the protein molecule is 
folded like a coil with some bridges made by sulfur atoms. 
There are two different length scales in this system; one is 
the gyration radius of the protein molecule, and the other 
is the length scale of the sulfur bridges and water mole- 
cules. Such a separation of length scales may be a target of 
the hybrid description. For example, one can treat the sul- 
fur bridge and the water molecules around the bridge as a 
microscopic object while the other parts of the protein mol- 
ecule and the water distant from the bridge are treated as 
continuum background. Such extension is one of the future 
directions of our hybrid model. 
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APPENDIX A 

Finally, we briefly discuss possible applications of the 
hybrid model to other problems than that discussed in the 
present paper. The essential point of the hybrid model is 
that the model is constructed on a mesoscopic level, where 
the system is partially coarse grained retaining some 
microscopic/mesoscopic degrees of freedom. For example, 
in the present problem of phase separation dynamics, the 
size and the shape of the surfactant molecule are taken into 
account. Such a molecular feature can play an important 
role in the macroscopic phase separation dynamics. One 
example is the nucleus effect of the surfactant molecule 
which initiates the phase separation in a metastable binary 
mixture and also accelerates the early stage phase separa- 
tion in an unstable mixture.4’6 Another example is the 
spontaneous curvature of the surfactant-adsorbed inter- 
faces when the surfactant molecule has an asymmetric mo- 
lecular shape.‘= These problems may also be treated by 

In this Appendix, we give a possible understanding of 
the hybrid model on a microscopic ground using a binary 
mixture and an amphiphilic block copolymer. (A similar 
problem is also discussed by Matsen and Schick>=) The 
discussion given below is also valid for a homopolymer 
mixture containing block copolymer chains, whose chain 
length is much larger than those of the homopolymer 
chains. 

First, we consider the three-dimensional system. (An 
analogous argument for a two-dimensional system is given 
later.) We consider an A/B binary solvent mixture con- 
taining an A-B block copolymer which is composed of the 
same monomers as those of the A/B-mixture. For simplic- 
ity, we assume that the A-solvent and the B-solvent have 
the same size and also assume that the polymerization in- 
dex of the block copolymer chain, N, is so large that de 
Gennes’s scaling argument can be applicable to the chain 
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conformation.3 (When we consider the homopolymer/ 
block copolymer system, the word “solvent molecule” 
should be read as “homopolymer molecule” and the block 
copolymer chain should be regarded as a chain of blobs, 
whose radius of gyration is the same as that of the ho- 
mopolymer chain. Then the argument is completely paral- 
lel. ) 

Let the linear dimension of the monomer (A/B sol- 
vent) be b, then the system can be described by a lattice 
Ising model with a lattice constant b with nearest neighbor 
interactions. In such a description, each A/B solvent mol- 
ecule corresponds to one lattice site and a block copolymer 
chain is described by a linear chain of NA A-monomers 
and N, B-monomers (N, + NB= N). We denote the in- 
teraction energies of A -A, B- B, and A - B nearest 
neighbor pairs as kBTxAA, kBTxBB, and kBTxAB, respec- 
tively. 

Using the local monomer number densities of A and B 
monomers of the solvent at the position r, denoted as 
PA(r) and pe(r), the order parameter X(r) is defined as 

X(r) =i [p,&)-pdr)l, (AlI 

where po=pA+pB( = 1/b3) is the total monomer number 
density. We neglected the volume fraction of the block 
copolymer. A mean field approximation for the binary sol- 
vent mixture gives the following free energy functionah 

Hxx=kBT I dr[pA(r)ln pA(r) +pB(r)ln pB(r)l 

zksT 
+- 

2Po s ~rCX,4,4bAr)12 

+2xABPA(r)PB(r)+xBB[PB(r)12)+... , 
(A21 

where z is the number of nearest neighbor sites and the 
ellipsis stands for the contribution from the spatial inho- 
mogeneity of the composition (so-called gradient term). 
Expressing pA and PB in terms of p. and X(r) and ex- 
panding the equation with respect to X(r) ( 1 X(r) 1 (l), 
we obtain 

PokJ -- Hxx- 8 Bx(VX)2-~xL+~* , 1 (A3) 

where ES - 4-z(xAA+xBB-2xAB) is the temperature 
distance from the mean field critical point. In Eq. (A3), we 
added the gradient c?ntribution (the first term) with an 
empirical coefficient D, whose explicit expression can be 
given by the density-density correlation function.6 

Next, we consider the block copolymer chain. As the 
block copolymer chain is so long, the A( B)-subchain of 
the block copolymer can be regarded as a cloud of A(B) 
monomers distributed symmetrically around the center of 
the subchain. The density distribution of such a cloud is 
given by the de Gennes theory for a swollen chain of po- 
lymerization index Z solubilized in a good solvent, and is 
denoted as $z( r) with a normalization condition 
J$z(r)dr=Z.3 Th us, the monomer density distribution 
of the ith block copolymer is given by 

Q(r) =4NA[ jr-Q\ I, 

$f;“(r)=qN [jr-#\] E , 

(A4) 

where ry’ and r$’ are the centers of the A-subchain and 
the B-subchain of the ith block copolymer. Then the in- 
teraction energy between the binary solvent mixture and 
the ith block copolymer is given by 

H$;= zkBT - 4 s drX(r) [x&,4(r) -x&B(r) 1 

-I- const, (A51 

where we introduced XASXAA-XAB and XBEJ’BB-XAB. 
The constant in Eq. (A5) can be incorporated into the 
chemical potential of the block copolymer and therefore 
can be dropped. Now the block copolymer is expressed as 
a pair of interaction centers, r$’ and rg’. Adopting the 
same dipole expansion for the block copolymer as was 
done in deriving the original version of the hybrid model4 
leads to a similar expressions for Hxs as before 

(A61 

where Ii is the distance between ry’ and rg’, and li is the 
director vector of the ith block copolymer chain defined as 
the unit vector along ry’ -I$‘. T’he dipole expansion used 
in deriving Eq. (A6) is valid when the field X(r) does not 
change appreciably over the distance Zi, that is Zi I VX ( 4 1. 
In the simulations of the hybrid model, this condition is 

sometimes violated, especially in the late stage, because we 
assumed that the size of the surfactant molecule (block 
copolymer chain) is the same order as the correlation 
length of the binary mixture, the latter corresponding to 
the inter-facial thickness. Thus, we would have to take not 
only the dipole but also the multipoles into account to get 
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a quantitative results. However, at the present stage, we are 
interested only in the qualitative features of the surfactant 
system, which are well be reproduced by the dipole approx- 
imation. 

where we denoted V-(r) = V. exp[- (r/c)‘]. Here, we 
note that the value of IO is the same as the correlation 
length and can be determined from the peak position of the 
scattering function in the linear regime. 

Now we adopt the following approximated form for 
fClz(r):43 

*Arl=~exp[ -f ($-)‘I, (A71 

where j,= bZ3’5 is the so-called Flory radius for a chain 
in an athermal solvent. Then the parameter li can be ex- 
pressed as Zi= b( N/2) 3’5 The expression for H,, can also . 
be obtained in a similar manner, but we do not show it here 
explicitly. 

Next we consider the kinetic coefficients. The kinetic 
coefficients Lx, LP, and L” can be described by the solvent 
diffusion coefficient D, . The kinetic coefficient for the field 
X(r) appears in the TDGL equation 

For a two-dimensional version of the above argument, 
one can consider a binary homopolymer mixture contain- 
ing a large block copolymer in a Helle-Shaw cell, i.e., a 
thin polymer layer between two glass plates placed parallel 
to each other.44 When such a homopolymer/block copol- 
ymer mixture is filled within a pair of parallel glass plates 
with a separation distance d, which is the same order as the 
gyration radius of the homopolymer chain, the system can 
be regarded as essentially two-dimensional. The argument 
is almost similar to that for the three-dimensional system 
given above. The only difference is that one should use the 
radius of the homopolymer chain as the parameter b (lat- 
tice spacing) and regard the block copolymer chain as a 
linear chain of blobs of radius b. 

(A81 

Substituting Rq. (A3) into Eq. (A8) and linearizing with 
respect to X, we obtain a diffusion equation for X in the 
long wave length limit. If we consider the high temperature 
region where the diEerence between A and B component 
disappears, i.e., E= -4 (xAA=xBB=xAB), the diffusion 
coefficient of such a diffusion equation can be identified 
with the self-diffusion coefficient, D,, and we find Lx 
= D,/p&,T. On the other hand, using the Rouse descrip- 
tion for the block copolymer chain,43.0ne finds that the 
kinetic coefficient for the translational motion of the block 
copolymer chain, LP, is given by LP= DI/NkBT. The ki- 
netic coefficient for the rotation of the block copolymer 
chain, Ls, is obtained by identifying the block copolymer 
chain as a rod of length Zi, and we obtain Ls= 12bD1/ 
Z:k,T.43 The level of the thermal noises acting on the field 
X(r) and the block copolymer can be related to these 
kinetic coefficients. 

One important effect which enters in this two- 
dimensional case is the preferential wetting between the 
two components of the binary mixture and the glass plates, 
which changes the morphology of the domain structure 
drastically and affects the coarsening process.45 Similarly, 
surfactant molecules will also be adsorbed onto the glass 
plates. Such effects are essential in two-dimensional sys- 
tems like the Helle-Shaw system and can be introduced 
into our hybrid model. 

APPENDIX 8 

Taking the units of length, energy and X as lo= ( bx/ 
E)“‘, (3/16)pok,Tc?Zi and (3~) “2/2, one finally obtains 
the same form as Eqs. (2.2)-(2.12), from which one can 
get the microscopic expressions for the parameters of the 
hybrid model. 

In order to solve the partial differential equation for 
the field X(r), Rq. (2.2), we adopted the fully implicit 
method,& which is unconditionally stable for any time 
mesh width At. In solving the equation, we regarded the 
thermodynamic force coming from the cross coupling 
terms between the field X(r) and the surfactant as an ex- 
ternal force to the field X and only the evolution equation 
for the field X is treated implicitly. Resulting self- 
consistent equation is solved by the iteration method. 

Assuming the A-B symmetry of the system as was 
done in the simulation, the parameters in the hybrid model 
can be expressed in terms of the parameters of the micro- 
scopic lattice model as follows: 

3E lo 3 
LVLX=a b , 

0 

(0 
5 

LS/LX=~ . 29/5,#-9/5 _ 0 b ’ 
(A91 

Although the scheme is unconditionally stable, a 
choice of a too large At causes an error in the computa- 
tion.& We compared the results of the simulation using 
this implicit method with the results obtained by the ex- 
plicit method with a sufficiently small At (At =O.Ol; the 
same value as that in our previous works4-6).27 From this 
comparison, we confirmed that the qualitative features are 
unchanged even when the implicit scheme is used with a 
rather large value of At, i.e., At=0.5, and only the time 
scale is changed. In order to know the resealing factor of 
time for different values of At, we calculated the maximum 
growth rate of the scattering function in the linear regime, 
2il, defined by 

S(ko,t) -expW(kdtl, (Bl) 

where k. is the maximum peak position. We show the 
results in Fig. 17. One can see that the time is elongated by 
a factor 3.6 when one uses At=0.5. 

b N315 16 b3 
l=~s T=s lo t 

0 
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FIG. 17. Growth rate of the structure function in the linear regime plot- 
ted as a function of the time mesh width hr. 

APPENDIX C 

In this Appendix, we describe how we calculated the 
curvature distributions and the micellar size distributions. 

We define the interface as the line where X(r) =O. 
This line is composed of many sections of short straight 
lines with a length u, the space mesh size. Let the position 
of the mth section be R,, m being the index of the section 
along the interface. Then, the curvature at a point on the 
interface is defined by the curvature of a circle going 
through the three points, R,, RmmM, and Rm+M. We 
also defined the length of the mth section by 1/(2Ma) of 
the arc length of the circle between the two points RmeM 
and Rm, M- In this work, we chose the parameter M to be 
M= 10, which was found to be appropriate to measure the 
curvature with a reasonable resolution and also to avoid 
the effects of the discreteness of the space mesh. 

To calculate micellar size distribution function, we first 
defined the perimeter of a micelle in the same manner as 
above, i.e., by the line where X(r) =O. Then we regarded 
the micellar size as the radius of a circle whose enclosed 
area is equal to the enclosed area of the perimeter. 

Above procedures to determine curvature and micellar 
size distributions are not appropriate for the system with 
thermal noise, because the interfaces are no longer smooth 
due to thermal agitation. In order to eliminate such a dif- 
ficulty, we adopted a coarse-graining procedure, where the 
value of X(r) at each mesh point is replaced by the aver- 
aged value over the four nearest neighbor mesh points and 
the mesh under consideration. 
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