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We study a pair of commuting difference operators arising from the elliptic
C2

(1)-face model. The operators, whose coefficients are expressed in terms of the
Jacobi’s elliptic theta function, act on the space of meromorphic functions on the
weight space of theC2-type simple Lie algebra. We show that the space of func-
tions spanned by the level one characters of the affine Lie algebrasp̂(4,C) is
invariant under the action of the difference operators. ©1999 American Institute
of Physics.@S0022-2488~99!03109-6#

I. INTRODUCTION

In Ref. 1, one of the authors constructed anL operator for Belavin’s elliptic quantumR
matrix2 acting on the space of meromorphic functions on the weight space of theAn-type simple
Lie algebra. The traces of theL operator, the transfer matrices, give rise to a family of commut
difference operators with an elliptic theta function coefficient. In Ref. 3, they are actually eq
lent to Rnijsenaars’ operators,4 which are elliptic extensions of Macdonald’sq-difference
operators.5 Our aim in the present paper is to take a step toward a generalization of the
construction to the root systems other than the typeA. In this paper, we construct a pair o
commuting difference operators acting on the space of functions on theC2-type weight space.

In the construction of Refs. 1 and 3, a relation between Belavin’s elliptic quantumR matrix
and the face-type solution of the Yang–Baxter equation~YBE!,6 especially theintertwining
vectors,7,8 played the central role. For the root systems other than typeA, it is known that no
vertex-typeR-matrices nor the intertwining vectors. Nevertheless, the face-type solutions o
YBE are known for all classical Lie algebras and their vector representations.6 We will utilize this
type of solution to introduce the difference operators. We take traces~see Sec. V! of the fused
Boltzmann weights to obtain a pair of difference operators~Theorem 1!.

We also show that the space that is spanned by the level one characters of the affi
algebrasp̂(4,C) is invariant under the action of the difference operators~Theorem 2!.

The plan of this paper is as follows. In Sec. II, we prepare the notation used in the tex
state the main results. In Sec. III, we review theCn

(1)-face model6 in the vector representation
which was given by a set of functions called Boltzmann weights. In Sec. IV, we introduce thepath
space, on which the set of Boltzmann weights act naturally as linear maps and thereby expla
notion of the so-calledfusion procedure~see, for example, Ref. 3 and references therein!. We also
give a set of formulas forfusedBoltzmann weights, which leads to the explicit formula of o
difference operators@Theorem 1,~ii !#. In Sec. V, we prove the commutativity of the differenc
operators. In Sec. VI, we prove a property that the difference operators preserve a

a!Electronic mail: kojihas@math.tohoku.ac.jp
b!Electronic: mail: ike@xmath.ous.ac.jp
c!Electronic mail: tkikuchi@math.tohoku.ac.jp
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dimensional subspace spanned by the level one characters of the affine Lie algebrasp̂(4,C).9 In
the Appendix, we give a formula of a similarity transformation of the Boltzmann weights.

Our result can be seen as a typeC generalization of the Felder and Varchenko work,10 where
they showed that the Ruijsenaars system of difference operators can be recovered from
namicalR matrices, which is nothing but the face-type solution of the YBE.

On the other hand, aBCn generalization of the Macdonald polynomial theory is studied
Koornwinder.11 In Ref. 12, van Diejen constructed the corresponding family ofq-difference op-
erators and he studied its elliptic extension in Ref. 13. He succeeded in constructing two e
commuting operators: one is of the first order and the other is of thenth order, so that they give
rise to an elliptic extension of difference quantum Calogero–Moser system of typeBC2

12 in n
52. It is likely that our operators can be identified with his system with a special choic
parameters. We hope to report on this issue in the near future.

Extending this work by van Diejen, Hikami and Komori recently obtained a general fami
n-commuting difference operators with elliptic function coefficients.14,15 Besides the step param
eter of difference operators and the modulus of elliptic functions, the family contains ten arb
parameters. Their construction uses the Shibukawa–Ueno ellipticR operator,16 together with the
elliptic K operators,17,18 the elliptic solution to the reflection equation, and can be regarded a
elliptic generalization of the Dunkl-type operator approach to those systems, which have
extensively used by Cherednik19 ~see Ref. 20 for theBCn case!. It would be interesting if one can
find an explicit relationship between their approach and ours.

II. NOTATION AND RESULTS

Let h be a fixed Cartan subalgebra of the simple Lie algebragªsp~4,C! and denote byh* the
dual space ofh. We realize the root systemR for ~g,h! asRª$6(e16e2),62e1 ,62e2%,h* . A
normalized Killing form~,! is given by (e j ,ek)5 1

2d jk . We will often identify the spaceh and its
dualh* via the form~,!. The fundamental weights are given byÃ15e1 , Ã25e11e2 . Let Pd be
the set of weights for the fundamental representationL(Ãd). We have

P15$6e1 ,6e2%, P25$6~e16e2!,0%. ~2.1!

Note that, in these cases, the multiplicity of the weights are all one.
Fix an elliptic modulust in the upper half-planeTt.0 and a generic nonzero comple

number\. Let @u# denote the Jacobi theta function with elliptic nomepªe2p ir (Tt.0), defined
by

@u#ª ip1/8sinpu )
m51

`

~122pm cos 2pu1p2m!~12pm!.

This is an odd function and has the following quasiperiodicity:

@u1m#5~21!m@u#, @u1mt#5~21!me2p im2t22p imu@u# ~mPZ!. ~2.2!

Let d,d8 be 1 or 2. Then theC2
(1)-type Boltzmann weights of the type (d,d8) are given as

follows. For any square

S l m

k n
D ~l,m,n,kPh* !

of weights, the Boltzmann weight

Wdd8S l m

k n
UuD
3 Mar 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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is given as a function of the spectral parameteruPC. See the next section for the explicit formu
for W11, which are expressed by the Jacobi theta function.

They satisfy the condition:

Wdd8S l m

k n
UuD 50, unless m2l,n2kP2\Pd , k2l,n2mP2\Pd8 ,

and solve the YBE,

(
h

Wdd8S r h

s k
Uu2v DWdd9S l m

r h
Uu2wDWd8d9S m n

h k
Uv2wD

5(
h

Wd8d9S l h

r s
Uv2wDWdd9S h n

s k
Uu2wDWdd8S l m

h n
Uu2v D . ~2.3!

The original Boltzmann weights in Ref. 6 are of the type~1,1! in the above terminology. We
generalized it by the fusion procedure~see Sec. IV! for the present purpose.

For lPh* andpPPd(d51,2), we put

lpª~l,p!.

Theorem 1: Let Md(u) (uPC,d51,2) be the following difference operators acting on th
space of functions onh* ,

„Md~u! f …~l!ª (
pPPd

Wd2S l l12\p

l l12\p
UuDTp̂f ~l!,

where Tp̂f (l)ª f (l12\p).

~i! We have Md(u)Md8(v)5Md8(v)Md(u) (u,vPC,d,d851,2).
~ii ! Let us define the following difference operators independent of the spectral parame:

M̃1ª (
pPP1

)
qPP1
qÞ6p

@lp1q2\#

@lp1q#
Tp̂ ,

M̃2ª (
p56e1
q56e2

S @lp1q2\#

@lp1q1\#
Tp̂Tq̂1

@2\#

@6\#

@2lp12\#

@2lp#

@2lq12\#

@2lq#

@lp1q25\#

@lp1q1\#

@lp1q12\#

@lp1q# D .

Then we have M1(u)5F(u)M̃1 , M2(u)5G(u)„M̃22H(u)…, where

F~u!ª
@u#@u12\#2@u14\#

@23\#2@\#2 ,

G~u!ª
@u2\#@u#2@u1\#@u12\#@u13\#2@u14\#

@23\#4@\#4 , ~2.4!

and

H~u!ª
@u16\#@u23\#@2\#

@u#@u13\#@6\#
.
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In Sec. VI, we introduce a space of Weyl group-invariant theta functions, which are pres
by the actions of the difference operators. ForbPh* , we introduce the following operatorsStb ,
Sb acting on the functions onh* :

~Stb f !~l!ªexp@2p i „~l,b!1t~b,b!/2…# f ~l1tb!,

~Sb f !~l!ª f ~l1b!.

They satisfy Heisenberg’s relations,

SbSg5SgSb , StbStg5StgStb , SgStb5e2p i ~g,b!StbSg ~2.5!

~g,b,Ph* !.

Let Q∨, P∨ be the coroot and coweight lattice, respectively. LetW,GL(h* ) denote the Weyl
group for ~g,h!. Let ThW be a space ofW-invariant theta functions, defined by

ThW
ªH f is a holomorphic function overh* USta f 5Sa f 5 f ~;aPQ∨!

f ~wl!5 f ~l! ~;wPW!
J .

It is well known that the space is spanned by the level one characters of the affine Lie a
sp̂(4,C), and the dimension of this space is three.

Theorem 2: We have

M̃d~ThW!,ThW ~d51,2!.

The corresponding facts in the case of theA type are proved in Refs. 21 and 3.

III. THE Cn
„1…-FACE MODEL

Fix an integern>2. We review the definition of theCn
(1)-face model given in Ref. 6. We

realize the root systemR of the typeCn as

Rª$6~e j6ek!,62e l u1< j ,k<n,1< l<n%,

where$e j% j 51
n is a basis of a complex vector space denoted byh* with a bilinear form~,!, defined

by

~e j ,ek!ª
1
2d jk .

The vector spaceh* can be identified with the dual space of a Cartan subalgebrah of the simple
Lie algebrasp(2n,C). The fundamental weightsÃ j (1< j <n) are given byÃ j5e11e21¯

1e j . Let P denote the set of weights that belongs to the vector representationL(Ã1) of
sp(2n,C). We have

P5$6e1 ,6e2 ,...,6en%.

Note that the multiplicity of the weights inP are all one.
We shall use the following notation frequently:

P̂ª2\P and p̂ª2\p ~pPP!.

The Boltzmann weights are given by a set of functions of spectral parameteruPC defined for
any square
3 Mar 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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S l m

k n
D

of elements ofh* . Let us denote the functions by

WS l m

k n
UuD .

They satisfy the condition

WS l m

k n
UuD 50, unless m2l,n2m,k2l,n2kPP̂.

For p, q, r, sPP such thatp1q5r 1s, we will write

s

p
un
r

q5WS l l1 p̂

l1 ŝ l1 p̂1q̂
UuD .

They are explicitly given as follows:

p

p
un
p

p5
@c2u#@u1\#

@c#@\#
, ~3.1!

p

p
un
q

q5
@c2u#@lp2q2u#

@c#@lp2q#
~pÞ6q!, ~3.2!

p

q
un
q

p5
@c2u#@u#@lp2q1\#

@c#@\#@lp2q#
~pÞ6q!, ~3.3!

p

q
un

2p
2q52

@u#@lp1q1\1c2u#

@c#@lp1q1\#

@2lp12\#

@2lq#

P rÞ6p@lp1r1h#

P rÞ6q@lq1r #
~pÞq!, ~3.4!

p

p
un

2p
2p5

@c2u#@2lp1\2u#

@c#@2lp1\#
2

@u#@2lp1\1c2u#

@c#@2lp1\#

@2lp12\#

@2lp# )
qÞ6p

@lp1q1\#

@lp1q#
.

~3.5!

The crossing parameter cin the above formulas are fixed to be

cª2~n11!\. ~3.6!

Proposition 1: The Boltzmann weights (3.1),(3.2),(3.3),(3.4),(3.5) enjoy the following pro
ties.

Initial condition:

(
h

WS l m

k n
U0D 5dmk . ~3.7!
3 Mar 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Inversion relation:

(
h

WS l h

k n
U2uDWS l m

h n
U2uD 5dmk

@c1u#@c2u#@\1u#@\2u#

@c#2@\#2 . ~3.8!

Crossing symmetry:

WS l m

k n
UuD 5

g~l,k!

g~m,n!
WS k l

n m
Uc2uD , ~3.9!

where we put

g~l,m!ª@2mp# )
qPP

qÞ6p

@mp1q# ~m5l1 p̂,pPP!.

Reflection symmetry:

WS l m

k n
UuD 5

g~l,k!g~k,n!

g~l,m!g~m,n!
WS l k

m n
UuD . ~3.10!

Proof: The equation~3.7! is trivial. The two types of symmetries~3.9!, ~3.10! are easily
checked by the explicit form. In the case ofl5n the equation~3.8! is reduced to the following:

(
r PP

@lp1l r1\1c2u#@lq1l r1\1c1u#

@lp1l r1\#@lq1l r1\#
Glr

5dp,q

@c2u#@c1u#@2lp#@2lq12\#

@\#2@2lp1\#2 Glp
211

@c1u#@2lp1\1u#@lp1lq1\1c2u#

@u#@2lp1\#@lp1lq1\#

2
@c2u#@2lq1\2u#@lp1lq1\1c1u#

@u#@2lq1\#@lp1lq1\#
. ~3.11!

Here we denote byGlp the following function:

Glpª2
@2lp12\#

@2lp# )
r PP

rÞ6p

@lp1r1\#

@lp1r #
~pPP!. ~3.12!

One can find a proof of the equation~3.11! in Ref. 6 @see~3.5! and Lemma 3#. The casesn5l
12p̂(pPP) are trivial. The remaining cases are easily checked by using the followingthree-term
identity:

@u1x#@u2x#@v1y#@v2y#2@u1y#@u2y#@v1x#@v2x#5@x1y#@x2y#@u1v#@u2v#
~3.13!

(u,v,x,yPC). h

We adopted a slightly different formulas~3.3!,~3.4! from the original ones@see~A1!,~A2!# in
Ref. 6. In the Appendix, we will give a similarity transformation~A3!,~A4! which transforms our
Boltzmann weights into the original ones. Thus, one has a way to prove the YBE for our B
mann weights, since such a transformation does not destroy the varidity of the YBE. If we f
this track, however, we must specify the arguments of the square roots contained in the e
sions of the original formulas and the transformation. This way of proof may require a r
3 Mar 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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complicated discussion. In this paper, we will give a proof of the YBE for our Boltzmann wei
directly without using the similarity transformation. In fact, our proof here goes quite parall
the proof given in Ref. 6.

Theorem 3: The Boltzmann weights

WS l m

k n
UuD

(3.1),(3.2),(3.3),(3.4),(3.5) solve theYBE (2.3) for d5d85d951.

Proof : Set

X~l,m,n,k,s,ruu,v !ª(
h

WS r h

s k
UuDWS l m

r h
Uu1v DWS m n

h k
Uv D , ~3.14!

Y~l,m,n,k,s,ruu,v !ª(
h

WS l h

r s
Uv DWS h n

s k
Uu1v DWS l m

h n
UuD , ~3.15!

and

Z~l,m,n,k,s,r,uu,v !ªX~l,m,n,k,s,ruu,v !2Y~l,m,n,k,s,ruu,v !. ~3.16!

RegardingZ(l,m,n,k,s,ruu,v) as a function ofu, we denote it byZ(u).
The equations~3.7! and ~3.8! imply Z(0)5Z(2v)50. Since we have

Z~l,m,n,k,s,ruu,v !52
g~l,r!

g~n,k!
Z~r,l,m,n,k,suc2u2v,u! ~3.17!

by ~3.9!, this showsZ(c2v)5Z(c)50 also. Thus, we have found the four zeros atu50,
2v,c,c2v of Z(u). By the exactly same argument in Ref. 6 using the quasiperiodicity prop
of Z(u), ~3.17!, and the following symmetry@this follows from ~3.10!#:

Z~l,m,n,k,s,ruu,v !5
g~l,r!g~r,s!g~s,k!

g~l,m!g~m,n!g~n,k!
Z~l,r,s,k,n,muv,u!,

we can reduce the proof of the YBE to the following two special cases:

Z~l,l1 p̂,l1 p̂1q̂,l1 p̂1q̂1 r̂ ,l1q̂1 r̂ ,l1 r̂ uu,v !50, ~3.18!

whererÞ6p,6q,pÞ6q and

Z~l,l1 p̂,l,l1 p̂,l,l1 p̂uu,v !50. ~3.19!

In the case of the equation~3.18!, each side of the YBE contains only one term, and they
manifestly the same. A proof of the last case~3.19! can be found in the original literature.6

However, since the proof is brief and seems to contain some typographical errors, we will de
details of it in the following for the readers’ convenience.

We will prove Z(l,l1 p̂,l,l1 p̂,l,l1 p̂uu,v)50. Regarding Y(l,l1 p̂,l,l1 p̂,l,l
1 p̂uu,v) as a function oflp , we denote it byf (lp). It reads as
3 Mar 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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f ~lp!5Glp

@u#@v#@w#

@c#3 (
qPP

@lq1lp1\1ũ#@lq1lp1\1 ṽ#@lq1lp1\1w̃#

@lq1lp1\#3 Glq

1Glp
21 @ ũ#@ ṽ#@w̃#

@c#3

@2lp1\2u#@2lp1\2v#@2lp1\2w#

@2lp1\#3

1 (
cyclic

@u#@ ṽ#@w̃#

@c#3

@2lp1\1ũ#@2lp1\2v#@2lp1\2w#

@2lp1\#3

1Glp (
cyclic

@ ũ#@v#@w#

@c#3

@2lp1\2u#@2lp1\1 ṽ#@2lp1\1w̃#

@2lp1\#3 ,

where we putw5c2u2v, ũ5c2u, ṽ5c2v, w̃5c2w and the summation(cyclic is over the
cyclic permutations of the three variables (u,v,w). From the explicit form, one can see th
X(l,l1 p̂,l,l1 p̂,l,l1 p̂uu,v)5 f (2lp2\). We will prove f (lp)5 f (2lp2\).

Now consider a function,

F~z!ª
@z1lp1\1ũ#@z1lp1\1 ṽ#@z1lp1\1w̃#

@z1lp1\#3

@0#8

@\#

@2z12\#

@2z1\# )
qPP

@z1lq1\#

@z1lq#
.

One sees thatF(z) is a doubly periodic function of the periods 1 andt. Its poles are located a
z52lp2h, lq(qPP), 2\/21v„v50,1/2,t/2,~11t!/2…. The pole atz52lp2\ is of the second
order, and the others are simple.

Let f i(lp)( i 51,2,3,4) denote theith term of the above functionf (lp). Since we have

Res
z5lq

F~z!dz52
@lq1lp1\1ũ#@lq1lp1\1 ṽ#@lq1lp1\1w̃#

@lq1lp1\#3 Glq
,

the relation( ResF(z)dz50 implies f 1(lp)5a(lp)1b(lp), where we set

a~lp!ªGlp

@u#@v#@w#

@c#3 (
v

Res
z52\/21v

F~z!dz, ~3.20!

b~lp!ªGlp

@u#@v#@w#

@c#3 Res
z52lp2\

F~z!dz. ~3.21!

Here the summation(v is over the half-periodsv50,1/2,t/2,~11t!/2.
From ~2.2! and ~3.6!, we have, forv50,1/2,t/2,~11t!/2.

Res
z52\/21v

F~z!dz5
1

2

Flp1
\

2
1v1ũGFlp1

\

2
1v1 ṽ GFlp1

\

2
1v1w̃G

Flp1
\

2
1vG3 e2p i j~v!,

~3.22!

where we putj~0!5j~1
2!50, j(t/2)5j„(11t)/2…5c. Combining~3.20!, ~3.22!, and Lemma 3 in

Ref. 6, we can verify

a~lp!1 f 4~lp!2 f 2~2lp2\!52a~2lp2\!1 f 2~lp!2 f 4~2lp2\!50. ~3.23!

Setf(u)5(d/du)log@u#, then the residue Resz52lp2\ F(z)dz can be expressed as
3 Mar 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Res
z52lp2\

F~z!dz5Glp
21 @ ũ#@ ṽ#@w̃#

@0#8@\#2

@2lp12\#@2lp#

@2lp1\#2

3S (
cyclic

f~ ũ!23f~2lp!13f~2lp1\!1f~\!

1 (
qPP

qÞ6p

$f~2lp1lq!2f~2lp1lq2\!% D . ~3.24!

Sincef(u) is an odd function, we have, from~3.21! and ~3.24!,

b~lp!2b~2lp2\!523
@u#@v#@w#

@c#3

@ ũ#@ ṽ#@w̃#

@0#8@\#2

@2lp12\#@2lp#

@2lp1\#2

3$f~2lp!1f~2lp12\!22f~2lp1\!%. ~3.25!

On the other hand, using the identity@see~3.13!#

@2lp1\1ũ#@2lp1\2v#@2lp1\2w#2@2lp1\2ũ#@2lp1\1v#@2lp1\1w#

5@ ũ#@v#@w#
@4lp12\#

@2lp1\#
,

and its cyclic permutations of (u,v,w), we have

f 3~lp!2 f 3~2lp2\!53
@u#@v#@w#@ ũ#@ ṽ#@w̃#

@c#3

@4lp12\#

@2lp1\#4 . ~3.26!

Now from ~3.25! and ~3.26!, we have

b~lp!1 f 3~lp!5b~2lp2\!1 f 3~2lp2\!, ~3.27!

where we used the following identity~Lemma 4 in Ref. 6!:

f~u1\!1f~u2\!22f~u!5
@\#2@2u#@0#8

@u#2@u2\#@u1\#
.

Combining~3.23! and ~3.27!, we obtainedf (lp)5 f (2lp2h). h

IV. PATH SPACE AND FUSION PROCEDURE

In the previous section we introduced the Boltzmann weightsW(u) of the type~1,1! and
proved that they satisfy the YBE. In what follows, we treat only the case ofn52. To construct
commuting difference operators, we need the general types of the Boltzmann weightsWdd8(u),
which we call the fused Boltzmann weights.

First let us introduce the notion of the path space. Letd51,2. For anyuPC andl,mPh* such
that m2lP2\Pd , we introduce a formal symbol,

gl
m~u!ªH el

m~u! :d51,

f l
m~u! :d52.

See~2.1! for the notationP1 andP2 . We define the complex vector space,
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P̂~Ãd
u!l

m
ªH Cgl

m~u! :m2lP2\Pd ,

0 :otherwise,

for eachuPC, and thespace of pathsfrom l to m of the type (d1 ,...,dk ;u1 ,...,uk),

P̂~Ãd1

u1^¯^ Ãdk

uk!l
n
ª %

m1 ,...,mk21Ph*

P̂~Ãd1

u1!l
m1^ P̂~Ãd2

u2!m1

m2^¯^ P̂~Ãdk

uk!mk21

n . ~4.1!

The following set:

$gl
m1~m1! ^ gm1

m2~u2! ^¯^ gmk21

n ~uk!um i2m i 21P2\Pd~1< i<k!,m05l,mk5n%,

of pathsforms a basis of the space~4.1!. Set also

P̂~Ãd1

u1^¯^ Ãdk

uk!lª %
nPh*

P̂~Ãd1

u1^¯^ Ãdk

uk!l
n

and

P̂~Ãd1

u1^¯^ Ãdk

uk!ª %
lPh*

P̂~Ãd1

u1^¯Ãdk

uk!l .

In the following, we will construct the linear operators:

Wdd8~u2v !:P̂~Ãd
u

^ Ãd8
v !˜P̂~Ãd8

v ,^ Ãd
u!,

which satisfy the following YBE (d,d8,d951,2):

„id^ Wdd8~u2v !…„Wdd9~u2w! ^ id…„id^ Wd8d9~v2w!…

5„Wd8d9~v2w! ^ id…„id^ Wdd9~u2w!…„Wdd8~u2v ! ^ id…

:P̂~Ãd
u

^ Ãd8
v

^ Ãd9
w

!˜P̂~Ãd9
w

^ Ãd8
v

^ Ãd
u!. ~4.2!

First we define a linear operatorW(Ã1
u ,Ã1

v):P̂(Ã1
u

^ Ã1
v)˜P̂(Ã1

v
^ Ã1

u) by

W~Ã1
u ,Ã1

v!el
m~u! ^ em

n ~v !ª (
kPh*

WS l m

k n
Uu2v D el

k~v ! ^ ek
n~u!.

Put W11(u2v)ªW(Ã1
u ,Ã1

v), then the YBE~4.2! for d5d85d951 is nothing but~2.3!.
To constructWdd8(u2v) other thanW11(u2v), we will formulate the fusion procedure. Pu

W~Ã1
u1^ Ã1

u2^¯^ Ã1
uk,Ã1

v!ªW1,2~Ã1
u1,Ã1

v!W2,3~Ã1
u2,Ã1

v!¯Wk,k11~Ã1
uk,Ã1

v!

:P̂~Ã1
u1^ Ã1

u2^¯^ Ã1
uk^ Ã1

v!˜P̂~Ã1
v

^ Ã1
u1^ Ã1

u2
¯^ Ã1

uk!,
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where

We also put

W~Ã1
u1^ Ã1

u2^¯^ Ã1
uk,Ã1

v1^ Ã1
v2^¯^ Ãv l !

ª )
1< j < l

—

W~Ã1
u1^ Ã1

u2^¯^ Ã1
uk,Ã1

v j !@ j ,k1 j #

:P̂~Ã1
u1^¯^ Ã1

uk^ Ã1
v1^¯^ Ã1

v l !˜P̂~Ã1
v1^¯^ Ã1

v l ^ Ã1
u1^¯^ Ã1

uk!,

where

We will realize the spaceP̂(Ã2
u) as a subspace ofP̂(Ã1

u
^ Ã1

u2\). For this purpose, let us
introduce thefusion projectorpÃ

2
u by specializing the parameter inW(Ã1

u ,Ã1
v):

pÃ
2
uªW~Ã1

u2\ ,Ã1
u!:P̂~Ã1

u2\
^ Ã1

u!˜P̂~Ã1
u

^ Ã1
u2\!. ~4.3!

Lemma 1: The spacepÃ
2
u(P̂(Ã1

u2\
^ Ã1

u)l) has a basis$ f̄ l
l1 r̂(u)%r PP2

, given by

f̄ l
l1 p̂1q̂~u!ª@lp2q1\#el

l1 p̂~u! ^ el1 p̂
l1 p̂1q̂~u2\!1@lq2p1\#el

l1q̂~u! ^ el1q̂
l1 p̂1q̂~u2\!,

~4.4!

where p56e1 , q56e2 , and

f̄ l
l~u!ª (

pPP1

@2lp12\#el
l1 p̂~u! ^ el1 p̂

l ~u2\!. ~4.5!

Proof : For p,qPP1 , qÞ6p, we have

pÃ
2
u„el

l1 p̂~u2\! ^ el1 p̂
l12p̂~u!…5S p

p
2\n

p
pD el

l1 p̂~u! ^ el1 p̂
l12p̂~u2h!50,
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pÃ
2
u„el

l1 p̂~u2\! ^ el1 p̂
l1 p̂1q̂~u!…5S p

p
2\n

q
qD el

l1 p̂~u! ^ el1 p̂
l1 p̂1q̂~u2\!

1S q

p
2\n

p
qD el

l1q̂~u! ^ el1q̂
l1 p̂1q̂~u2\!

5
@22\#

@23\#@lp2q#
„@lp2q1\#el

l1 p̂~u! ^ el1 p̂
l1 p̂1q̂~u2\!

1@lq2p1\#el
l1q̂~u! ^ el1q̂

l1 p̂1q̂~u2\!…,

and

pÃ
2
u„el

l1 p̂~u2\! ^ el1 p̂
l ~u!…5 (

r PP1
S r

p
2\n
2r

2pD el
l1 r̂~u! ^ el1 r̂

l ~u2\!

5
@2\#@lp1q2\#@lp2q2\#

@23\#@lp1q#@lp2q#@2lp#

3S (
r PP1

@2l r12\#el
l1 r̂~u! ^ el1 r̂

l ~u2\! D .

Here we have used the three-term identity~3.13!. h

Thus, we know the subspacepÃ
2
u„P̂(Ã1

u2\
^ Ã1

u)l… is naturally isomorphic to the spac

P̂(Ã2
u)l . In the following, we will identify the image Im(pÃ

2
u),P̂(Ã1

u
^ Ã1

u2\) with the space

P̂(Ã2
u) via f̄ l

m(u)↔ f l
m(u).

Proposition 2: Define the operators W˜
dd8(u2v) by

W̃21~u2v !ªW~Ã1
u

^ Ã1
u2\ ,Ã1

v!, W̃12~u2v !ªW~Ã1
u ,Ã1

v
^ Ã1

v2\! ~4.6!

and

W̃22~u2v !ªW~Ã1
u

^ Ã1
u2\ ,Ã1

v
^ Ã1

v2h!.

We have

W̃dd8~u2v !„P̂~Ãd
u

^ Ãd8
v !l

m
…,P̂~Ãd8

v
^ Ãd

v!l
m .

Proof : From the definition ofpÃ
2
u ~4.3! and the YBE~2.3!,

W1,2~u2v !W2,3~u2v2\!~pÃ
2
u^ id!5~id^ pÃ

2
u!W1,2~u2v2\!W2,3~u2v !. ~4.7!

Applying this to the definition ofW̃21(u2v), we get

W̃21~u2v !„P̂~Ã2
u

^ Ã1
v!l

m
…,P̂~Ã1

v
^ Ã2

u!l
m .

By a same argument, we have

W2,3~u2v1\!W1,2~u2v !~ id^ pÃ
2
u!5~pÃ

2
u^ id!W2,3~u2v !W1,2~u2v1\!, ~4.8!

and
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W̃12~u2v !„P̂~Ã1
u

^ Ã2
v!l

m
…,P̂~Ã2

v
^ Ã1

u!l
m .

Together with the equations~4.7!, ~4.8! and the definition ofW̃22(u2v), we obtain

W̃22~u2v !„P̂~Ã2
u

^ Ã2
v!l

m
…,P̂~Ã2

v
^ Ã2

u!l
m .

h

We denote byWdd8(u2v) the restricted operatorsW̃dd8(u2v)uP̂(Ã
d
u

^ Ã
d8
v ) and introduce their

matrix coefficients by the following equation:

Wdd8~u2v !gl
m~u! ^ gm

n ~v !5 (
kPh*

Wdd8S l m

k n
Uu2v D gl

k~v ! ^ gk
n~u!.

By the construction, the operatorsWdd8(u2v) clearly satisfies the YBE~4.2! in operator form,
and their coefficients

Wdd8S l m

k n
Uu2v D

satisfies the YBE~2.3!. For p,r PPd ands,qPPd8 (d,d851,2) such thatp1q5r 1s, we write
for brevity ~as long as confusion does not arise!

s

p
un
r

q5Wdd8S l l1 p̂

l1 ŝ l1 p̂1q̂
UuD . ~4.9!

We calculate the coefficients of the operatorW21(u) as an example. In what follows, we wi
often omit the dependence ofgl

m(u)PP̂(Ãd
u) on u ~the spectral parameter! for brevity. Let p

PP1 . From the definitions off l
l ~4.5! andW̃21 ~4.6!, we have

W21~u! f l
l

^ el
l1 p̂5W̃21~u! f l

l
^ el

l1 p̂

5W̃21~u!S (
r PP1

@2l r12\#el
l1 r̂

^ el1 r̂
l

^ el
l1 p̂D

5 (
qPP1

el
l1q̂

^ S (
s,tPP1

s1t5p2q

Vq~l;s,t;u!el1q̂
l1q̂1 ŝ

^ el1q̂1 ŝ
l1 p̂ D ,

where we denote byVq(l;s,t;u) the following function:

(
r PP1

@2l r12\#W11S l l1 r̂

l1q̂ l1q̂1 ŝ
UuDW11S l1 r̂ l

l1q̂1 ŝ l1 p̂
Uu2\ D .

If qPP1 such thatqÞ6p, then the functionsVq(l;s,t;u) vanish except for (s,t)5(p,
2q) or (2q,p), and one can easily show that

Vq~l;p,2q;u!

@~l1q̂!p1q1\#
5

Vq~l;2q,p;u!

@~l1q̂!2q2p1\#
. ~4.10!

This equation implies that the vector

Vq~l;p,2q;u!el1q̂
l1q̂1 p̂

^ el1q̂1 p̂
l1 p̂ 1Vq~l;2q,p;u!el1q̂

l
^ el

l1 p̂
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is proportional tof l1q̂
l1 p̂ and its coefficient@the both-hand sides of~4.10!# is calculated as

@u2\#@u1\#@u13\#@2\#

@23\#2@\#2

@lq2p2\2u#@2lq12\#

@lq2p2\#@lq1p1\#
,

by using the three-term identity~3.13!. This function is labeled by@see~4.9!#

q

0
un

p2q
p ~qÞ6p!.

Let us consider the term forq5p. For all sPP1 we have from the three-term identity,

Vp~l;s,2s;u!

@2~l1 p̂!s12\#
5

@u2\#@u1\#@u13\#

@23\#2@\#

@u1\#

@\# )
r PP1
rÞ6p

@lp1r12\#

@lp1r1\#
. ~4.11!

The right-hand side of this equation is independent ofsPP1 . Thus, we see that the vector,

(
sPP1

Vp~l;s,2s;u!el1 p̂
l1 p̂1 ŝ

^ el1 p̂1 ŝ
l1 p̂ ,

is proportional tof l1 p̂
l1 p̂ and its coefficient is equal to the right-hand side of~4.11!, which is labeled

by

p

0
un
0

p.

Here we write all fused Boltzmann weights@the coefficients of the operatorW21(u)]. They
are obtained by the three-term identity~3.13!. We assume thatp,qPP1 satisfy pÞ6q. The
common factor@u2\#@u1\#@u13\#@23\#22@\#21 is dropped:

q

p1q
un

p1q
q5

@u12\#

@\#
,

q

p2q
un

p2q
q5

@u#

@\#

@2lq12\#

@2lq#

@lp2q2\#

@lp2q1\#
,

q

0
un
0

q5
@u1\#

@\# )
r PP1
rÞ6q

@lq1r12\#

@lq1r1\#
, ~4.12!

q

q2p
un
0

p5
@lq2p2u#@lq1p12\#

@2lp#@lq2p1\#
, ~4.13!

q

0
un

p2q
p5

@2\#

@\#

@2lq2p2\2u#@2lq12\#

@2lq2p2\#@lq1p1\#
, ~4.14!
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q

p1q
un

p2q
2q5

@2\#

@\#

@2lq2u#@lp2q2\#

@2lq#@lp1q1\#
.

Next, we give the example ofW12. In this case, the common factor@u#@u12\#@u14\#
@23\#22@\#21 is dropped. To obtain them, we use only the three-term identity~3.13!:

p1q

p
un
p

p1q5
@u13\#

@\#
,

q2p

p
un
p

q2p5
@u1\#

@\#

@2lp22\#

@2lp#

@lq2p12\#

@lq2p#
,

0

p
un
p

05
@u12\#

@\# )
r PP1
rÞ6p

@lp1r2\#

@lp1r #
, ~4.15!

0

p
un
q

q2p5
@lp2q22\2u#@lp1q2\#

@2lp#@lq2p#
,

p2q

p
un
q

05
@2\#

@\#

@lp2q2\2u#@2lq22\#

@lq2p#@lp1q#
,

p1q

p
un

2p
q2p5

@2\#

@\#

@2lp2\2u#@lp1q12\#

@2lp#@lq2p#
.

Finally, we give the example ofW22. They are equivalent to the Boltzmam weights associa
to the vector representation of the typeB2 Lie algebra~see Ref. 6!. We write only two cases as a
example, which is used to define the difference operatorM2(u). We will drop the common factor
G(u) ~2.4! here:

0

p1q
un

p1q
05

@lp1q2\#

@lp1q1\#
, ~4.16!

0

0
un
0

05
@2\#

@6\# S (
r 56e1
s56e2

@2l r12\#@2ls12\#

@2l r #@2ls#

@l r 1s25\#@l r 1s12\#

@l r 1s#@l r 1s1\#
2

@u16\#@u23\#

@u#@u13\# D .

~4.17!

The formulas~4.15!, ~4.16!, and~4.17! together give the explicit form ofM̃d @Theorem 1~ii !#.
We explain how to calculate the fused Boltzmann weight

0

0
un
0

0.
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According to the definition of the operatorW22(u) and the vectorf l
l ~4.5!, the coefficient of

W22(u) f l
l

^ f l
l with respect tof l

l
^ f l

l is equal to

1

@2lp12\# (
r PP1

@2l r12\#W21S l l

l1 p̂ l1 r̂
UuDW21S l1 p̂ l1 r̂

l l
Uu1\ D . ~4.18!

In this summation, ifr is equal to2p, then

W21S l l

l1 p̂ l2 p̂
UuD 50,

so that~4.18! can be rewritten as

W21S l l

l1 p̂ l1 p̂
UuDW21S l1 p̂ l1 p̂

l l
Uu1\ D

1 (
qPP1
qÞ6p

@2lq12\#

@2lp12\#
W21S l l

l1 p̂ l1q̂
UuDW21S l1 p̂ l1q̂

l l
Uu1\ D .

By means of~4.12!, ~4.13!, and~4.14!, this function is equal to

@u2\#@u#@u1\#@u12\#@u13\#@u14\#@2\#

@23\#3@\#4

3S @u1\#@u12\#

@2\#@23\# )
qPP1
qÞ6p

@lp1q2\#@lp1q12\#

@lp1q#@lp1q1\#

1
@\#

@23\# (
qPP1
qÞ6p

@2lq22\#

@2lq#

@lp1q12\1u#@lp1q2\2u#@lp2q2\#

@lp1q#@lp1q2\#@lp2q1\# D .

To obtain the formula~4.17!, we use the following lemma.
Lemma 2: For any pPP1 , we have

@u1\#@u12\#

@2\#@23\# )
qPP1
qÞ6p

@lp1q2\#

@lp1q#

@lp1q12\#

@lp1q1\#

1
@\#

@23\# (
qPP1
qÞ6p

@2lq22\#

@2lq#

@lp1q12\1u#@lp1q2\2u#@lp2q2\#

@lp1q#@lp1q2\#@lp2q1\#

5
@u#@u13\#

@6\#@23\# (
r 56e1
s56e2

@2l r12\#@2ls12\#

@2l r #@2ls#

@l r 1s25\#@l r 1s12\#

@l r 1s#@l r 1s1\#
1

@u16\#@u23\#

@6\#@u13\#
.

~4.19!

Proof: Let f (lp) be ~the left-hand side!2~the right-hand side! of ~4.19!, regarded as a func
tion of lp . It is doubly periodic function of the periods 1,t. Let us show that it is entire. The
apparent poles off (lp) are located at

lp5lq , lp5lq6h~p,qPP1 ,p1qÞ0!, lp50~pPP1!.
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Note that the left-hand side of~4.19! is clearly invariant underlq°2lq , and the right-hand side
is W invariant. In view of the symmetry, it suffices to check the regularity atlp5lq , lp5lq

2\, andlp50. By the three-term identity~3.13!, it is easy to see that the residue off (lp) at
lp5lq2\ vanishes. Manifestly, the pointlp5lq andlp50 is regular.

Now we have proved thatf (lp) is independent oflp . We will show f (2lq22\)50. This
can be directly checked by using the identity~3.13! twice, and the proof completes. h

V. COMMUTATIVITY OF THE DIFFERENCE OPERATORS

This section is devoted to the proof of commutativity of the difference operators@Theorem
1~i!#. For tPPd1Pd8 we will introduce the matricesAt(luu,v), Bt(luv,u) whose index set is
I tª$(p,q)PPd3Pd8up1q5t%:

At~luu,v !~r ,s!
~p,q!

ªWd2S l l1 p̂

l l1 r̂
UuDWd82S l1 p̂ l1 t̂

l1 r̂ l1 t̂
Uv D ,

Bt~luv,u!~r ,s!
~p,q!

ªWd82S l l1q̂

l l1 ŝ
Uv DWd2S l1q̂ l1 t̂

l1 ŝ l1 t̂
UuD .

With these matrices, we can write down both the left- and right-hand sides as

Md~u!Md8~v !5 (
tPPd1Pd8

tr At~luu,v !Tt̂ , Md8~v !Md~u!5 (
tPPd1Pd8

tr Bt~luv,u!Tt̂ .

Let us also define the matrixWt(luu2v) with the same index set:

Wt~luu2v !~r ,s!
~p,q!

ªWdd8S l l1 p̂

l1 ŝ l1 t̂
Uu2v D .

The YBE ~2.3! implies

Wt~luu2v !At~luu,v !5Bt~luv,u!Wt~luu2v !.

By the inversion relation~3.8!, it can be seen thatWt(luu2v) is invertible for genericu,vPC. It
follows that trAt(luu,v)5tr Bt(luv,u) for all u,vPC. Hence, we haveMd(u)Md8(v)
5Md8(v)Md(u) for all u,vPC.

VI. SPACE OF WEYL GROUP-INVARIANT THETA FUNCTIONS

This section is devoted to the proof of Theorem 2. LetQ∨, P∨ be the coroot and coweigh
lattice, respectively. Under the identificationh5h* via the form~,!, these are given by

Q∨5Z2e1% Z2e2 , P∨5Q∨1Z~e11e2!.

Lemma 3: For allbPP∨ and d51,2, we have

@Stb ,Md~u!#5@Sb ,Md~u!#50. ~6.1!

Proof: Note that if p,qPP1 (qÞ6p) and bPP∨ then bp1qPZ. By the quasiperiodicity
~2.2!, we have

@~l1tb!p1q2\#

@~l1tb!p1q#
5e2p ibp1q\

@lp1q2\#

@lp1q#
,

@~l1b!p1q2\#

@~l1b!p1q#
5

@lp1q2\#

@lp1q#
.

Using these equations, we have, for allpPP1 ,
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Stb )
qÞ6p

@lp1q2\#

@lp1q#
Tp̂f ~l!5e2p i „~l,b!1t~b,b!/2… )

qÞ6p

@~l1tb!p1q2\#

@~l1tb!p1q#
f ~l1tb1 p̂!

5e2p i ~~l,b!1t~b,b!/212bp\! )
qÞ6p

@lp1q2\#

@lp1q#
f ~l1tb1 p̂!

5 )
qÞ6p

@lp1q2\#

@lp1q#
Tp̂Stb f ~l!,

and

Sb )
qÞ6p

@lp1q2\#

@lp1q#
Tp̂f ~l!5 )

qÞ6p

@~l1b!p1q2\#

@~l1b!p1q#
f ~l1b1 p̂!

5 )
qÞ6p

@lp1q2\#

@lp1q#
f ~l1b1 p̂!

5 )
qÞ6p

@lp1q2\#

@lp1q#
Tp̂Sb f ~l!.

Note that 2bp\5( p̂,b), etc. Hence, we have@Stb ,M1(u)#5@Sb ,M1(u)#50. In the same way,
we can see that the principal part ofM̃2 commutes withStb andSb , using the equations

@~l1tb!p1q2\#

@~l1tb!p1q1\#
5e2p i ~2bp1q\!

@lp1q2\#

@lp1q1\#
,

@~l1b!p1q2\#

@~l1b!p1q1\#
5

@lp1q2\#

@lp1q1\#
.

Using ~2.2! it is easy to see that the function,

Cp,q~l!ª
@2\#

@6\#

@2lp12\#

@2lp#

@2lq12\#

@2lq#

@lp1q25\#

@lp1q1\#

@lp1q12\#

@lp1q#
~p,qPP1 ,p1qÞ0!,

satisfies Cp,q(l1b)5Cp,q(l1tb)5Cp,q(l)(;bPP∨). This means thatStb , Sb (bPP∨)
commute with a multiplication byCp,q(l). h

Lemma 4: For allgPP∨, we have

StgThW,ThW, SgThW,ThW. ~6.2!

Proof : Let f PThW and gPP∨. Since the bilinear form~,! is W invariant, we have
(Stg f )(wl)5(Stw21(g) f )(l). Using ~2.5!, we can write this as (StgSt(w21(g)2g) f )(l), which is
equal toStg f (l) in view of w21(g)2gPQ∨. In the same way, we can show that (Sg f )(wl)
5(Sg f )(l).

Evidently,Stg f andSg f are holomorphic. For allaPQ∨, using~2.5! and~g,a!PZ, it can be
seen that the operatorsSa , Sta commute withSg , Stg . Hence,Stg f or Sg f are fixed bySta and
Sa . h

Here we prove Theorem 2.
Proof of Theorem 2:Let f be any function inThW. In view of ~6.1!, we haveSaM̃df

5StaM̃df 5M̃df for all aPQ∨,P∨. It is clear from the explicit form ofM̃d that M̃df (wl)
5M̃df (l) for all wPW.

Let us show that the functionM̃df is holomorphic onh* . For mPh* andzPC, we denote by
Dm

z the line inh* , defined by

Dm
z
ª$lPh* u~l,m!1z50%.
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The coefficients of the difference operatorsM̃d have their possible simple poles alongD1P∨

1tP∨, where we put

Dª ø
pPR1

Dp
0 ø ø

qPP22$0%

Dq
\ ,

andR1 is a fixed set of positive roots.
Next we will show that for any functionf in ThW, M̃df is regular alongD. Let us consider the

meromorphic functiongª(PpPR1
@lp#) M̃df , which is regular alongD0

ªøpPR1
Dp

0. SinceM̃df

is W invariant, it is clear thatg is W anti-invariant. This implies thatg has zero alongD0 and hence
M̃df is regular alongD0.

The holomorphy alongøqPP22$0%Dq
\ is somewhat nontrivial. Letp56e1 , q56e2 . Clearly,

M̃1f is regular alongDp1q
\ . Let us consider the functionM̃2f . It suffices to show that the

following function is regular alongDp1q
\ :

@lp1q2\#

@lp1q1\#
Tp̂Tq̂f ~l!1

@2\#

@6\#

@2lp12\#

@2lp#

@2lq12\#

@2lq#

@lp1q25\#

@lp1q1\#

@lp1q12\#

@lp1q#
f ~l!.

We note that, for anyW-invariant functionf, we have (Tp̂Tq̂f 2 f )uD
p1q
\ 50. In view of this, the

residue of the above function alongDp1q
\ is easily seen to vanish. Thus, we have proved that

any functionf in ThW, the functionsM̃df (d51,2) are regular alongD.
For b,gPP∨, we have, by the definitions ofStb , Sg , and~6.1!,

M̃df ~l1bt1g!5e22p i „~l,b!1t~b,b!/2…StbSgM̃df ~l!5e22p i „~l,b!1t~b,b!/2…M̃dStbSg f ~l!.
~6.3!

SinceStbSg f belongs toThW by ~6.2!, M̃dStbSg f is regular alongD. Then~6.3! implies thatM̃df
is regular alongD1bt1g. The proof is completed. h
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APPENDIX: SIMILARITY TRANSFORMATION

Our Boltzmann weights in Sec. III and the original form in Ref. 6 are slightly different.
original form of type~3.3! and ~3.4! are given as follows:

p

q
un
q

p5
@c2u#@u#

@c#@\# S @lp2q1\#@lp2q2\#

@lp2q#2 D 1/2

~pÞ6q!, ~A1!

p

q
un

2p
2q5

@u#@lp1q1\1c2u#

@c#@lp1q1\#
~GlpGlq!1/2 ~pÞq!. ~A2!

All the other Boltzmann weights@~3.1!,~3.2!,~3.5!# are the same as the ones we adopted in Sec
We denote these weights by
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WJMOS l m

k n
UuD .

Our Boltzmann weights are obtained from those by the following way. We introduce an ord
on the setP as

e1ae2a¯aena2ena¯a2e2a2e1 .

For l,mPh* , such thatm2l5q̂P2\P, we define the functions(l,m) by

s~l,m!ª)
pPP
paq

@lp2q#21/2@mp2q#21/2. ~A3!

The relation between the Boltzmann weightsW in Sec. III and the ones in Ref. 6 is as follows

WS l m

k n
UuD 5

s~l,m!s~m,n!

s~l,k!s~k,n!
WJMOS l m

k n
UuD . ~A4!
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