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Using the extended tight-binding model that allows bond lengths and angles to vary, the optical
transition energiesEii in single-wall carbon nanotubes are calculated as a function of inverse tube
diameter. After geometrical structure optimization, the 2n+m=constant family behavior observed in
photoluminescence(PL) experiments is obtained, and detailed agreement between the calculations
and PL experiments is achieved after including many-body corrections. ©2004 American Institute
of Physics. [DOI: 10.1063/1.1829160]

The electronic band structure of single-wall carbon
nanotubes(SWNTs) is often obtained by applying the zone-
folding scheme to the band structure of the graphene layer,
where the latter is calculated within the tight-binding(TB)
approximation.1 The TB transfer and overlap integrals are
then fitted to the results of experiments, such as resonance
Raman scattering (RRS)2 or scanning tunneling
spectroscopy.3 While this approach provides reliable results
for larger diameter SWNTss.1.2 nmd,4 it fails in the smaller
diameter regions,1.2 nmd, as has been shown recently in
photoluminescence(PL) studies of SWNTs dispersed by a
surfactant in an aqueous solution.5 An empirical fitting ap-
proach was developed by Weisman and Bachilo to reproduce
the results of the PL experiments.6 In this letter, we present
an extension of the zone-folding scheme and the TB approxi-
mation to the smaller diameter region which agrees well with
the PL empirical fit,6 thus providing a theoretical basis to
account for this empirical fit that can now be safely applied
to many experiments. It can also be extended to predict elec-
tronic and optical properties of SWNTs over a wider SWNT
diameter and energy range, as well as for metallic SWNTs
that are missing from the PL empirical fit due to the quench-
ing of the PL signal by metallic SWNTs.

The optical properties of SWNTs are determined by the
electronic transitions between van Hove singularities(vHSs)
in the density of states(DOS) arising from the one-
dimensional(1D) structure of SWNTs. These transition en-

ergiesEii between vHSs for SWNTs of different structural
sn,md indices are commonly summarized in the so-called
Kataura plot that is widely used in RRS and PL studies of
SWNTs.7 The Kataura plot depicts theEii as a function of
SWNT diameterssdtd or inverse SWNT diameterss1/dtd.
For each sn,md SWNT, dt=aÎn2+nm+m2/p, where a
=Î3aCC is the graphene lattice constant, andaCC

=0.142 nm is the C–C interatomic distance.1 TheEii energies
in the Kataura plot are arranged in bands(E11

S ,E22
S ,E11

M , etc.)
for semiconducting(S) and metallic(M) SWNTs, respec-
tively, where the indexi enumerates the vHSs in the valence
and conduction bands away from the Fermi level. Within
each band in the Kataura plot, theEii energies observed from
PL measurements follow “family” patterns for SWNTs with
2n+m=3p+r, wherep is an integer andr =0,1,2 define me-
tallic, semiconducting type I(SI) and type II(SII) SWNTs,
respectively. The PL empirical fit6 provides the first two op-
tical transition energies for S SWNTs,E11

S and E22
S . When

comparing the Kataura plot obtained from the PL empirical
fit6 with the one calculated from the TB approximation,7 two
major differences can be found. First, the experimental
E22

S /E11
S ratio in the largedt limit is less than 2, while the

tight-binding E22
S /E11

S ratio approaches 2 with increasingdt

(the “ratio” problem). Second, the empirical spread of theEii
S

energies within the same 2n+m=constant family is much
larger than the corresponding spread of the TBEii

S energies at
constantdt (the “family spread” problem). While the “ratio”
problem can be explained by many-body effects,8 the “fam-
ily spread” is mainly attributed to the curvature effects and to
the C–C bond length optimization in smallerdt SWNTs,
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which are missing from the conventional TB approximation.1

Meanwhile, it has been shown that long-range interactions of
the p orbitals are not negligible,9 and curvature of SWNT
sidewalls yields thesp2–sp3 rehybridization in the smalldt
limit. The curvature effect can be included in the TB model,
as has been recently reported,10 by extending the basis set to
the atomics, px, py, and pz orbitals that form thes and p
molecular orbitals according to the Slater–Koster
formalism.1 This extended tight-binding(ETB) model uti-
lizes the TB transfer and overlap integrals as functions of the
C–C interatomic distance calculated within a density-
functional theory(DFT) framework,11 thus including long-
range interactions and bond-length variations within the
SWNT sidewall. The atomicp-orbitals are aligned in the
cylindrical coordinates of the SWNT sidewall according to
the symmetry-adapted scheme10 (pz is orthogonal to the
SWNT sidewall, whilepx and py are parallel to the SWNT
sidewall for each C atom), which allows us to consider an
838 Hamiltonian for the graphene unit cell of two C atoms
(A and B), even for chiral SWNTs with large translational
unit cells, thus greatly simplifying the calculations. Further-
more, the total energy of the SWNT can be calculated using
the short-range repulsive potential obtained from DFT
calculations,11 and the geometrical structure optimization can
then be performed.10 As shown elsewhere,10 the resulting
optimized SWNT diameterdt

ETB slightly exceeds its ideal
valuedt=aÎn2+nm+m2/p. It is essential to utilize the opti-
mized SWNT structure since the family spread in the Ka-
taura plot is very sensitive to the relaxed atomic positions.

We have used the ETB model10,11 first to optimize the
SWNT structure and then to calculate the vHSs in the DOS
of SWNTs and finally to construct the Kataura plot which is
shown in Fig. 1(a). By comparing it to the PL empirical fit,6

we found that the family spread observed in PL studies is
closely reproduced by the ETB approximation. The ETB
model thus provides the proper chirality dependence for the
Eii energies, since the SWNT chirality changes from
armchair-likesAd to zigzag-likesZd along 2n+m=constant
family lines. The differences between theEii

PL energies ob-
tained from PL measurements6 and the correspondingEii

ETB

energies calculated from the ETB model, hereafter referred

to asDEii , thus weakly depend on the SWNT chirality(gen-
erally within the accuracy of PL measurements), while they
show a monotonic dependence ondt.

These energy differences can be explained by many-
body effects, which consist of electron–electron Coulomb
repulsion that upshiftsEii and of the exciton binding that
downshifts Eii .

12 Because of the 1D SWNT structure,
electron–electron Coulomb repulsion exceeds the exciton
binding so that, overall, many-bodyEii energies are upshifted
from one-electronEii energies.12 Since the Coulomb interac-
tion range in SWNTs is of the order of 10 nm,13 which is
much larger thandt, the many-body corrections toEii are
weakly sensitive to the SWNT chirality but essentially only
depend ondt, on the subband indexi =1 or 2, and on the S
type I or II. We thus fittedDE11

SI ,DE11
SII,DE22

SI, and DE22
SII as

functions ofdt for all sn,md SWNTs observed in PL studies.6

The fit yields

DE11
SI = E11

SI PL − E11
SI ETB = s0.15 + 0.11 nm/dtdeV,

DE11
SII = E11

SII PL − E11
SII ETB = s0.12 + 0.11 nm/dtdeV,

DE22
SI = E22

SI PL − E22
SI ETB = s0.25 − 0.03 nm/dtdeV,

DE22
SII = E22

SII PL − E22
SII ETB = s0.31 − 0.03 nm/dtdeV. s1d

We add DE11
S and DE22

S given by Eq. (1) to E11
S and E22

S

calculated in the ETB model, and then plot the resultingE11
S

and E22
S as a function of 1/dt in Fig. 1(b). For comparison,

E11
S andE22

S from the PL empirical fit6 are also plotted. One
can see detailed agreement between the ETB calculations
and the PL empirical fit once the many-body corrections of
Eq. (1) are taken into account.

The families of 2n+m=constant bend downward with
increasing 1/dt in the smallerdt region, as shown in Fig.
1(b), in full agreement with the PL empirical fit.6 When us-
ing the conventionalp-band nearest-neighbor TB approxi-
mation, the 2n+m=constant families never bend down, but
rather follow the same general tendency of a linear increase
in Eii as 1/dt increases. It should be emphasized that when
applying the ETB model for the nonoptimized SWNT struc-
ture, the calculated family spread is not nearly large enough
to fit the spread observed experimentally. This indicates the
importance of the geometrical structure optimization on the
Eii values.

To compare the SWNT structures optimized by using the
ETB model with the results of other independent geometrical
structure optimizations, we plot the change in the C–C bond
lengths for each SWNT as a function of curvatures1/dt

2d in
Fig. 2. Similar calculations have been performed by Kana-
mitsu et al.14 for zigzag SWNTs using the DFT framework.
Kanamitsu’s bond lengths are also shown for comparison
with our calculations. We can see in Fig. 2 that the results of
the two independent geometrical structure optimizations
agree with each other and follow the same general pattern,
yet some deviations are also present[for example, at 1/dt

2

=0.033 Å−2 for the (7,0) SWNT]. One of the two bond
lengths for zigzag SWNTs increases with curvature while the
other decreases, in agreement with the physical picture that
the optimization process increases the SWNT diameter(from
dt to dt

ETB) and shrinks the SWNT length. This optimization

FIG. 1. (a) “Kataura” plot of transition energiesEii vs inverse diameter 1/dt

for metallic (closed dots) and semiconducting type I(open dots) and type II
(marked dots) SWNTs based on the extended tight-binding(ETB) model
after geometrical structure optimization.(b) Comparison between the ETB
calculations forE11

S andE22
S and the PL empirical fit(crosses)—Ref. 6—after

making the many-body corrections of Eq.(1).
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becomes more important asdt decreases.10 The SWNT struc-
tures optimized by using the ETB model are thus consistent
with other available data.

Once the geometrical structure optimization is per-
formed and theEii energies are calculated, we plot them as a
function of 1/dt in the Kataura plot as shown in Fig. 1.
However, the Kataura plot used in RRS studies of SWNTs
depicts theEii energies as a function ofvRBM, the radial-
breathing mode(RBM) Raman frequency, which is known to
vary as 1/dt.

15 The force-constants for the RBM and other
phonon modes can also be calculated for the optimized
SWNT structures using the ETB model. The total energy for
each SWNT is first calculated and its second derivative is
then taken for the atomic displacements along the phonon
eigenvector(which corresponds to an increase indt in the
case of the RBM) yielding the force-constant for this particu-
lar phonon mode. The calculated RBM frequenciesvRBM

ETB are
shown as a function of 1/dt in Fig. 3. The calculatedvRBM

ETB

follows a linear dependence with 1/dt up to the smallerdt

region, wherevRBM
ETB slightly downshifts from the linear be-

havior, in agreement with published results.15 By fitting the
calculated vRBM

ETB , we obtain vRBM
ETB =254 cm−1 nm/dt. The

proportionality coefficient 254 cm−1 nm is slightly higher
than the values observed experimentally in RRS studies of
SWNTs (223–248 cm−1 nm for different samples2,4,5). The
calculated force-constants are generally upshifted from ex-
perimental values according to the variational principle. Thus
thevRBM calculated from first principles should generally be
scaled down by,10%. Such scaling brings the calculated
vRBM

ETB down to the experimental range of the observedvRBM.
Using the proper RBM proportionality coefficient for a spe-
cific SWNT sample, the Kataura plot in Fig. 1 can be re-
drawn as a function ofvRBM for its practical use in RRS
studies. Furthermore, the geometrical structure optimization
can be performed in the presence of different SWNT wrap-
ping agents, thus allowing us to predict theoretically the ob-
served changes in theEii energies for different SWNT
samples.

In summary, a theoretical basis is provided in support of
the PL empirical fit6 for the optical transition energies in
SWNTs. The model may be extended with future experi-
ments to a wider SWNT diameter range, to other electronic
subbands beyondE11

S andE22
S , to metallic SWNTs not seen in

PL studies, and to experimental SWNT samples containing a
variety of surfactants and wrapping agents, and whether or
not SWNTs are suspended, or are on particular substrates,
and whether the SWNTs are solvated or not.
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FIG. 2. Differences between the C–C bond lengthsaCC
ETB for each SWNT and

aCC=0.142 nm in the flat graphene layer as a function of curvature 1/dt
2.

Open, closed, and gray dots denote the bond lengths of zigzag, armchair,
and chiral SWNTs, respectively, calculated from the ETB model for the
optimized SWNT structures. For comparison, crosses show the bond lengths
of zigzag SWNTs from DFT calculations(Ref. 14).

FIG. 3. The radial-breathing mode(RBM) frequenciesvRBM
ETB for each

SWNT as a function of inverse diameter 1/dt. The frequenciesvRBM
ETB are

calculated from the extended tight-binding(ETB) model for the optimized
SWNT structures. Closed, open, and marked dots correspond to metallic,
semiconducting type I, and type II SWNTs, respectively. The line shows a
linear fit vRBM

ETB =254 cm−1 nm/dt to the calculated points.
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