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Abstract. Recent measurements for fusion cross section at energies around the Coulomb barrier
have systematically indicated a significant deviation of fusion cross sections from a prediction of

double-folding model. It has been argued that the deviation can be accounted for if one uses a large
value of surface diffuseness parameter for a Woods-Saxon internuclear potential. We investigate
this problem using large-angle quasi-elastic scattering, that is a good counterpart of fusion reaction.
Towards a reconciliation of the apparent anomaly in the diffuseness parameter for fusion reactions,

we also discuss possible ingredients which are missing in present nuclear reaction models. Those
include a deviation from the frozen density approximation, the effect of antisymmetrization and the
role of coordinate dependent moment of inertia for the relative motion between the colliding nuclei.

Keywords: Quasi-elastic scattering, internucleus potential, antisymmetrization, resonating group

method, double folding model, coupled-channels method
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INTRODUCTION
It has been recognized for some time that fusion reactions at energies around the

Coulomb barrier require a large value of surface diffuseness parameter if one uses the

Woods-Saxon parametrization for an internuclear potential [1–8]. For calculations of

elastic and inelastic scattering, which are sensitive only to the surface region of the nu-

clear potential, the diffuseness parameter of around 0.63 fm has been conventionally

employed [9, 10]. This value of surface diffuseness parameter has been well accepted,

partly because it is consistent with a double folding potential [11]. In contrast, a recent

systematic study has shown that experimental data for heavy-ion fusion reactions require

a larger value of the diffuseness parameter, ranging between 0.75 and 1.5 fm, as long as

the Woods-Saxon parameterization is employed [8].

In this contribution, we present our recent systematic analyses on this problem using

large-angle quasi-elastic scattering [12, 13]. Quasi-elastic scattering (a sum of elastic,

inelastic, and transfer channels) is a good counterpart of fusion reaction [14, 15]. Firstly,

both are inclusive processes in a sense that the final configurations (channels) of the

projectile and target nuclei are all summed up. The former is related to the reflection

probability at the Coulomb barrier, while the latter to the penetration probability. Since

the reflection and the penetration probabilities are related to each other by the unitarity

condition, so are the quasi-elastic and fusion cross sections. Secondly, at energies close

to the Coulomb barrier, both are sensitive to the collective inelastic excitations of the

colliding nuclei and/or transfer process [16, 17]. Using this fact, the experimental barrier

distribution, originating from the channel coupling effects[18], has been extracted for

many systems from both fusion and quasi-elastic cross sections [4, 16, 19].

86

CP853, FUSION06, edited by L. Corradi, D. Ackermann, E. Fioretto, 
A. Gadea, F. Haas, G. Pollarolo, F. Scarlassara, S. Szilner, and M. Trotta

 © 2006 American Institute of Physics 0-7354-0349-X/06/$23.00

Downloaded 09 Feb 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp

http://dx.doi.org/10.1063/1.2338360


10-3

10-2

10-1

100

P(
E

)

No Coupling
Coupled Channels

-10 -5 0 5 10
E - Vb

10-3

10-2

10-1

100

R
(E

) =
 1

 - 
P(

E
)

FIGURE 1. The penetrability (the upper panel) and the reflection probability (the lower panel) for a

two-channel problem.

LARGE-ANGLE QUASI-ELASTIC SCATTERING AT DEEP
SUB-BARRIER ENERGIES

Advantages of using deep sub-barrier data

In investigating internuclear potentials using heavy-ion quasi-elastic scattering, we

are particularly interested in the deep sub-barrier region. At these energies, the cross

sections of (quasi)elastic scattering are close to the Rutherford cross sections, with

small deviations caused by the effect of nuclear interaction. This effect can be taken

into account by the semiclassical perturbation theory. The ratio of elastic scattering σel
to Rutherford cross sections σR at a backward angle θ is given by [14, 20]

dσel(Ecm,θ)

dσR(Ecm,θ)
∼ 1+

VN(rc)

ka

√
2aπkη
Ecm

, (1)

where Ecm is the center-of-mass energy, k =
√

2μEcm/h̄2, μ being the reduced mass, and

η is the Sommerfeld parameter. This formula is obtained by assuming that the nuclear

potential VN(r) has an exponential form, exp(−r/a), around the distance of closest

approach, rc. We see from this formula that the deviation of the elastic cross sections

from the Rutherford ones is sensitive to the surface region of the nuclear potential,

especially to the surface diffuseness parameter a.

There is another advantage of using the deep sub-barrier data. That is, the effect of

channel coupling on quasi-elastic scattering can be disregarded at these energies, since
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the reflection probability is almost unity irrespective of the presence of channel cou-

plings, even though inelastic channels themselves may be strongly populated [13]. This

is similar to fusion at energies well above the Coulomb barrier, where the penetrability

is almost unity [8]. We illustrate this in Fig. 1 for a two-channel problem.

From these considerations, it is evident that the effect of surface diffuseness parameter

can be studied in a transparent and unambiguous way using the large-angle quasi-elastic

scattering at deep sub-barrier energies.

Spherical systems

Let us now show the results of our analyses. In order to analyze the experimental

data at deep sub-barrier energies, we use a one-dimensional optical potential with the

Woods-Saxon form. Absorption following transmission through the barrier is simulated

by an imaginary potential that is well localized inside the Coulomb barrier. This model

calculates the elastic and fusion cross sections, in which the elastic cross sections can

be considered as quasi-elastic cross sections to a good approximation at these deep sub-

barrier energies.

In order to carry out a systematic study, we estimate the Coulomb barrier height using

the Akyüz-Winther potential [9]. We then vary the surface diffuseness parameter while

keeping the barrier height. We define the region of “deep sub-barrier energies” as the

region where the experimental value of the ratio of the quasi-elastic to the Rutherford

cross sections is larger than around 0.94. See Ref. [12] for more details.

Figure 2 compares the experimental data with the calculated cross sections obtained

with different values of the surface diffuseness parameter for the 32S + 197Au system

(the upper panel) and the 34S + 197Au system (the lower panel). The best fitted values

for the surface diffuseness parameter are a = 0.57±0.04 fm and a = 0.53±0.03 fm for

the 32S and 34S + 197Au reactions, respectively. The cross sections obtained with these

surface diffuseness parameters are denoted by the solid line in the figure. The dotted

and the dot-dashed lines are calculated with the diffuseness parameter of a = 0.80 fm

and a = 1.00 fm, respectively. It is evident from the figure that these spherical systems

favor the standard value of the surface diffuseness parameter, around a = 0.60 fm. The

calculations with the larger diffuseness parameters underestimate the quasi-elastic cross

sections and are not consistent with the energy dependence of the experimental data. We

obtain a similar conclusion for the 32,34S + 208Pb and 16O + 208Pb systems[12].

Deformed systems

We next analyse deformed systems, 16O + 154Sm, 186W [12, 13]. For these systems,

only a few data points are available at deep sub-barrier energies. We therefore include

the experimental data at energies not only well below but also around the lowest barrier

in the χ2 fitting procedure. At these energies, the channel coupling effects start playing

an important role in quasi-elastic reactions, and we include the effect of deformation of

the target nucleus in our calculations [12, 14, 15].

88

Downloaded 09 Feb 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



 0.94

 0.96

 0.98

 1

 1.02

dσ
qe

l/d
σ R

 (θ
la

b=
15

9 
de

g) S+197Au32

Expt.
a = 0.57 fm
a = 0.80 fm
a = 1.00 fm

 0.94

 0.96

 0.98

 1

 1.02

 116 118 120 122 124 126 128 130 132

dσ
qe

l/d
σ R

 (θ
la

b=
15

9 
de

g)

Ec.m.[MeV]

S+197Au34

Expt.
a = 0.53 fm
a = 0.80 fm
a = 1.00 fm

FIGURE 2. The ratio of the quasi-elastic to the Rutherford cross sections at θlab = 159◦ for the 32S +
197Au (the upper panel) reaction and for the 34S + 197Au (the lower panel) reaction.

The best fitted value for the surface diffuseness parameter obtained in this way is

a = 1.14 ± 0.03 fm and 0.79 ±0.04 fm for the 16O + 154Sm and 16O + 186W reac-

tions, respectively. For the 16O + 154Sm reaction, the calculated cross sections with the

standard value of the surface diffuseness parameter around 0.60 fm are found to be in

strongly disagreement with the experimental data.

Although these large values of surface diffuseness parameter are consistent with

that extracted from fusion, the origin of the difference between the spherical and the

deformed systems is not clear. One should bear in mind, however, that our analyses

for the deformed systems are somewhat model dependent as we needed to include the

deformation effect in the calculations. Also, there might be a problem of normalization

in the experimental data [21]. Since these experiments were performed in aiming at

extracting the quasi-elastic barrier distribution, rather than extracting the value of surface

diffuseness parameter, the experimental data were arbitrarily normalized to unity at the

lowest energy. (Notice that the shape of barrier distribution is rather insensitive to the

absolute normalization factor.) If the data had been normalized at a different energy, a

different conclusion concerning the value of surface diffuseness parameter might have

been achieved.

In order to clarify the difference in the diffuseness parameter between the spherical

and the deformed systems, apparently further precision measurements for large-angle

quasi-elastic scattering at deep sub-barrier energies will be necessary, especially for

deformed systems.
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DISCUSSIONS

The value of the surface diffuseness parameter obtained in this study for the spherical

systems agrees well with the conventionally used value a ∼ 0.63 fm. This value is

consistent with the double folding potential, suggesting that the double folding model

is valid at least in the surface region and for systems which do not involve a deformed

target. The discrepancy between the values of the diffuseness parameter determined from

fusion data and those from quasi-elastic data must be related with the dynamics inside

the Coulomb barrier [8].

In this connection, it is instructive to step back to the original many-body Hamiltonian

of the system,

H = ∑
i

ti + ∑
i< j

vi j, (2)

where ti is the kinetic energy for a nucleon i and vi j is a two-body interaction between

nucleons. The philosophy of any reaction model is to somehow extract the degree of

freedom for the relative motion from the original many-body Hamiltonian (2) and write

it in a form of

H = Hrel +Hs.p. +Hcoup, (3)

where Hrel is the Hamiltonian for the relative motion which describes the scattering

process (the “collective” degree of freedom), Hs.p. is the Hamiltonian for other degrees

of freedom than the relative motion (“non-collective” degrees of freedom), and Hcoup is

the coupling term between the relative motion and the non-collective degrees of freedom.

Although it is an extremely difficult task to extract the degree of freedom for the

relative motion from the original many-body Hamiltonian in a consistent manner, let us

assume that it can be achieved in some way. Yet, it is difficult to treat the coupling term,

Hcoup exactly. One usually takes one of the following approaches for this purpose.

• Sudden approach

This approach is justified if the reaction takes place suddenly and/or the coupling

term Hcoup is negligibly small. The double folding model[9], the optical model,

the coupled-channels model[22], and the resonating group method (RGM) [23] are

categorized to this approach. In this approach, the constant reduced mass is usually

used for the moment of inertia for the relative motion.

• Adiabatic approach

This is in the opposite limit to the sudden approach, and is justified if the reaction

takes place very slowly. The liquid-drop + shell correction model [24] and the adia-

batic time-dependent Hartree-Fock (ATDHF) method [26–30] are in this category.

For the region where the colliding nuclei do not significantly overlap with each other,

both the sudden and the adiabatic approaches would lead to a similar result. However,

for the region inside the Coulomb barrier, one may obtain considerably different results

depending on which approach one employs. Since one would not know a priori which

approach is more reasonable, one has to investigate both of the two approaches simul-

taneously. An important thing is that, in either of sudden or adiabatic approach, we are

now at the stage where the present nuclear reaction models have to be re-examined by

taking into consideration the many-particle nature of nuclear reactions.
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Sudden approach: role of antisymmetrization

A typical model in the sudden approach is the double-folding model [9], where

the internucleus potential is constructed by convoluting an effective nucleon-nucleon

interaction with the ground state density distributions of the projectile and the target

nuclei. This potential corresponds to the direct (“Hartree”) part of a microscopic ion-

ion potential. This model will thus be reasonable for the small overlap region, but is

questionable for the large overlap due to the Pauli exclusion principle.

This can be easily understood if one considers a simple two nucleon system, where

two nucleons are confined in potential wells whose center is located at ±R/2, respec-

tively. If one ignores the Pauli principle and takes only the direct term, the two particle

wave function is given by

Ψ(�r1,�r2) = φR(�r1)φL(�r2), (4)

where φR and φL are the ground state wave function for the right and the left hands side

of potential wells, respectively. From this wave function, the one-body density reads,

ρ(�r) = 〈Ψ|δ (�r−�r1)+δ (�r−�r2)|Ψ〉 = |φR(�r)|2 + |φL(�r)|2 ≡ ρR(�r)+ρL(�r). (5)

This is exactly what one obtains in the so called frozen density approximation. One

obtains an unphysically high density matter in the limit of R → 0 in this approximation.

In contrast, if one takes into account the Pauli principle, the two particle wave function

is given by

Ψ(�r1,�r2) = [φR(�r1)φL(�r2)−φR(�r2)φL(�r1)]/
√

2(1−S(R)2), (6)

from which one obtains

ρ(�r) = |φ+(�r)|2 + |φ−(�r)|2. (7)

Here, S(R) = 〈φR|φL〉 is the overlap integral between the “right” and “left” wave func-

tions, and φ± ≡ (φR±φL)/
√

2(1±S(R)). Although the density (7) is reduced to Eq. (5)

when the overlap integral S(R) is small, the two densities are considerably different if

the overlap is large. In fact, the density given by Eq. (7) leads to the ground state density

of the two particle system in a unified single potential well in a natural way in the limit of

vanishing R, rather than the unphysical high density matter. An important fact is that the

Pauli principle plays an essential role even in the frozen configuration approximation.

In the double folding model, the effect of Pauli principle is partly taken into account

in a specific manner, i.e., through the so called knock-on exchange potential, where the

interacting pair of nucleons are exchanged to each other. There are however many other

exchange terms from a microscopic point of view, which are not included in the double

folding model. These are the one nucleon exchanges other than the knock-on exchange,

the two nucleon exchanges, and so on. These exchange effects would have to be taken

into account if one discusses the internucleus potential inside the Coulomb barrier.

All the exchange effects can be incorporated in the microscopic RGM method. A

well-known problem of RGM is that it is very difficult to apply it to heavy systems. We

have recently developed the no-recoil approximation, where the recoil effect due to the

exchange of nucleons between the projectile and target nuclei is neglected [31]. We have
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found that the no-recoil approximation works well for the α + 90Zr reaction and heavier

systems. We expect that this no-recoil approximation will provide a useful way to apply

the RGM method even to heavy systems.

Adiabatic approach: role of coordinate dependent mass

The adiabatic approximation is valid when the reaction takes place so slowly that the

non-collective motion adiabatically follows the relative motion at every instant. This

corresponds to the case where the excitation energies for the non-collective degrees

of freedom are large [32, 33]. In the context of heavy-ion collisions, the adiabatic

approximation involves the dynamical change of the density of the colliding nuclei. At

energies around the Coulomb barrier, there are good reasons why the adiabatic approach

may be reasonable. Firstly, the relative velocity between the colliding nuclei is small

around the barrier. Secondly, the dynamical deformation of the densities involves the

excitations (on the sudden basis) of the non-collective degrees of freedom. Among

them, low-lying collective motions can be explicitly included in the coupled-channels

framework, but the remaining excitations are high-lying and the adiabatic treatment

should be adequate.

One of the important consequences of the adiabatic treatment is that the moments

of inertia become coordinate dependent[32]. That is, the Hamiltonian for the relative

motion is now given as

H = − h̄2

2

d
dr

1

M(r)
d
dr

+V (r)+
l(l +1)h̄2

2Θ(r)
, (8)

where M(r) and Θ(r) are the moment of inertia for the translational and the rotational

motions, respectively. (There is an additional complication originating from the way

of quantization with the coordinate dependent mass, which we do not discuss in this

contribution.)

Using a coordinate transformation, the Hamiltonian (8) can be written in a different

form as well. Transforming the coordinate from r to ρ such that M(r) → M̃(ρ) = μ and

Θ(r) → Θ̃(ρ)[24], one obtains

H = − h̄2

2μ
d2

dρ2 +Ṽ (ρ)+
l(l +1)h̄2

2Θ̃(ρ)
. (9)

If one writes this Hamiltonian in a form of

H = − h̄2

2μ
d2

dρ2 +
l(l +1)h̄2

2μρ2 +Ṽ (ρ)+
l(l +1)h̄2

2Θ̃(ρ)
− l(l +1)h̄2

2μρ2 , (10)

it implies that the internucleus potential has a strong angular momentum dependence.

So far, the possibility of coordinate dependent mass has not yet been considered

seriously in the context of heavy-ion reactions, except for Ref. [34]. It would be an

interesting future problem to explore it more systematically in connection to sub-barrier

fusion reactions.
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