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The interactions betweegy orbitals in neighboring sites are investigated in LaMrify taking into account
virtual exchange of electrons and phonons. The spin and orbital ordering temperatures and the spin-wave
dispersion relation are calculated. We find that the orbital ordering is mainly caused by the electronic interac-
tions and that the Jahn-Teller coupling is much smaller than that reported previously. We propose that the
elastic constant shows a characteristic change at tieétBimperature by the spin and orbital couplings and the
higher-order Jahn-Teller coupling.
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[. INTRODUCTION action that exists is necessary to explain CMR. The orbital

ordering in LaMnQi was also studied based on the coopera-
In some classes of transition-metal oxides, degeneracy dive JT effects®®>!®*°The energy splitting of the twe or-
the d orbitals of a transition-metal ion remains and electrondPitals due to the lattice distortion termed the JT eneigy}

have a degree of freedom indicating the occupied orbitalVas estimated to be of the order of 1 eV b}/_%nalyzmg the
This is called the orbital degree of freeddrfor the colossal  °rPital ordering temperaturé, optical spectrd,** and the

. _32 .
magnetoresistand€MR) observed in perovskite manganese ENergy-band calculatiof?~>*We note that in these analyses,

oxides?~*the orbital degree of freedom is considered to playthe electron correlation ef_fect was not'taken Into account
roperly. Actually, the on-site Coulomb interaction between

o morarle, s e gt e o el TR, e rmariay o b ot 1 o
) Y , ; g€ andnich is much larger thai ;7.3 Therefore, it is necessary
orbital ordered phase to a ferromagpetlc metallic one. A P&, reexamine the orbital ordering in LaMg®y considering
ent_compourjd of the CMR manganites, LaI_\/gm@how_s the_ both the cooperative JT effect and the SE interaction under
orbital ordering below 780 K associated with the distortion,q strong electron correlation on an equal footing.
of a MnGy ogtahedron. It has been experimentally .confirmed In this paper, we investigate the interactions betwegn
that the orbital ordering is o€ type” where two kinds of  grpitals in neighboring sites originating from the electron-
orbitals are alternately aligned in thg plane and the planes electron and electron-lattice interactions in LaMn®lagni-
are stacked along theaxis. In addition to the orbital order- tudes of these interactions are determined through the calcu-
ing, the so-called\-type antiferromagneticAF) ordering ap-  lation of the spin and orbital ordering temperatures and the
pears below 145 K, where spins are aligned par@iletipar-  spin stiffness constants. It is shown tlfg; is much smaller
allel) in thexy plane @ axi9).®’ It is well recognized that this than that in the literatur&?4~32and the orbital ordering is
anisotropic magnetic ordering is stabilized by the orbitalmainly caused by the electronic interactions. We find that the
ordering>~*° elastic constant shows a characteristic change at the Ne
In 3d transition-metal compounds with orbital degen-temperature by which the coupling constant of the higher-
eracy, two kinds of mechanisms have been proposed for therder JT effect is estimated. _ _
orbital ordering. One is caused by the superexchaf§ey I_n S_ec. I, t_he model Hamiltonian which describes the
type interaction between orbitals in different sites. This in-Orbital interactions caused by exchanges of electrons and
teraction originates from the virtual exchange of electron?honons is derived. In Sec. lll, we introduce the mean-field
under the strong on-site electron-electron interactidng. approximation in the formulation of the orbital and spin or-
Another mechanism of the orbital ordering is based on co9€'ing témperatures. In Sec. IV, by comparing the theoretical
operative Jahn-TellgiT) effects where the lattice distortion '€SUlts Of the ordering temperatures and the spin stiffness

occurs cooperatively and lifts the orbital degeneracy in th&onstants .W'th th? experimental .values, the_ magnitudes of
transition-metal iond-1° The effective interaction befween the orbital interactions are determined numerically. Tempera-

ure dependence of the elastic constants are studied in Sec. V.

orbitals in this mechanism is caused by virtual exchange o A . .
he last section is devoted to the summary and discussion.

phonons. However, it is usually difficult to separate contri-

butions of these two mechanisms to the orbital ordering. This

is because the two mechanisms provide the effective orbital

interactions cooperativef)23 We start with the following Hamiltonian which includes
It has been supposed that the strong electron-lattice intespin, orbital, and lattice degrees of freedom:

1. MODEL
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H=Het+ Hegart Hiar+ Hstr t He-str T HhiaT- (1 (a)

'H. describes the electronic interactions and consists of three Q i=ix

terms as vi—&y
ﬁic. S =
He: HJ+HH+HAF' (2) l _viy
X X
Vie C

‘H; represents the SE interaction between nearest neighbor- ix
ing (NN) €4 electrons derived from the generalized Hubbard 0,0 0.=0
model with orbital degeneratyas s et

FIG. 1. The modes of the distortion of a Mp@ctahedron(a)

Hy=— E —nin; + S Q, and(b) Q3 modes.
1 S I 2 3
J 2Jl<ij> ( n; j . j)(__TiTj)

1 . 2|3 Hiaw=_ 2 ﬁ—w(p’.f Piet O Cie) (6)
_2‘]22 (Zninj_S'Sj)(Z+T=T=+T:+T} , (3 kE=x,y.z 2 ¢ ¢
w whereqg; is the normal coordinate of lattice vibration with
where letél(u’—l) and Jzztgl(U’Jr I+2J3,). U, U, direction of displacemerg and momentunik, andpg; is the

and | are the intra- and interorbital Coulomb interactions, canonical conjugate momentum qf;. g, andv;, satisfy

and the exchange interaction fey electrons, respectively, he relationu; ;= 1/ NS, /—ﬁ/mwgq@ with N being the
and a relationrJ=U"+1 is assumedJy, is the Hund cou-  total number of Mn sites. The frequency of the lattice vibra-
pling betweere, electrons and,y spin S (S'=3/2), andty  tion is independent ok and is given byw;= VK/m with m

is the transfer intensity between N#,2_,2 orbitals along  peing the mass of an O ion, since only the spring constant
thezaxis. Energy splitting between tveg orbitals due to the  K/2 between NN Mn and O ions is taken into accous,

JT effect is neglected in the denominatorslefandJ,, be-  andH,_,, in Eq. (1) describe the elastic energy and electron-
cause this splitting is much smaller than the Coulombstrain coupling, respectively,as

interactions®*~335; is the spin operator of ag, electron

with S=1/2. 7 is defined as 7 =cos(273m)T;,
—sin(2m/3m;) Ti with (m,,m,,m,)=(1,—1,0), wherd de-

notes a direction of a bond connecting sitesd;. fi isthe  gnd
pseudospin operator for the orbital degree of freedom, and

(T;,)=+(—)1/2 corresponds to the state where the_,2 Vo
(dy2—,2) orbital is occupied by an electron. The second and Hestr="200 \/WZ (UxTix+U,Tiz). 8
third terms in Eq(2) describe the Hund coupling between '
andt,, spins and the AF SE interactiod{r) between NN  Here V is the volume of the system amgj, is the elastic
toq Spins, respectively. These are given by constant. The electron-strain coupling constggis related
to gyt asgo=al/2yN/Vcyg; 1. The bulk distortionau, and
_ — — u, are represented by the elastic straip, (p,p’' =X,Y,2)
Hut+ Har= _‘]Hzi Si'S""‘]AF(iEj) S-S @ as u,=1/y2(e,y—e,) and uz=1/\/€(%ezz— €y~ €4
respectively:’” Schematic pictures of the bulk distortions are
The second and third terms in E@.) describe the electron- presented in Fig. 2. The last term of Ed) describes the
lattice interaction and the lattice dynamics, respectivelyhigher-order JT coupling given by
Here, we consider the displacement of O ions along the di-
rection connecting NN Mn ions, since the motion of O ions
along the other directions does not couple linearly with the
g orbitals. ThusHe 4 is given by

V¢,
Hotr=—5 (U3 +U3), v

V¢
Haiar= B 2 2 ((Qf~ QYT 2QuQuTind (9
with coupling constanB.

Hetatt=— gJTHZEX , QiTi, ) (a) u (b)

(8]

-/

X
whereg;t is the coupling constan@;, andQ;, are the nor- y
mal modes of the lattice distortion at sitegiven by Q;y {— —)
:1/\/5(_UiX+Ui—;(x+Uiy_Ui—§/y) and Qiz:]-/\/g(zviz ﬁ ﬁ
—20i_5,—VixtUi_xx— Uiy FUi_yy). 1 vig is the displace-
ment of an O ion at;+(a/2)& anda is the lattice constant. @
These normal modes are schematically shown in Fig. 1. The
third term in Eq.(1), H,., IS given by FIG. 2. The modes of the bulk straifa) u, and(b) u, modes.
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Now, we derive the effective Hamiltonian describing the 1
intersite  orbital interaction through the exchange of —Cx—Cy —=(cx—¢y)
phonons’ from He jar and Hiar . Helar IS rewritten by us- A 1 V3 an
ing the Fourier transforms ofj;,=1/JNZ;e '"ig;; and K21 1 1 '
Ta=1/yNS;e T, as NER A N e B
I
Heitan= _2|2|:2xz VA oGka T ke - (10" Then, we obtain the effective Hamiltonian for the spin, or-
£=xy,z bital, and lattice degrees of freedom in LaMn@iven by

Here,ggy is defined as

L g Hett=He+ Hiawt Ho-o+ Hestt Heur+ Hnigr-  (18)
JT

ke =5 \/—R(l—e_'kfa)cm, (11
it I1l. MEAN-FIELD APPROXIMATION
wi

In order to calculate the orbital ordering temperature from
1 1 Eq. (18), we introduce the mean-field approximation at finite
E - E 0 temperatures. It is experimentally confirmed that the orbital

_ _ (12) order-disorder transition in LaMnQs of the first order but
¢ 1 1 2 is close to the second-order transition; a discontinuity of the

- % - % % orbital order parameter &t is negligible® Therefore, we
l¢ expect that the higher-order JT coupling, which brings about

Then, by using the canonical transformation, the linear couthe first-order phase transition, is much smaller than the lin-

plings betweere, electrons and lattice distortion are elimi- €ar JT coupling. Thus, we neglegty,r in Eq. (18 and
nated as calculateT oo . We will considerH,,;;7 in the calculation of

the elastic constant presented in Sec. V.

9§T _ The A-type AF spin andC-type orbital orderings are ob-
=7 N I . 5-7 . . .
Hedart Hian=~ ¢ > AT wTa served in LaMn@.>~" Two sublattices for the orbitalspin
kil ordering are denoted by andB (a andb) and the following
hOg my mean fields are introducedsS, ), (Sip,). (Tasx), and
+i§§: — (P i), (13)  (Tppy. The free energy of the system is obtained in the
mean-field approximation as follows:
where
1 _VCO 2.,,.2 N t t
2—c.—C _ _ fO__(ux—’_uz)_ _{Gny<TAx><TBX>+2‘]xy<TAZ><TBZ>
x— Cy (cx—cy) 2 2
-1 V3 ’
Aar=z| | L : +235(Ta)*+ (T8 ) +32(2(Sa)(Sh0) —(San)”
—=(cx—¢y) z(6—cy—cy—4c,)
3 y N
3 " e ~(SD(Tad +(Te}+ 5 (31~ 33 (5.2
andc,=cosk,a. g, is the new phonon coordinate given by +(S52)?+(San)(So2)) — NIAr((Sa ) >+ (Su ) (Sp)
N
~ 2 N (SN~ == (InZE+InZ+InZ+InzZ) (19
c=00,— ——— A , 15 a. a b A B/»
QK§ qké \/ﬁ_wg EI gk§| ki ( ) 2,8

andf)kf is the canonical conjugate momentum ﬁ)&’g The Wwhereg=1/T. zj(b) andztA(B) in the last four terms represent
first and second terms of the right-hand side in 8@) are  the partition functions of spin and orbital given tzg(b)
denoted byH,., and M., respectively. Here, we neglect =Trexp(-BHgy,) and zyg =Trexp(—BHug), respec-
the noncommutability betweet( [Eq. (1)] and?ikg. Hoo tivgly. Hj(b.) is the mean-field Hamiltonian describing the
includes the self-interaction of the orbital, which does notSPin state in sublattica (b) as

contribute to the orbital order-disorder transition. Therefore,

by subtracting this term, we obtain the following form: = = = =
y J g ab) =433y Sab)2) Sapyz+ 23X So(a)2) Sapyz: (20

2
957
Hoo=~ 7= 2 Aar T Tir, (160 whereJ;, andJ; represent the effective exchange interaction
kil between NN spins in they plane and along the direction,
with respectively. These are explicitly given by
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1
Jy=— 32(3 —3Jy)+ 32(J1+‘]2)(3<TAX><TBX>+<TAZ>
9
X(Tgz))— 2(<TAZ>+<TBZ>)+ 16‘]AF1 (21)
and
1
J5= = 3531733+ g (1 +32)(Tar)?
1 9
+ 1_6J2(<TAZ>+<TBz>)+ 1_6JAF (22

In Eqg. (20), we introduce a spin operatég with $=2, re-
write § and & as §=1 and $=25, respectively, and
eliminate the largest energy parametgrin Eq. (18). Due to
the A-AF spin structure, the relatiof8,,)= — (S,,) is satis-

fied. HL(B) is the mean-field Hamiltonian describing the or-

bital state in sublatticé (B) as

Haey =63 Taa Ta@xt 23 Ta@),
+ (ZJ;y<TB(A)z> + 4‘.Jtz<TA(B)z>)TA(B)z

Ve
—29o W(UXTA(B)X+ U Ta)2)s

whereJ,, andJ are

(23

J; (331_Jz)+(31+32)<Siz><5i+§<(i+i)z> (24)

xy(2)
and

J3=235(¢Sa)*—(San)(So2)). (25)

respectively. For the observetitype orbital ordered state,

we have the following conditiongT,,)=(Tg,) and(Tay)

= _<TBX>'
By minimizing the free energyr, with respect to(T )

for 1=x,z and(S,,), the following self-consistent equations

are obtained:

(Ta)=Tr{Taexa — BH )}/ Zy, (26)

(San)=Tr{Ss exp(— BHZ. (27)

Equations(26) and (27) are numerically solved under the

conditions ofu,=2gyyN/Vcy(Tp,) and u,=0 which are
derived fromdF/du,=0 anddF/du,=0, respectively.

IV. TRANSITION TEMPERATURES
AND SPIN-WAVE DISPERSION

Among several parameters in the Hamiltonian E@s.

PHYSICAL REVIEW B 65 144403

spectrd® and the elastic constaftThe lattice constara and
the static JT distortioQ(= \/Qi22+ Qizx) are chosen to ba
=4 A andQ=0.3 A, respectively®

First, we calculate the transition temperatures. The orbital
ordering temperature in the mean-field approximaﬁi@}g is
given by

1 gJT
T96= 2{ (331~ Jz)+ (29
and the Nel temperature for tha-AF orderingT',{,’IF is given
by the solution of the following equation:
TN =—8J;,+433, (29)

whereJ;, andJ; defined in Eqs(21) and(22) are the func-
tions of TNF By fitting Thg and TN© to the experimental
transition temperaturesToo 780 K (Ref. 5 and Ty
=140 K (Refs. 6 and Y, respectivelyJ, andg;{Q are cal-
culated as functions of;. In general, the mean-field ap-
proximation tends to overestimate the transition temperature.
Therefore, we also estimate the parameter valuek pfl,,

and g;7Q by considering the correction of the mean-field
transition temperatures. For the éléemperature, we revise

F asbTy" with b=0.63, which is the ratio betweeR
for the S=1/2 AF Heisenberg model obtained in the high-
temperature expansion and that in the mean-field
approximatiort° As for the orbital ordering temperature, we
revise asaTag With a=0.75, which is obtained by the cal-
culation of Ty for the S=1/2 AF Ising modef® This is be-
cause the orbital part of the Hamiltonid&qg. (3)] has a
discontinuous symmetry, although this symmetry is higher
than that of the Ising model.

The spin stiffness constant provides another condition for
J1,J, andg;r. Although the JT distortion does not directly
couple with the spin degree of freedomyr modifies the
orbital state and affects the SE interaction between NN spins.
We calculate the spin-wave dispersionTat 0 and compare
it with the experimental one. Here, the orbital and lattice
degrees of freedom are assumed to be frozen, since the en-
ergy scale of orbital excitatiof&*®and optical phonons are
much larger than that of spin waves. Then, the relevant parts
of the Hamiltonian in Eq(1) are given by

Hsw=Het Heatt - (30

The static distortion of a Mn@ octahedron is written as
(Qi2,Qi) =Q(cos? " ,sing) where 62'=—63"=2x/3.
The orbital ordered state is determined in the mean-field
approximatiort® By applying the Holstein-Primakoff trans-
formation to the spin operators, the dispersion relation of the
spin wave is calculated. Experimentally, the spin wave in
LaMnO; was measured by the neutron-scattering experi-

and (18), values ofJ;,J, andg;T are determined by calcu- ments in Refs. 11 and 35. The au_thors in thgse papers ana-
lating the spin and orbital ordering temperatures and thdyzed the experimental data by using the Heisenberg model
spin-wave dispersion relation. The other parameters are chaith the NN SE interactions. They obtained the magnitude of

sen to belar=1, a’K=17x10*, anda®cy=2x10" meV,
which are derived from the N# temperature in CaMngj5

the interaction in thexy plane (]X ) and that in thez axis
(J33), which are defined in Eqs(21) and (22 as 2]

the phonon frequency determined by the infrared-absorptior —3.34 meV and 25=2.42 meV.
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50 by J; is weaker than that withowg;1Q. The magnitudes of
. J1,J5, andg;1Q are obtained from the intersection points of
40 4 solid (broken curves and dotted curves in Figs(@@Band
3(b). We obtain J;=75-85 meV, J,=25-40 meV, and
10 | E;r=0;7Q=50-100 meV. It is stressed that the value of
N E;r is much smaller than that in the literature, i.€;7
2 >1 eV1824-32n the case thaa’K =17x 10* meV, the cou-
= 20 1 pling constant of the intersite orbital interaction through the
= exchange of phonongﬁT/K is about 3—10 meV which is
10 . much smaller thad,. We conclude that the small;; comes
from the strong Coulomb interaction and the orbital ordering
0 in LaMnQ; is dominated by the interaction through the vir-
50 110 tual exchange of electrons. f; and J, are neglected to
estimateT oo, We obtainE;t to be 400-700 meV foa?K
=17x10* meV (Ref. 35 and 600—1100 meV foa’K =40
300 - . - - — x 10* meV*® The latter value of; is of the same order of
250'(b) & magnitude given in Ref. 18.
200 _ | V. ELASTIC CONSTANTS
% The elastic constants provide information of the higher-
g 150 1 order JT couplind/*° although the coupling constait is
5 I I supposed to be smaller than that in the linear JT coupling. In
05100 T this section, we examine the elastic constants taking into
I account the electron-electron and electron-lattice interac-
o0 T tions, and the higher-order JT coupling.
I . We start with the model Hamiltonian in Eq18). The
050 100 110 elastic constants are the coefficients of th§ terms in the
J, (meV) free energy, wheréu, is the deviation of straim; from that

in the thermal equilibrium. Here, the deviations Bf, and

FIG. 3. (a) J, and(b) g;-Q as functions of;. Solid and broken ' &1 from the thermal equilibriumssT,, and 6Tg,, are also.
curves are obtained from the analyses of transition temperaturd§troduced.sT,, and 6Tg, are induced by an external strain
Too andTy . For broken curves, the correction from the mean-field 9U;» and the relations between them are derived later. Now,
approximation is taken into accougsiee the tet The actual values  the free energy is expanded up to the second ordémgf,
of the parameters are expected to exist in the shaded regions. Dottéd g;, and du; as
curves are obtained from the analysis of the spin stiffness constants.
Other parameter values are chosen toJge=1 meV, a’K=17

F=TFot T2 (o2t 5u2)— (63, T p6T
x10* meV, B=0 meV, Q=0.3 A, anda=4 A. =Fot = (8Ui+0uz) = 51635y Taxd Tax

By fitting the ;heoretical results of the orbital ordering +2J§<y6TA25TBZ+ 2Jtz{(5TAz+ 5Tg,)?
temperature, the Nt temperature for thA-AF ordering, and
the spin stiffness constant to the experimental values, we — (6T 5TBZ)2}]_${FXX(CQ2+CEZ)

estimateJ,,J,, andg;t. J, andg;7Q are plotted as func-
tions of J; in Figs. 3a) and 3b), respectively. Solid and
broken curves are obtained from the transition temperatures,
Too and Ty. The actual values of the parameters are exyy
pected to exist in the shaded regions. Dotted curves are ob;
tained from the spin stiffness constants. The analyses fofA®)
Too and Ty [solid and broken curves in Figs(e@ and 3b)] Ve,
show _thgt.]z increases angd;tQ dzecreases Wlth increasing HEA(B)ZH}A(B)_BN_{(Q,ZA(B)Z_ Qi(B)x)TA(B)z
J;. This is because (B —J,) andgj;/K contribute coopera- %

tively to Too, as shown in Eq(28). On the other hand, the _
analyses for the spin stiffness constidtted curves in Figs. 2Qne)Qne)TA®)d- 32

3(a) and 3b)] show that both], and g;7Q increase with The last term of this equation comes from the higher-order
increasingl,, i.e.,J; competes with botld, andg;;Q. This  JT coupling. We assume that the equilibrium valueqf

is attributed to the facts thai) J, andJ, are the ferromag- appearing in this term are given b®,,=au, and Qay
netic and antiferromagnetic interactions, respectively,@hd =4(9,1/K)(Tax by considering the definition of the strain
0;71Q favors the (3,2 2/d3,2_,2)-type orbital ordered state U, and the linear JT coupling in E€5). C|"'s are the coeffi-
where the ferromagnetic interaction in tkg plane caused cients of T, except forJ in H! [Eq. (23)] where(Tp)),

+F,CL2+C82) + 2F,(ChCL—CECD)}. (3D

ere, 7, is given by Eq.(19) where z;(B) is replaced by
=Trexp(— BHug,). With Ty, being given by

144403-5
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(Tgy), andu, are replaced byT,,, 6Tg, anddu,, respec-
tively. Their explicit forms are given by

e,
Cr=6J,,6Tex—29p O

A t t V&
Cy =225y 0Tpt43;0Ta= 200\ Oz, (34)

s V¢,
CR=63}5Tax— 200\ 1 Ol

B t t Vo
CZ = 2‘JXy5TAZ+ 4JZ(SFI—BZ_ Zgo W(suz . (36)

(33

(39

Here, the term originating from the higher-order JT coupling
is neglected’ F;, in Eq. (31) represents the self-correlation

function of the orbital given by

Fiir=(Ta(Tain) =Ky (37)
with
2 efﬁsm_efﬁem’
Kn/—— R R —
EA mm’ mem B m>m’ Em— Em
(em#&m’)
><(TAI)mm’(TAI’)m’ma (38)

where e, represents thenth eigenvalue ofﬁﬁ\. To derive
Eqg. (31, the conditions(Tay=—(Tgy, (Tan=(Tg2,
Qa=Qg;, andQp,= — Qpy are used. By using the condi-
tion 9.F1946T , =0, the following relations betweesu,’s and

6T, /'s are obtained:
D, VN %

5TAX+ 5TBX:
><|:Fxx{:|-_(4'~]t 2Jty)IBFzZ}
+(43,-235) BFZ,, (39
4890 /VCo
6TAZ_ 5TBz: - D_x N —3dou sz: (40)
4890 Vo
ST+ 8T, = — ——\/ ——4U
Az Bz DZ N z
X{F,{1—6J},BFy,) +6J},BFZ},
(41)
4B90 Vo
OTax— 0Tgyx=— D_ Wﬁuzsz: (42)
z
with
=(1-6J,,BF){1—(43,~2J,,) BF,}
—6Jty(4Jt 23,,) BFZ,, (43
and

PHYSICAL REVIEW B 65 144403

D,= (14635, BF ) {1~ (43;+23} ) BF ,,}
+635,(435+ 230 ) B7FZ, (44)

By using EQs.(39)—(42), the deviation of the free energy
from the equilibrium value is given by

~ 1 ) 5
J-'—]:O=§[CX(T)6UX+CZ(T) ouy]. (45)

Note that the term proportional t6u,déu, is absent because
of the tetragonal symmetryc,(T) and c,(T) are the
temperature-dependent elastic constants for uhend u,
modes, respectively. Their explicit forms are given by

Co t 2 t t
T)= 5 {1 (63— 40 BFoH 1~ (43,23, BF.)
—(6J5,—499)(435— 23, ) BFZ,], (46)

and

cAT)= —[<1+63 BP0 {1— (45 +23, —493) BF .}

+635,(435+ 23, —495) B7FZ,]. (47)
For T>Tgo, C«(T) andc,(T) are simplified as
3 gJT
T+g(30=2)+ 5 1 98
CX(T):CZ(T):CO 3 2 . (48)
T+ 2 (31,—Jp)+ = -
g\ttt Y22 K

The elastic constants are numerically calculated and pre-
sented as functions df in Fig. 4. Parameter values are cho-
sen to beJ;=75 meV, J,=25 meV, J,e=1 meV, ag;t
=6xX10° meV, a’kK=17x10"meV, and a’c,=2
x 10* meV. The higher-order JT couplir§ is chosen to be
B=0 meV in Fig. 4a) andB=50 meV in Fig. 4b). WhenB
is comparable td,, the discontinuous change in the elastic
constants is found all5o. We also obtain a change @y at
Tn - This change reflects the change of the orbital state. As
shown in Fig. 5, wherB is much smaller thard; (solid
curve, the orbital ordered state of the \ﬁ(dszz_,z
+dy2_y2/d32 2—dy2_y2)-type aboveTy changes to the
state below Ty where the component of the
(dy2_,2/d,2_y2)-type increases. On the other hand, win
is comparable ta; (broken curve, the component of the
1/\2(d3z2— 2+ dy2—y2/dg2_ 12— dy2_y2)-type  state  in-
creases below . These changes of the orbital states origi-
nate from the spin-orbital coupling if{; in Eq. (3). The
changes of the elastic constants are understood as follows: In
the 17/2(dsz2— 2+ dy2—y2/ds,2_2—dy2_y2)-type orbital or-
dered state(T,,) is almost saturated a$Ta,)|=1/2 and
(Taz=0. Thus, the external straidu, does not induce
6T ax, andc, is saturated. The deviation of the orbital state
from the 1A2(ds,2_ 2+ dy2_y2/dg,2_2—dy2_y2)-type one
causes the decrease @f as shown in Fig. 4. This fact re-
minds us of the inverse of the parallel spin susceptibilify 1/
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FIG. 5. Temperature dependence of the orbital stéeis de-
fined by #\,=tan 1((Ta,)/{Ta,). Solid and broken curves are the
results forB=0 meV andB=50 meV, respectively. Other param-
eter values are the same as those in Fig. 4. The insets show the
schematic orbital structures in thxg plane.

(much smaller thanl;), c, increases(decreaseswith de-
creasingT. Through the detailed comparison between theory
and experiment, the value & may be determined.

The present results support the recent report on the obser-
vation of the collective orbital excitation termed orbital wave
in LaMnO; by the Raman-scattering experiments. Saitoh
T (meV) et al. have observed three peak structures around 120-160
FIG. 4. The elastic constants as functiondoSolid and broken meV n the Raman spectf‘&.Thesg p_eaks can be explalneq
curves denote, andc,, respectively. Parameter values are chosenby _nel_ther the two-phopon excitations nor the magnefic
to be J;=75meV, J,=25meV, Jae=1 meV, ag, =6 excitations. .The theoretical _results of the Raman spectra
X 1P meV, a?K=17x10% meV, and a3c,=2x 10° meV. The from the orbital wave agree Wl_th the pola_rlzat'lon depgndence
value ofB is chosen a8=0 meV in(a) andB=50 meV in(b). of the spectra and their relative intensities m_experm_‘lén_t.
Since the characteristic energy of the orbital excitation

diverging with decreasing in an antiferromagnet. We pro- 1S much higher than that of the lattice vibration, we in-
pose that the characteristic change of the elastic constant gpduce the adiabatic approximation for the lattice degree of

0I20I40‘60‘80.100 120 140

T,, may be used to estimate the coupling consEnt freedom in the calculation of the orbital wave. Then, the
energy of orbital wave is approximately given hy,,,
VI. SUMMARY AND DISCUSSION = (331 + 3/2E;7) (31 + I+ V3/2E;7). When we adopt

_ ) o the parameter values obtained in the present analyses
We have examined the orbital ordering in LaMp@nd  — 75 mev, J,=25 meV, and E;;=50 meV, we obtain
the magnitudes of the interactions of tigorbitals between worp=196 meV. These numerical values are consistent with

NN sites caused by the virtual exchange of electrons anghe ohserved energies of the Raman shifts from the orbital
phonons. By calculating the orbital and spin orderingeycitations.

temperatures, and the spin-wave dispersion and comparing
them with the experimental results, we obtained
=75-85 meV, J,=25-40 meV, and g;1Q=E;t
=50-100 meV. E;; is much smaller than that in the The authors would like to thank T. A. Kaplan, T. Goto, H.
literaturé®24=32 which were estimated by neglecting the Hazama, N. Nagaosa, Y. Tokura, and E. Saitoh for their valu-
electron-electron interaction. The present results indicate thatble discussions. This work was supported by a Grant-in-Aid
the orbital ordering in LaMn@is mainly caused by virtual for Scientific Research Priority Area from the Ministry of
exchange of electrons under the strong CoulomtEducation, Science, Sports, Culture, and Technology of Ja-
interactiong’>#?We calculate the temperature dependence opan, CREST Japan and Science and Technology Special Co-
the elastic constants by taking into account both the electrorerdination Fund for Promoting Science and Technology. Part
electron and electron-lattice interactions. It is predicted thabf the numerical calculation was performed in the supercom-
the elastic constants show the characteristic changByat puting facilities in the Institute for Materials Research, To-
which depends on the magnitude of the higher-order JT couroku University. S.M. acknowledges support of the Hum-
pling; when the coupling constar® is comparable tal; boldt Foundation.
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