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We studied the effects of time correlation of subsequent patterns on the convergence of on-line learning by
a feedforward neural network with the backpropagation algorithm. By using a chaotic time series as sequences
of correlated patterns, we found that the unexpected scaling of converging time with the learning parameter
emerges when time-correlated patterns accelerate the learning process.
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It has been reported [1-3] that time correlation of input
patterns often largely influences the convergence of on-line
learning. As a concrete example, learning of the chaotic map
was shown to converge faster when patterns appeared in de-
terministic order of chaos than when patterns appeared ran-
domly with the same ‘‘probability density’” with the chaotic
time series [1,2]. This showed that on-line learning is sensi-
tive to the order of subsequent patterns. But the influence of
the time correlation on the convergence of on-line learning
has not been analyzed yet to our knowledge.

If we express the input and output as vectors, supervised
learning is a task to acquire the mapping relation X »
(e RM)— 171,( eR") (peN or R), where the set {)?p ,fp} is
called a “pattern,” and p is a pattern index. When the pattern
index p is continuous, the number of patterns L is infinite. In
gradient descent learning algorithms, the neural network sys-
tem is updated as follows:

wn+1=wn+5wn7

&5,,:—5V(;E,,|(;:u;n, (1)

where J)n is a weight vector at discrete time n, E, is a
generalized error, which depends on the learning procedure,
and € is a learning parameter.

Among several learning rules, the ‘‘backpropagation” al-
gorithm [4], which is a natural extension of the steepest de-
scent method to neural networks, is often used for its ability
to realize the desired mapping relation in a network. The
algorithm was originally formulated as an on-line learning
procedure. The on-line procedure of the backpropagation can
be divided into two kinds. The first one is ‘“‘probabilistic
on-line learning” (POL), which uses “local error,” E, , in

P
Eq. (1): E,,n(i,,n,(;)=[&(&)— }71,”]2/2, where a pattern in-
dex p, at discrete time »n is drawn with pattern probability
P, satisfying 252 1P,=1, and o is an output of the network.

On the other hand, time-correlated input patterns into the
network are often used, as in the case of the time series
on-line learning. In such cases, the patterns may be presented
in the deterministic order of appearance: p,.;=f(p,),
where f is a map that produces the time series of pattern
indices. We call this second on-line learning procedure ““de-

1063-651X/96/53(4)/4217(4)/$10.00 53

terministic on-line learning” (DOL). Although we will
mainly analyze, in DOL, the case where the target function
and the map that makes the sequence of pattern index coin-
cide, more generally one can use dynamics that is making
sequences of patterns different from the target function.

In contrast to the on-line learning, we also discuss “‘global
learning” (GL), which is a modified algorithm of POL. The
algorithm wuses ‘global error,” Egl(c:)), in Eq. (1):
Eg(0)=[E,(X,,0)p(p)dp(peR), which is averaged &-
ror over patterns, where p(p) is a probability density of the
pattern with index p. The algorithm often gets easier for
analysis, because the error does not depend on the special
pattern.

Although on-line learning does not obey the exact gradi-
ent descent process of global error as in GL, complete ran-
domness of subsequent patterns in the case of POL makes an
analytical approach possible in the context of master equa-
tions, which is approximated by the Fokker-Planck equation
in the limit of small learning parameters [5—8]. Exactly solv-
able models are also discussed in the literature [9,10].

Recently Wiegerinck and Heskes [11] showed theoreti-
cally that time correlation between subsequent patterns of
on-line learning contributes to the diffusion term of a weight
vector in the Fokker-Planck equation approximated from the
equivalent equation as Eq. (1), and suggested that the result
may help us to understand the accelerated on-line learning
with time-correlated patterns found in [1,2].

In this paper, we study how the time correlation of sub-
sequent patterns affects the convergence of learning by com-
parative studies of the two on-line learning procedures; (a)
probabilistic on-line learning and (b) deterministic on-line
learning. We use the tent map in most cases as a target map-
ping relation, because the map makes this comparative study
easy. But the result is found to be similar for other maps. The
tent map [12] is written as

Xpe1=f(x,)=r(1=2[x,—172). @

We use a sequence of patterns that is produced by the tent
map itself in DOL. When r=1, the time series produced by
the map has a white Fourier spectrum and a constant invari-
ant density between [0, 1], the same as the uniformly random
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number [0, 1], where the deterministic nature of chaotic cor-
relation is expected to appear clearly in comparison with
probabilistic randomness.

Let us now consider a conventional feedforward neural
network with input and output terminals and N—2 hidden
layers with M neurons. The output of the ith neuron of the
mth layer of the network is as follows:

y?z tanh(w, x— w,.lo),

M
3_ 2.2 2
y; —tanh( 21 w5Y; —wio) ,
i=

M
N—1_ N-2 N-2_ N-2
yi —tanh(z w;; Ty; Ty ),

j=1
M
— N—1_N-—1
0'—2,1 w; Ty, 3)
i=
h 1 2 N-1 : .
where w; , w;;, ..., 0; are the synaptic welghts con-

necting the input terminal to the second layer neurons, sec-
ond to third layer, etc. and the (N-1)th to the output o re-
spectively; wh ' is a bias term to the ith neuron of the
mth layer. In this paper, we restrict ourselves for simplicity
to the case where N=4 and M =3. The hidden layers (yZ,
y3, ..., y¥ 1) have full interlayer connections. The local
error E is written as

E(x,,0)=[0o(a)— f(x,)]*/2, @)

where f(x) is the functional relationship of the tent map.
Global error is also used in on-line learning to evaluate how
learning progresses, because global error does not depend on
the special input pattern x,, .

It is known that learning curves decrease suddenly be-
tween plateaus for many target functions and models. In the
case of this tent map function learning, there usually exists a
critical time when the global error E decreases sharply, and
the map learned by the network shifts abruptly from a con-
stant to a tent [2]. Thus, one can easily define the converging
time ¢, when the global error crosses the geometrical mean
between E on the first plateau and that on the second pla-
teau (see Fig. 1). The typical learning curves of the tent map
function are shown in Fig. 1. Generically, the three converg-
ing times of the tent map learning are found to satisfy the
inequality ¢{<t <1, where ¢, t;,, and ¢ are the con-
verging times of DOL, POL, and GL, respectively. Notice
that the invariant density p(x) of GL and that of POL are
always made the same as that of chaotic input (DOL) for
comparative purposes. The order of three converging times is
consistent with previous reports [1-3]. As one expects from
the dynamical equations for weight vectors, the three con-
verging times coincide for e—0.

How is the effect of deterministic randomness of subse-
quent patterns, which follows the chaotic time series, related
to that of probabilistic ones? First we concentrate on this
problem to discuss the difference of converging time be-
tween DOL [(b) in Fig. 1] and POL [(c) in Fig. 1]. Recent
studies show that chaotic perturbation has anomalous effects
on complex systems such as the Hopfield model [13] and
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FIG. 1. Typical learning curves of the tent map function by three
learning methods: (a) global learning, (b) deterministic on-line
learning, and (c) probabilistic on-line learning. Invariant density in
(a) and in (c) are the same as in (b). The initial conditions of the
weight vectors are the same, €=0.05 and r=0.95.

general multistable systems [14], even if the simple statisti-
cal quantities (mean, variance, probability density, and Fou-
rier spectrum) of chaos coincide with that of random noise.
The effects are known to be related to the unstable fixed
points of chaos. Chaotic force has transiently strong time
correlation when the input pattern x is in the neighborhood
of unstable fixed points; these are x*=0 and 2/3 in the tent
map with = 1. The nearer the input x injected to one of the
unstable fixed points, the longer x stays in the neighborhood.
Therefore the network of DOL sees biased (or, special) pat-
terns for a while during which the input x stays several times
in the vicinity of the unstable fixed point. In this period, the
system moves continuously in the direction to reduce the
special local error E(x*) for a while; i.e., the system is
largely moved without constraint of global error due to the
unstable fixed points of the chaotic map. This phenomenon is
easily verified by numerical simulation as in Fig. 2. It should
be noticed that the direction of the motion of the weight
vector in this period is not necessarily the one that reduces
the global error E, . On the other hand, when the input x
stays apart from an unstable fixed point, the sequence of
input is almost as random as probabilistic; therefore the large
change of weight vector in finite time steps is unlikely to
occur, and the system is expected to move mostly along a
gradient descent path of global error.

The difference of time correlation of input patterns affects
the convergence of learning largely even when all the simple
statistical quantities coincide between the tent map chaos and
the uniform random, as mentioned above. Therefore, the ef-
fect of this chaotic time correlation on the convergence of
learning must be clarified. In DOL, the correlation range of
input can be varied by changing of iteration number N, as
the selection rule of the sequence of patterns x, as
Xp+1=fN(x,) by fixing the target function f, as
X,+1=f(x,). In the strong chaos limit, N— +, the time
correlation of the subsequent input x dissappers: the se-
quence of input pattern is expected to be as random as proba-
bilistic. Figure 3 shows that the time correlation of weak
chaotic input (N=1) certainly works to accelerate time se-
ries learning. Fast decay of the effect of time correlation of
subsequent patterns on the acceleration is observed: ¢, for
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FIG. 2. (a) Typical temporal evolution of input x found in DOL,
where r<t¢, . (b) Corresponding time evolution of averaged veloci-
ties of a weight vector ® in a finite time interval T, where

Sw=|6|=|®p+ 1/~ @,_1p|. Initial value of @ is drawn from uni-
formly random number [ —0.05, 0.05], e=0.05, and r=0.9995.

N=2 is nearly equal to that for N=100. This is found to be
consistent with the exponential decay of deterministic corre-
lation with increasing N [14]. A saturated value of rg, is
equivalent to the one given by the learning time for random
input (POL).

The effect of the time correlation of the input on the learn-
ing decreases with decreasing €, and it is completely annihi-
lated in the adiabatic limit, e— 0, where the change of weight
vector per unit time is so small that the evolution of the
system is shortly averaged over pattern indices [15]. There-

1 =2 5 10 20 ~N 50 100
N: X ne1 =F (Xn)

FIG. 3. Converging time ¢, vs several deterministic time cor-
relation of input patterns x. Lyapunov exponent A of the sequence
of input is A = NIn2. In the (strong chaos) limit, N—oo, the system
is almost equivalent to POL with uniformly random input [0,1].
Ensemble averages over 100 initials are shown. Initial value of o is
drawn from uniformly random number [ —0.05,0.05], €=0.05, and
r=0.9995. It is found that tJ(N>1) ~¢", (POL).

learning parameter € for the tent map learning (solid line for DOL,
dotted line for POL). Ensemble averages over 100 initials are
shown. Initial value of ® is drawn from uniformly random number
[—0.1, 0.1] and r=0.9995.

fore the dynamics of POL and DOL (and also GL) should
coincide with each other in this limit. Equation (1) indicates
that the continuous time 7, as used in the Fokker-Planck
description [11], should be proportional to €. Therefore the
converging time ¢, in the discrete model both for POL and
for DOL should scale with €™ !, and ez, should be indepen-
dent of € in the e—0 limit. However, it has not been under-
stood how the finite learning parameter € affects the accel-
erated learning, that is how ez, should behave with e.

One finds from the result of simulation (Fig. 4) that the
two normalized converging times ef. approach the same
value in the small learning parameter limit (e—0). Ap-
proach of the normalized converging time to a finite value in
the limit shows that there is no local minimum in the learn-
ing process. If there are any local minima in the learning
process, the normalized converging time must diverge to in-
finity as €é—0 [16]. In POL, the normalized converging time
increases monotonically with increase of the learning param-
eter €. However, in DOL, the normalized converging time
€1, decreases first with increase of €, and after some learn-
ing parameter €, it increases monotonically.

As known in general relaxation methods, finite stepping
parameter € is harmful because the possibility of overshoot-
ing in phase space increases as € increases. Therefore, the
normalized converging time is expected to increase mono-
tonically with increasing learning parameter [10] as the re-
sult of overshooting in a learning process without local
minima. The simulation showed that this is the case for POL
but not necessarily for DOL (Fig. 4). The decrease of ez,
with increase of € was not observed in the simulations (Fig.
4). On the other hand, decrease of er was often found in
chaotic patterns, not only in the learning of the tent map but
also in that of the logistic map with several parameters.

As one notices, the reduction of converging time with
increase of the learning parameter is possible when the sys-
tem has to escape from local minima to reach the solution of
learning [16]. But the present system has no local minima.
One might think it strange that the normalized converging
time decreases as the learning parameters increase in a pro-
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cess without local minima. There should be an alternative
that overcomes the harm of overshooting in the region
0<e< ¢,y in DOL.

We found that the puzzle may be solved by noticing the
fact that in the learning process there are generically plural
gradient descent paths to the solution. If chaotic correlation
of subsequent patterns works effectively to find a shorter
path to the solution by its diffusive motion of weight space,
the observed phenomena are understandable. The possibility
is strengthened by the fact that the system under chaotic
patterns (DOL) should be largely moved away from the ex-
act gradient descent direction of global error due to the un-
stable fixed points, which would facilitate the system to cross
over the potential barrier between the gradient descent paths.

The same order of diffusive motion against gradient de-
scent direction of global error, as found in DOL (see Fig. 1)
would be possible, in principle, even in POL, with larger
learning parameter €. However, increase of € strengthens the
harm of overshooting simultaneously: the harm of overshoot-
ing may cancel the merit the diffusive motion in POL. In
DOL, the harm of overshooting overcomes the merit of the
diffusive motion when € goes over €., where the normalized
converging time begins to increase.

Finally, we mention an automatic reduction mechanism of
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the fluctuation of the system, which is characteristic of on-
line learning and may weaken the harm of overshooting with
a finite learning parameter. As discussed in Refs. [5,6], in
“perfectly trainable networks” [17], in which E y( w)=0 is
available, the fluctuation in weight vector space (equiva-
lently, the diffusion rate in Fokker-Planck representation
[11]) becomes zero when the system reaches the error-free
(Ey=0) state: the error-free state behaves as a “sink™ of
probability flow [6]. The reduction of the fluctuation can also
occur even if the network is not “‘perfectly trainable”: the
system should be stabilized when the residual error is small
enough [18].

We showed in this paper that the accelerated on-line
learning with chaotic patterns is attributed to the unexpected
scaling of the converging time with learning parameter €: the
converging time 7., decreases much faster than z,~ e~ ! with
increasing € even without local minima. The results may
indicate the beneficial aspects of finite learning parameters of
on-line learning with time correlated patterns, because in any
case one is forced to use finite learning parameters in realis-
tic learning processes. The studies of the optimal time corre-
lation of general patterns and/or the optimal learning param-
eter for the network, together with the proof of acceleration
mechanism, are under way.
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