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Large-angle scattering and quasielastic barrier distributions
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We study in detail the barrier distributions extracted from large-angle quasielastic scattering of heavy ions at
energies near the Coulomb barrier. Using a closed-form expression for scattering from a single barrier, we
compare the quasielastic barrier distribution with the corresponding test function for fusion. We examine the
isocentrifugal approximation in coupled-channels calculations of quasielastic scattering and find that for back-
ward angles it works well, justifying the concept of a barrier distribution for scattering processes. This method
offers an interesting tool for investigating unstable nuclei. We illustrate this fordklg+2°%b reaction,
where the quadrupole collectivity of the neutron-rivig remains to be clarified experimentally.
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I. INTRODUCTION sectionoye to the Rutherford cross sectierg with respect to

. - . energy, €(doy/dog)/dE, as an alternative representation
Heavy-ion collisions at energies around the Coulomb barbf the barrier ?jistributior18] The experimental data of Tim-

rier provide an ideal opportunity to study quantum tunnelingmers et al. have revealecfS] that tF;]e uasielastic barrier

phenomena in systems with many degrees of freefiyd). distributioﬁ is indeed similar to that forqfusion although the

In a simple model, a potential barrier for the relative motionformer mav be somewhat smeared and thus ,Iess serg15itive to

between the colliding nuclei is created by the strong inter- y

play of the repulsive Coulomb force with the attractive nu?l'lﬁ::eStzr;:gnéreGrtZ?r? Cz;ft.ractive experimental advantages to
nuclear interaction. In the eigenchannel approximation, this P 9

barrier is split into a number of distributed barriers due to1easuring the quasielastic cross seciiqp rather than the

: : : L fusion cross sectionsy,s to extract a representation of the
couplings of the relafuve_motlor_w to intrinsic degrees of_fr_ee-barrier distribution[9] fu'sl'hese arefi) Iesps accuracy is re-
dom (such as collective inelastic excitations of the colliding :

nuclei and/or transfer proces$ergesulting in the subbarrier quired in the dafta f_or t_z?\king the first deriva_tive rather t_han
enhancement of fusion cross sectigi. It is now well the second derivative(ii) whereas measuring the fusion

S ; cross section requires specialized recoil separgtlextro-
known that a barrier distribution can be extracted experimen- q b pard

tally from the fusion excitation functiorr,{(E) by taking the static deflector/velocity filterusually of low acceptance and

L . efficiency, the measurement of needs only very simple
second derivative of the produEtr,E) with respect to the . e . .
) ; h - I |
center-of-mass enerds, that is,d2(Ecy.0/dE2. This method charged-particle detectors, not necessarily possessing good

, ) esolution either in energy or in charge, a(iid) several ef-
was first propo_sed by Rowlc_ay, Saichler, and Stelson_ N Refeciive energies can be measured at a single-beam energy,
[4], and has stimulated precise measurements of fusion crog§,ce  in the semiclassical approximation, each scattering
sec_tlons for many systen{§,6] (se'e Reff'[l.] fqr a detailed angle corresponds to scattering at a certain angular momen-
review). The extracted fusion barrier distributions have been,, = 214 the cross section can be scaled in energy by taking
found_ to be very sensitive to.th? structure of the collidingjn, account the centrifugal correction. The last point not
nuclei, and thus the barrier distribution method has opene nly improves the efficiency of the experiment, but also al-
Ep the p033|b|llt)|{ of using the h?a}vy—lc(;n fuspn reaction ;S ﬁows the use of a cyclotron accelerator where the relatively
ﬁuantu_m turénde Ing mlcrloscope n orf erto !nvest:ggte Othgmall energy steps required for barrier distribution experi-
the static and dynamical properties of atomic nuclei. ments cannot be obtained from the machine itself. This fact
Channel couplings also affect the scattering process. 19,55 recently exploited by Piaseoi al. [10], who took an
Ref. [7], it was suggested that the same information as theq te choice of the scattering angles at whigh was mea-
fusion cross section may be obtained from the cross sectio, red in order to have the energy range necessary, while
for quasielastic scatteringg sum of elastic, inelastic, and retaining relatively small energy steps. Moreover, these ad-

transfer cross sectionst large angles. At these backward \hages all point to greater ease of measurement with low-
angles, it is known that the single-barrier elastic cross SeCt'oﬁ'ntensity exotic beams.

falls off smoothly from a value close to that for Rutherford = | his paper, we undertake a detailed discussion of the

scattering at low energies to very small values at energies;operties of the quasielastic barrier distribution. In contrast
high aboye the k_Jarr!er. Timmesd .al' therefore prpposgd 0 o the fusion barrier distribution, a theoretical description of
use the first derivative of the ratio of the quasielastic crosne quasielastic barrier distribution has been limited so far
either to a purely classical level or to a completely numerical
level. Given that many new barrier distribution measure-
*Present address: Department of Physics, Tohoku University, Serments for exotic nuclei are expected to come out in the near
dai 980-8578, Japan. future, due to an increasing availability of radioactive beams,
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we believe that it is of considerable importance to clarify thefirst derivative ofEaf is proportional to the classical pen-
properties of the quasielastic barrier distribution in a moreetrability for a one-dimensional barrier of heigti or
reliable and transparent way. egivalently thes-wave penetrability,

The paper is organized as follows. In Sec. Il, we consider
a single-barrier system and discuss test functions for the bar- —[E
rier distribution, that is the representations of the barrier dis- dE
trib_ution for a sin_gle barrier. case. We first prieﬂy review th.e and the second derivative to a delta function,
fusion test function, and discuss the relation to the barrier
penetrability. We then use semiclassical perturbation theory d? o 5
[11,12 to derive an analytical expression for the elastic cross @[E%s(E)] = mRyS(E-B). 3
section at backward angles. Using the formula thus obtained,
we discuss the energy dependence of the quasielastic testIn quantum mechanics, the tunneling effect smears the
function, and compare it with that for the fusion test func-delta function in Eq(3). An analytic formula for the fusion
tion. We also discuss the scaling property of the quasielastieross section can be obtained if one approximates the Cou-
test function obtained at different scattering angles. In Sedomb barrier as an inverse parabola, and is giveri2g],
[ll, we discuss the barrier distribution for coupled-channels 50
systems. Theoretically, barrier distributions have a clear orus(E) = —Rﬁ In[1 + e (E-BIAQ] (4)
physical meaning only in the limit of zero angular momen- 2E
tum transfer(that is, in the isocentrifugal approximation
[13-21)) with vanishing excitation energies for the intrinsic (. yerivative ofEcy, is proportional to the-wave penetra-
degrees of freedom. In this limit the barrier distribution rep- ility for a parabolic barrier
resentation may be derived analytically as a weighted sum ot? ’
test functions. Nevertheless, a simple two-level model sug- d
gests that the concept holds to a good approximation even E[E‘Tfus(E)] = ”Rg 20
when the excitation energy is finif22]. And of course many 1+ ex;{— —(E-B)
experimental data also show well-defined barrier structures, hld
which can be reproduced by coupled-channels calculations, %)
even for systems where the excitation energies are large, .. . .
However, although the validity of the isocentrifugal approxi-‘:‘Deflnlngl the functionGy,«(E) as
mation has been shown to work well for fusi¢h8], its 1 d?
applicability for scattering processes in the presence of the Grs(E) = —RZE[E%S(E)], (6)
long-range Coulomb interaction is less cl¢ar,19-21. We %
therefore re-examine its validity for the quasielastic barrierEq. (5) leads to
distribution. In Sec. IV, we consider the quasielastic barrier
distribution as applied to reactions induced by exotic nuclei. GiE) = dP(E) - 2m e (7)
In particular, we demonstrate its usefulness by showing the ue dE  AQ(1+e9?%
possible effects of the quadrupole excitation®&¥lg in the
32Mg+2%pPb system. We summarize the paper in Sec. V.

oH(E)] = mRZO(E - B) = mRZP4(E),  (2)

wherefi() is the curvature of the Coulomb barrier. Again, the

1

J = 7RZP(E).

where x=27(E-B)/#{). This function has the following
propertiesyi) it is symmetric around=B, (ii) it is centered
on E=B, (iii) its integral overE is unity, and(iv) it has a
Il. SINGLE-BARRIER PROBLEMS relatively narrow width of around #Q In(3+8)/

~ 0.5600). In the next section, we will show that a barrier

In this section, we discuss heavy-ion reactions betweeg_ buti b d iahted f |
inert nuclei. For such a system, the incident flux of the pro-, Istribution can be expressed as a weighted sum of normal-

jectile is either absorbed or elastically scattered from the tariZ€d functionsG(E) [see Eq.(21)]. The function Gy.s(E)
get nucleus. We use a local optical potential which is energjherefore plays the role of a test function, and we call it the
and angular momentum independent. Assuming that th&Sion test function.
imaginary part of the optical potential is strong enough and
is localized well inside the Coulomb barrier, the absorption
cross section is identified with the fusion cross section. We now ask ourselves the question of how best to define
a similar test function for a scattering problem. In the pure
classical approach, in the limit of a strong Coulomb field, the
differential cross sections for elastic scatteringatm is

Let us first discuss the properties of the fusion test funcgiven by
tion. The classical fusion cross section is given by

B. Quasielastic test function

A. Fusion test function

0%(E, m) = or(E,m (B -E), (8)

ofd(E) = WRﬁ(l - E) 6(E-B), (1)  whereog(E, ) is the Rutherford cross section. Thus the ra-
tio ag'l(E,w)/aR(E,w) is the classical reflection probability
where R, and B are the barrier position and the barrier R(EE)[=1-P(E)], and Eq.(7) suggests that the appropriate
height, respectively. From this expression, it is clear that theest function for scattering i8]
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Y — OO IO " —
quI(E) == @ == £<LE’7T)> . 9) 1
E dE O'R(E,W) ’Q 0.8 g -
[54]
In realistic systems, however, due to the effect of nuclear Ez 0.6 _
distortion, the differential cross section deviates from the Ru- =
therford cross section even at energies below the barrier. Us- ) 04 7
ing the semiclassical perturbation thedfyl, 12,24, we de- o 02:: Exact i
rive in the Appendix a semiclassical formula for the o R e

backward scattering which takes into account the nuclear ef- 0—+——+—+ b—t
fect to the leading order. The result for a scattering amgle
reads

O'eI(Er 0)

_ . 2
O'R(E, 0) - a(E!)\c) |S(Er)\c)| ’ (10)

-1
qul MeV )

where S(E,\,) is the total(Coulomb+nuclegr S matrix at
energyE and angular momentum.= 7 cot(6/2), with 7 be-
ing the usual Sommerfeld parameter. Note {IS8E,\.)|? is
nothing but the reflection probability of the Coulomb barrier.
For 6=, \ is zero, andS(E,\.=0)|? is given by

70

FIG. 1. The ratio of elastic scattering to the Rutherford cross
2_77 E_B section atf=m (upper pangl and the quasielastic test function
exp - ﬁQ( -B) Ggel(E)==d/dE(cg/ ) (lower pane) for the %0 +144Sm reaction.

|S(E\N=0)|>=R(E) = (11 The solid line is the exact solution of the optical potential, while the
_Em e dashed line is obtained with the semiclassical perturbation theory.
1+ex (E-B) ) \ A
hQ The dotted line denotes the reflection probabiR§E) =|S(E)|? for

. . . . . L. s-wave scattering.
in the parabolic approximatiorx(E,\¢) in Eq. (10) is given

by slightly deviates from the barrier heigi (by 0.265 MeV
V(o) \e”m} r for the example shown in Fig.)land(ii) it has a low-energy
alE\N) =1+ e [ - 2VU\(r) tail. Equation(10) indicates that there are two contributions
ka E ZpZr€? to the quasielastic test function. Oned€E) -dR(E)/dE, and
re the otherda(E)/dE-R(E). In Fig. 2, we show these two con-
X a 1 (12 tributions separately. We notice that the low-energy tail of

the quasielastic test function comes from the latter, that is,
wherek=v2uE/#?, with u being the reduced mass for the the energy dependence of the nuclear distortion fae(&.

colliding system. The nuclear potenthd|(r.) is evaluated at Despite these small drawbacks, the quasielastic test func-
the Coulomb turning point,=(7+ \5'172+)\§)/k, andais the tion Gy (E) behaves rather similarly to the fusion test func-
diffuseness parameter in the nuclear potential. tion Gy,(E). In particular, both functions have a similar, rela-

The upper panel of Fig. 1 shows the excitation function oftively narrow, width, and their integral ové is unity. We
the cross sections = for the %0 +'%‘Sm reaction. We may thus consider that the quasielastic test function is an
use an optical potential of the Woods-Saxon form, with pa-
rameters Vy=105.1 MeV, r,=1.1fm, a=0.75fm, W 0.3 L L A E—
=30 MeV, ry=1.0 fm, anda=0.4 fm. The solid line is the 0asL. — “B dREYIE ]
exact solution of the Schrodinger equation, while the dashed [ == R(E) du(E)/dE
line is obtained with the semiclassical formyld)). The dot-
ted line shows the reflection probabili(E)=|S(E)|2. We
clearly see that the semiclassical formula accounts well for
the deviation of the elastic cross secti@g(E) from the Ru-
therford cross section around the Coulomb barrier.

The corresponding quasielastic test functio@,(E)
=-d/dE(og/ og), are shown in the lower panel of Fig. 1. We
use a point-difference formula withE; ,,=1.8 MeV (as in

70

. ) S E_ (MeV)
an experimentin order to evaluate the energy derivative. e

Notice that the first derivative of the reflection probability
(dotteq ling corresponds to the fusion test f‘.J”Ct@ﬂJs(E) tion. The solid line shows the functiom(E) -dR(E)/dE, while the
given in Eq.(7). Because of the nuclear distortion factor dashed line showda(E)/dE-R(E), where a(E) and R(E) are the
a(E,\), the quasielastic test function behaves a little lesswclear distortion function and the reflection probability,
simply than that for fusion. We findi) the peak position respectively.

FIG. 2. Two separate contributions to the quasielastic test func-
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FIG. 3. Comparison of the ratiog/og (Upper panéland its FIG. 4. The same as Fig. 3, but fé=140°.

energy derivative &/dE(og/og) (lower panel evaluated at two
different scattering angles. The solid line is fé=, while the

dotted line is forg=160°. The dashed line is the same as the dotted . . . .
line, but is shifted in energy by an amount equal to the centrifugafjOtted line, but shifted in energy by.—E. Evidently, the

potential evaluated at the distance of closest approach of the Ruti§¢@ling does Work well, both at energies below and above the
erford trajectory. Coulomb barrier.

We should note, however, that as the scattering angle de-

excellent analog of the one for fusion, and we exploit thisCréases, the scaling becomes less good. See Fig. 4 for the
fact in studying barrier structures in heavy-ion scattering. SC@ling property fog=140°. Thus in planning an experiment
Notwithstanding the above comments, it is clear that thd€specially if it combines data taken in detectors at different
quasielastic test function defined above depends on the sc&dles, one should take careful account of this effect. Also
tering angle, and below we shall show how the test functiorft smaller angles, it is well known that the underlying elastic
can be scaled in terms of an effective energy. cross section will display Fresnel oscillations, which would
cause the test function itsglind any derived distributigrto
oscillate. Detector angles are best chosen to minimize effects
of Fresnel oscillations.
One of the advantages of the quasielastic test function
over the fusion test function is that different scattering angles
correspond to the different grazing angular momenta. To
some extent, the effect of angular momentum can be cor- IIl. BARRIER DISTRIBUTION FOR
rected by shifting the energy by an amount equal to the cen- MULTICHANNEL SYSTEMS
trifugal potential. Estimating the centrifugal potential at the
Coulomb turning pointr, the effective energy may be ex-
pressed af8]

C. Scaling property of the quasielastic test function

A. Barrier distributions in the sudden tunneling limit

Let us now discuss the barrier distributions in the pres-
)\gﬁz sin(6/2) ence of a coupling between the relative motiorand an
2,ur§ T 1 +sin02) (13 intrinsic degree of freedon. The standard way to address
the effect of the coupling is to solve the coupled-channels
In deriving this equation, we have used the definitiomof  equations. For a problem of heavy-ion fusion reactions, these
that is,E=ZpZ€?/1+\h?/ 2urZ. Therefore one expects that equations are often solved in the isocentrifugal approxima-
the function €l/dE(og/ o) evaluated at an angiéwill cor-  tion [25], where one replaces the angular momentum of the
respond to the quasielastic test functi® at the effective relative motion in each channel by the total angular momen-
energy given by Eq(13). tum J (this approximation is also referred to as the rotating
In order to check the scaling property of the quasielastidrame approximation or the no-Coriolis approximation in the
test function with respect to the angular momentum, Fig. Jiteraturg. The isocentrifugal approximation dramatically
compares the functionsog/og (upper pangl and  simplifies the angular momentum couplings, and reduces the
—-d/dE(oq/ or) (lower panel obtained at two different scat- dimension of the coupled-channels equations in a consider-
tering angles. The solid line is evaluatedéats, while the  able way[13-2]. The coupled-channels equations in this
dotted line atf=160°. The dashed line is the same as theapproximation are given by

Eeff"’E_

054610-4



LARGE-ANGLE SCATTERING AND QUASIELASTIC.. PHYSICAL REVIEW C 69, 054610(2004)

A2 2 I+ 1)A2 L >
<_ 2udr? % +Vy(r) —E+ EI)Ul(f) DidB) = gl Eond B)]= 2 WarRoa G(E). (21
IN+1
RV f Tholerou (=0, (14 Tgel =T =3
: K 4 (N {grolTuolerorur (1) 4 Deel(E) = _i< U:(l(EE’w))) - W"ché)l(E)' (22)

where |¢;y) is an intrinsic wave function which satisfies

H; = . We have assumed that the coupli . e . .
'nt|¢.>'M> .6'|QD”.V'> . ve asst e COUPING ¢ rotational excitations of the target nucleus in the reaction
Hamiltonian is given Dby Veou=f(NY\u()T,,(6). The ¢ 165 \ith the deformed!®Sm. For this problem, cross

coupled-channels equations are solved with the Scatteringections(lg) and (20) can be computed 426]
boundary condition for(r),

1
i) .0 Ki o (o) a(E) = f d(cos 6r)a(E; 6y), (23
W(n) = ) Hy kN ay, - ;IS’HJ (kr) [, (15) 0

~ . where 67 is the orientation of the deformed target. The angle
whereS] is the nuclea matrix.H,( )(kr) andHl( )(kr) arethe  dependent potential(r, #;) is given by

incoming and the outgoing Coulomb wave functions, respec-

As an example of these formulas, let us consider the effect

tively. The channel wave numbek, is given by V(r, 67) = (1, 67) + Vc(r, 0r), (29
V2u(E-€) /1% andki =k =2uE/%i% The scattering angular
distribution for the channdl is then given by[17] _ Vo
VN(rv HT) - y
do; K 1 +exd[r —R—RB2Ya0(6r) = ReBsYao 0r)1/at
— ==f(9)]?, 16
with ZpZ:€ 2 [5
] , Velr, o) = ==+ 2 Bt S\ —B202
. + - A
(0 = X elos@roEaly [S 22y ()" =T~ 5)) X
J 47T \ ki k|| ! 3ZPZTe2 RT
X N+1 )\+1Y)\0(0T)- (26)
+fc(6)d,, (17) r

where o,(E) and f(6) are the Coulomb phase shift and the Figures %a) and %b) show the barrier distributions obtained

. . . with Eq. (23) for the fusion and the quasielastic processes,
Coulomb scattering ampliude, respectively. respectively. We use the potential whose parameterd/gre
In the limit of ¢ — 0, the reduced coupled-channels equa- P Y- P P 8

_ — 13, pLl _
tions (14) are completely decoupled. In this limit, the cou- 52f20 M(:_V, R=1.1x EAT +Ap3t)fr|?’ atnd a-(()).gngm. (;I’he
pling matrix defined as eformation parameters are taken to Bge=0. andg,

=0.05. We replace the integral in ER3) with the (Iax

N+ 1 +2)-point Gauss quadratufd5] with I,,,=10. That is, we
Vin=ad+ =, - f(N{ewlTolere  (18)  take six different orientation angles. The contributions from

each eigenbarrier are shown by the dashed line in Fi@s. 5
can be diagonalized independently oflt is then easy to and %b). The solid line is the sum of all the contributions,
prove that the fusion and the quasielastic cross sections awhich is compared with the experimental d4&8]. The
given as a weighted sum of the cross sections for uncoupleggreement between the calculation and the experimental data

eigenchannel§l4,15, is reasonable both for the fusion and the quasielastic barrier
distributions. For the fusion barrier distributioDy,, the
o1usE) = X W0 2(E), (19)  agreement will be further improved if one uses a larger value

of diffuseness parametar]5,27 (see the dotted lineFigure
5(c) compares the fusion with the quasielastic barrier distri-
74elE,0) = 2 0y(E) = 2 w,o(E, 0), (200  butions. These are normalized so that the energy integral
| o between 50 and 70 MeV is unity. As we discussed in Sec. Il
" (@) . ~ for a single barrier case, we see that the two barrier distribu-
where oy (E) and o’(E, 6) are the fusion and the elastic tions show a very similar behavior to each other.
cross sections for a potential in the eigenchanmetihat is,
V,(r)=Vy(r) +\,(r). Here,A ,(r) is the eigenvalue of the cou- S o
pling matrix (18) [when ¢, is zero,\(r) is simply given by B. Barrier dlstrlbu_tlor_1$ in systems with finite
\o-f(r)]. The weight factow,, is given byw,=U3_, whereU excitation energy
is the unitary matrix which diagonalizes Ed.8). Equations In general, the approximation of neglecting the excitation
(19) and (20) immediately lead to the expressions for the energiese, (that is, the sudden tunneling approximajios
barrier distribution in terms of the test functions introducedvalid only for rotational states in heavy deformed nuclei.
in the previous section, Despite this, however, some of the most interesting effects

054610-5
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FIG. 6. The effect of a quadrupole-phonon excitation in the

target nucleus on the partial cross sections for 'fi@+4‘Sm re-
E  (MeV) action atE; ,, =65 MeV. The upper and the lower panels show the
angle-integrated inelastic scattering and the fusion cross sections,
FIG. 5. (@ The fusion barrier distribution Dy(E) respectively. The solid line is the solution of the coupled-channels
=d*(Eoy,e)/dE? for the %0 +1%%Sm reaction. The solid line is ob- equations with the full angular momentum coupling, while the
tained with the orientation-integrated formula wi#3=0.306 and dashed line is obtained in the isocentrifugal approximation.
B4=0.05. The dashed lines indicate the contributions from the six
individual eigenbarriers. These lines are obtained by using dusion reactiong18]. In contrast, it is known that the ap-
Woods-Saxon potential with a surface diffuseness paransetdr ~ proximation fails to reproduce the exact result for scattering
0.65 fm. The dotted line is the fusion barrier distribution calculatedangular distributions in the presence of the long-range Cou-
with a potential which haa=1.05 fm. Experimental data are taken lomb force. The effect of the coupling is somewhat overes-
from Ref.[5]. (b) Same as Fig(a), but for the quasielastic barrier timated in the isocentrifugal approximation, and simple reci-
distribution Dge(E)=-d[oge(E,m)/or(E,m)]/dE. Experimental pes to renormalize the coupling strength have been proposed
data are from Ref{8]. (c) Comparison between the barrier distri- in order to cure this problerfi.7,19-21. On the other hand,
bution for fusion(solid line) and that for quasielastic scattering Espenseret al. have argued, based on semiclassical consid-
(dashed ling These functions are both normalized to unit area ingrations, that the isocentrifugal approximatigwithout
the energy interval between 50 and 70 MeV. renormalization of the coupling strengtivorks better for
backward angle scatteririd7].
have been found in the fusion barrier distributions for sys- Since it has not yet been clear how well the isocentrifugal
tems involved with highly vibrational nuclei as web,6].  approximation works in connection with the quasielastic bar-
One finds that the barrier structures still exist, but that theier distribution, we re-examine in this subsection the perfor-
weights of the different barriers can be strongly influencednance of the approximation for large-angle scattering. To
by nonadiabatic effects. In R¢22], we have explicitly dem-  this end, we consider the effect of quadrupole phonon exci-
onstrated that the fusion cross sections are in general givaations in the target nucleus for tH€0 +4Sm reaction. In
by Eq. (19), but with the energy dependent weight factorsorder to emphasize the coupling effect, we increase the cou-
w,(E) (in the sudden tunneling limit, the weight factors be- pling strength and reduce the excitation energy from the
come energy independgntor a simple two-channel prob- physical values. The values which we use gg=0.2 (with
lem, we found that although the weights may depend,,=1.06 fm ande,=0.5 MeV. We have checked that our
strongly on the excitation energy, their dependence on theonclusions are not altered irrespective of the valueg.of
incident energy is weak, suggesting that the concept of and e,. For simplicity, we consider only a single phonon
barrier distribution holds good even for finite intrinsic exci- excitation, and employ the linear coupling approximation
tation energie§22]. Since the quasielastic barrier distribu- [28]. We use the same optical potential as in Sec. Il.
tion Gge(E) is related to the fusion barrier distribution  Figure 6 shows the partial cross sections By,
Gius(E) through flux conservatiotunitarity), a similar situa- =65 MeV for the angle-integrated inelastic scatteringper
tion can be expected for the quasielastic barrier distributionpane) and for the fusion reactioflower panej as a function
of the initial orbital angular momentuti=J. The solid line
is the exact result of the coupled-channels equations with the
As we have mentioned in Sec. |, the validity of the iso-full angular momentum couplings, while the dashed line is
centrifugal approximation has been well tested for heavy-iorobtained with the isocentrifugal approximation. We find that

C. Applicability of the isocentrifugal approximation
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FIG. 7. The angular distributions for the elastigoper pangl FIG. 8. The excitation function for quasielastic scatteiiugper

and the inelasti¢lower pane) scattering for the®0 +!#/Sm reac-  pane) and the quasielastic barrier distributidower pane) for the
tion atE; , =65 MeV. The significance of each line is the same as160 +1445m reaction calculated #=170° in the laboratory frame.
in Fig. 5. The significance of each line is the same as in Fig. 5.

the isocentrifugal approximation works rather well fér ingT;V;QZ“ZEZ ri?d;gigtr:l/i/g:?snggvheegl\?ﬁi2?12;;2:1”%3%-5_
< 20, a_lthough the agreement is poor for larger vajueé. of tions involving neutron-rich nuclei have been performed for
For fusion, only small values af contribute, and the isocen- "¢ system$29-33. New generation facilities have been
trifugal approximation always makes an excellent apprOXi'under construction a.t several laboratories, and many more
mation. Figure 7 shows the angular distributions for the elastaaction measurements with exotic beams at low energies
tic (upper pangl and inelastic scatteringlower panel.  \jj| be performed in the near futurésee Ref.[34] for a
Although the isocentrifugal approximation does not repro-recent theoretical reviewAlthough it would still be difficult
duce the main structure of the angular distribution, it indeer perform high_precision measurements of fusion cross sec-
works very nicely at backward angles where the main contions with radioactive beams, the measurement of the quasi-
tribution comes from small values of angular momentumelastic barrier distribution, which can be obtained much more
[see Eq(10) and Fig. §. In fact, the isocentrifugal approxi- easily than the fusion counterpart as we mentioned in the
mation almost reproduces the exact result for the scatteringytroduction, may be feasible. Since the quasielastic barrier
angles6; ,, >130°. distribution contains similar information as the fusion barrier
Figure 8 shows the excitation function for quasielasticdistribution, the quasielastic measurements at backward
scattering(upper pangland its energy derivative calculated angles may open up a novel way to probe the structure of
at #=170° in the laboratory frame. One sees that the isocenexotic neutron-rich nuclei.
trifugal approximation well reproduces the exact solution. |n order to demonstrate the usefulness of the study of the
We thus conclude that the isocentrifugal approximationguasielastic barrier distribution with radioactive beams, we
works sufficiently well for studies of quasielastic barrier dis-take as an example the reactidg and 2°%b. The
tributions. This fact not only makes the coupled-channelsheutron-rich®?Mg nucleus has attracted much interest as evi-
calculations considerably easier, but also assures the similagence for the breaking of the=20 spherical shell closure.
ity of fusion and quasielastic distributions even in the presqn this nucleus, a largB(E2) value(454+78€? fm* [35] and
ence of channel couplings. 622+90€? fm* [36]) and a small value of the excitation en-
ergy of the first 2 state(885 ke\) [35] have been experi-
V. QUAS&iﬁgEgT?\/C;;LEAﬂSG WITH mentally observed_. T_he authors pf Reﬂ35—3ﬂ argue that
these large collectivities may be indicative of a static defor-

It has been well recognized that low-energy reactions promation of 32|\/|g. On the other hand, mean-field calculations
vide an ideal tool to probe the detailed structure of atomid38] as well as quasiparticle random-phase approximation
nuclei. The heavy-ion fusion reaction around the CoulomdQRPA) [39] with the Skyrme interaction suggest tHag
barrier is one of the typical examples. In the last decadenay be spherical. In fact the energy ratio between the first 4
many high-precision measurements of fusion cross sectiordnd the first 2 statesE,+/E,:, is 2.6[37], which is between
have been made, and the nuclear structure information hdke vibrational and rotational limitg39].

been successfully extracted through the representation of the Note that the distorted-wave Born approximation
fusion barrier distributiorf1]. (DWBA) yields identical results for both rotational and vi-
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=z ' ; L L boundary condition at the origin, instead of the incoming
sk Mg +”"Pb | boundary condition, and we remove the restriction of
L ] CCFULL, which computes only the fusion cross sections.
06 - In the figure, we can see well separated peaks in the
- 1 quasielastic barrier distribution both for the rotational and for
04 7 the vibrational couplings. Moreover, the two lines are con-
I . ] siderably different at energies around and above the Cou-
I | lomb barrier, although the two results are rather similar be-
0 e low the barrier. We can thus expect that the quasielastic
barrier distribution can indeed be utilized to discriminate be-
tween the rotational and the vibrational nature of the quad-
rupole collectivity in3*Mg, although these results might be
T somewhat perturbed by other effects which are not consid-
- . ered in the present calculations, such as double octupole-
O 005 " i phonon excitations in the target, transfer processes or hexa-
decapole deformations.

gel /doy

do

L. — Rotational
0.2 -= Vibrational

Mev'h

qel

P L L h
O95 100 105 110 115 120 125 V. SUMMARY

E,. (MeV) The quasielastic barrier distribution is a counterpart of the
fusion barrier distribution in the sense that the former is re-
FIG. 9. The excitation function for quasielastic scattefiagper  lated to the reflection probability of a potential barrier while
pane) and the quasielastic barrier distributidower pane) for the  the latter is related to the transmission. In this paper, we have
¥2Mg-+2%%pb reaction around the Coulomb barrier. The solid and thestudied some detailed properties of the quasielastic barrier
dashed lines are the results of coupled-channels calculations whigfistribution. Using semiclassical perturbation theory, we
assume that?Mg is a rotational and a vibrational nucleus, respec-have obtained an analytic formula for the quasielastic barrier
tively. The single octupole-phonon excitation ##Pb is also in-  gistribution for a single barriethat is, the quasielastic test
cluded in the calculations. function). The formula indicates that this test function con-
sists of two factors: one is related to the effect of the nuclear
brational couplinggto first ordey. In order to discriminate distortion of the classical trajectory, while the other is the
whether the transitions are vibrationlike or rotationlike, atreflection probability of the potential barrier. Due to the
least second-step procesge=rientation and/or couplings to nuclear distortion, we found that the quasielastic barrier dis-
higher membensare necessary. The coupling effect plays atribution is slightly less well behaved than the fusion barrier
more important role in low-energy reactions than at high andlistribution. For instance, the peak position of the quasielas-
intermediate energies. Therefore quasielastic scatteringic barrier distribution slightly deviates from the barrier
around the Coulomb barrier may provide a useful method oheight, and it has a low-energy tail. Nevertheless, the quasi-
clarifying the nature of the quadrupole collectivity &¥Mg. elastic barrier distribution behaves rather similarly to that for
Figure 9 shows the excitation function of the quasielastidusion on the whole, and both are sensitive to the same
scatteringlupper pangland the quasielastic barrier distribu- nuclear structure effects.
tion (lower panej for this system. The solid and dashed lines  In multichannels systems, the validity of the barrier dis-
are results of coupled-channels calculations whékég is  tribution relies on the isocentrifugal approximation, where
assumed to be a rotational or a vibrational nucleus, respethe angular momentum of the relative motion in each chan-
tively. We estimate the coupling strengé from the mea- nel is replaced by the total angular momentdmie have
suredB(E2) value [35] to be 0.51. We include the quadru- examined the applicability of this approximation for scatter-
pole excitations in*“Mg up to the second membéihat is,  ing processes and have found that it works well at least for
the first 4 state in the rotational band for the rotational cou-backward angles, where such experiments are performed.
pling, or the double phonon state for the vibrational cou- The measurement of quasielastic barrier distributions is
pling). In addition, we include the single octupole phononwell suited to future experiments with low-intensity exotic
excitation at 2.615 MeV if%Pb [40]. The potential param- beams. To illustrate this fact, we have discussed as an ex-
eters which we use arg;=180 MeV, r,=1.15 fm, anda  ample, the effect of quadrupole excitations in the neutron-
=0.63 fm, that give the same barrier heightB rich 3Mg nucleus on quasielastic scattering around the Cou-
=106.6 MeV} as the Akyuz-Winther potentighl]. For the lomb barrier, and argued that the quasielastic barrier
imaginary potential, we us&/=50 MeV, r,,=1.0 fm, and distribution would provide a useful tool to clarify whether
a,,=0.4 fm, but the results are insensitive to this as long as it°Mg is spherical or deformed. In this way, we expect that
is localized inside the barrier with a large enough strengththe barrier distribution method will open up a novel means to
We use the computer codmUEL [42] in order to integrate allow the detailed study of the structure of neutron-rich nu-
the coupled-channels equations. This code is a version d@fei in the near future.
CCFULL [25], where the coupling is treated to all orders in the
coupling Hamiltonian and the isocentrifugal approximation
is employed in order to reduce the dimension of the coupled- We thank E. Piasecki and E. Crema for helpful discus-
channels equations. In the codeuEL, we use the regular sions.
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APPENDIX: SEMICLASSICAL PERTURBATION THEORY 2 T T T T 7 T
. . . F— E !
In this Appendix, we derive Eq(10) for the backward- L5k SC perturbation [
angle elastic cross section using semiclassical perturbation | —= Modified SC Perturbation / ’
theory. Our formula is an improvement of the one in Ref. /

[12], since we take into account the effect of nuclear distor- «w
tion of the classical trajectorj24].

The scattering amplitudé&(6) for a spherical optical po-
tential is given by

f(9) = > k§|‘, (2l + 1)P,(cos 6)(S - 1), (A1)

where ¢ is the scattering angle arid=v2uE/#2. Since we

are interested in backward scattering néar, we replace
the Legendre polynomial®,(cos ) with their asymptotic

form,
LT 1 E
P/(cos ) ~ (-) pom 0%{(' + 5)(77— 9)] (A2) E_ (MeV)

c.m.

do (E;m)/ do, (E,m)

70

where Jy(6) is the Bessel function. We now apply the well ~ FIG. 10. Comparison of the semi-classical formulas with the
known Poisson sum formula to EGA1) to obtain exact solution for thé®0 +144Sm reaction. The upper and the lower
panels show the nuclear phase shift and the ratio of the elastic to the
Rutherford cross sections at the scattering angleespectively.

1
f(6)=— E( )“f d\ AS(V) The solid line is obtained by numerically integrating the
k Schrédinger equation, while the dotted line is the result of the
X I[N (77— 0)]e(2“"1)””‘ (A3) primitive semiclassical perturbation theory, E¢a11) and (A12).
0 L

The dashed line indicates the result of the semiclassical perturbation
theory which takes into account the effect of nuclear distortion of

where N\=I+1/2. At energies around the Coulomb barrier the classical trajectory, EqeA16) and (10).

and for backward scattering, the contribution frams0
dominates the sum in E¢A3) [11]. Taking onlyn=0 and
evaluating the integral in the stationary phase approximation,

one obtaingsee Sec. 5.7 of Refl1]) PYNE fo k(r)dr — fx k(r)dr, (A7)

A )
— —i(\O—m/2)
() ~ / Zsn 90 1 SN, (A4)

where®(\)=2 Re &' (\) is the deflection functiong(\) be-
ing the phase shift, and satisfies the stationary phase con-
dition ®(N\)=46. Here, the dash denotes the derivative with

k(r) = V2u[E = V(1) = Ve(r) = V\(NTA?, (A8)

respect to the argument. This equation yields k() = V2u[E - V(1) -V, (D142, (A9)
o(6) _ | Ogho)
oo |S(x>|2 (A5)
UR(G) ®'(\) where V\(r) and Vq(r) are the nuclear and the Coulomb

potentials, respectively, an¥l,(r)=\%2/2ur? is the cen-
trifugal potential. The classical turning pointg andr. sat-
isfy k(r;)=kg(r.)=0. To first order in the nuclear potential,
the semiclassical phase shift is given by

Landowne and Wolter evaluated H@5) using a pertur-
bation theory based on the semiclassical approximafi@h
The stationary conditio®(\)=0.(\;) =6 and the definition
of the nuclear deflection function®(\)=0O.\)+Oy(\),
yield [12]

“ Vn(r)
—~1 Loy + ®N(>\c), (AB) SN(N) ~ k:‘()d (A10)

‘ OL(\o)
2\

0'(\)
to first order in\—\.. In deriving this equation, we have

assumed thay is much larger than.. In the semiclassical Expanding k.(r) around r=r. and assuming thai/y(r)
approximation, the nuclear phase shift is given[by] ~-V,e"2 nearr,, one obtaing11,12
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V2amky w7 Ve(s) +VK(9) Va(S)
260(N) ~ = VN(r)——=—+O00\%77). (All NN ~ =5 ; ; o S,
N( ) N( c) E ( 7]) ( ) N ﬁZ e VN(S) +VC(S) +V)\(S) kc(S)
(A14)
Using the perturbative phase shifl1l)in Eq. (A6), Land- ~|1 _M N - LN(r)dr
owne and Wolter obtained a simple form for the backward Ve(ro) +Vi(r) | h2 o k()
cross sections which is given §§2] (A15)
M{ Vi } _(—vN<rc>) V2amkey
oo(E, 0) V(ro) V2amkn 5 Ve(re) +Vi(ro) 2 E
S (14 T SE N[ (AL2)
or(E, 6) ka E + O\ 7). (A16)

An improved formula may be obtained by taking into ac- Here, we have expandee s with respect tov, in Eq. (A14)
count the effect of nuclear distortion of the classical trajec-and evaluated it at the radius Substituting Eq(A16) into
tory. To this end, we follow the method suggested by BrinkEg. (A5), we finally obtain Eq(10).
and Satchlef24]. Transforming the coordinate in the first ~ Figure 10 compares the semiclassical formula with the
integral in Eq.(A7) to the one which satisfidgr)=k.(s), the  exact resul{(solid line) for the %0 +4‘Sm reaction. We use

semiclassical phase shift may be expressed as the same OptiC&' potential as in Sec. Il. The dotted line is
obtained by the semiclassical perturbation of Landowne and

Wolter, Eqs(A1l) and(Al12). The dashed line is the result of
semiclassical approximation which takes into account the
o d o d nuclear distortion, Eq§A16) and(10). We see that the semi-
5N()\):J kc(S)d—[f(S) —S]dSZ—J [r(s)—s]d—kc(s)ds. classical perturbation theory works reasonably well around
fe s fe s the Coulomb barrier when the effect of nuclear distortion is
(A13) included. The deviation of the nuclear phase shift from the
exact solution above the barrier would be improved by using
the full semiclassical phase shi#t3]. However, we note that
the backward cross sections are already reproduced reason-
The condition k(r)=k.(s) yields 0=Vy(s)+[V}(s)+V&(9) ably well even with the present semiclassical perturbation
+V,(9)](r—s) to first order inr-s. We thus obtain theory.
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