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We study in detail the barrier distributions extracted from large-angle quasielastic scattering of heavy ions at
energies near the Coulomb barrier. Using a closed-form expression for scattering from a single barrier, we
compare the quasielastic barrier distribution with the corresponding test function for fusion. We examine the
isocentrifugal approximation in coupled-channels calculations of quasielastic scattering and find that for back-
ward angles it works well, justifying the concept of a barrier distribution for scattering processes. This method
offers an interesting tool for investigating unstable nuclei. We illustrate this for the32Mg+208Pb reaction,
where the quadrupole collectivity of the neutron-rich32Mg remains to be clarified experimentally.
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I. INTRODUCTION

Heavy-ion collisions at energies around the Coulomb bar-
rier provide an ideal opportunity to study quantum tunneling
phenomena in systems with many degrees of freedom[1,2].
In a simple model, a potential barrier for the relative motion
between the colliding nuclei is created by the strong inter-
play of the repulsive Coulomb force with the attractive
nuclear interaction. In the eigenchannel approximation, this
barrier is split into a number of distributed barriers due to
couplings of the relative motion to intrinsic degrees of free-
dom (such as collective inelastic excitations of the colliding
nuclei and/or transfer processes), resulting in the subbarrier
enhancement of fusion cross sections[3]. It is now well
known that a barrier distribution can be extracted experimen-
tally from the fusion excitation functionsfussEd by taking the
second derivative of the productEsfussEd with respect to the
center-of-mass energyE, that is,d2sEsfusd /dE2. This method
was first proposed by Rowley, Satchler, and Stelson in Ref.
[4], and has stimulated precise measurements of fusion cross
sections for many systems[5,6] (see Ref.[1] for a detailed
review). The extracted fusion barrier distributions have been
found to be very sensitive to the structure of the colliding
nuclei, and thus the barrier distribution method has opened
up the possibility of using the heavy-ion fusion reaction as a
“quantum tunneling microscope” in order to investigate both
the static and dynamical properties of atomic nuclei.

Channel couplings also affect the scattering process. In
Ref. [7], it was suggested that the same information as the
fusion cross section may be obtained from the cross section
for quasielastic scattering(a sum of elastic, inelastic, and
transfer cross sections) at large angles. At these backward
angles, it is known that the single-barrier elastic cross section
falls off smoothly from a value close to that for Rutherford
scattering at low energies to very small values at energies
high above the barrier. Timmerset al. therefore proposed to
use the first derivative of the ratio of the quasielastic cross

sectionsqel to the Rutherford cross sectionsR with respect to
energy, −dsdsqel/dsRd /dE, as an alternative representation
of the barrier distribution[8]. The experimental data of Tim-
mers et al. have revealed[8] that the quasielastic barrier
distribution is indeed similar to that for fusion, although the
former may be somewhat smeared and thus less sensitive to
nuclear structure effects.

There are certain attractive experimental advantages to
measuring the quasielastic cross sectionsqel rather than the
fusion cross sectionssfus to extract a representation of the
barrier distribution[9]. These are:(i) less accuracy is re-
quired in the data for taking the first derivative rather than
the second derivative,(ii ) whereas measuring the fusion
cross section requires specialized recoil separators(electro-
static deflector/velocity filter) usually of low acceptance and
efficiency, the measurement ofsqel needs only very simple
charged-particle detectors, not necessarily possessing good
resolution either in energy or in charge, and(iii ) several ef-
fective energies can be measured at a single-beam energy,
since, in the semiclassical approximation, each scattering
angle corresponds to scattering at a certain angular momen-
tum, and the cross section can be scaled in energy by taking
into account the centrifugal correction. The last point not
only improves the efficiency of the experiment, but also al-
lows the use of a cyclotron accelerator where the relatively
small energy steps required for barrier distribution experi-
ments cannot be obtained from the machine itself. This fact
was recently exploited by Piaseckiet al. [10], who took an
astute choice of the scattering angles at whichsqel was mea-
sured in order to have the energy range necessary, while
retaining relatively small energy steps. Moreover, these ad-
vantages all point to greater ease of measurement with low-
intensity exotic beams.

In this paper, we undertake a detailed discussion of the
properties of the quasielastic barrier distribution. In contrast
to the fusion barrier distribution, a theoretical description of
the quasielastic barrier distribution has been limited so far
either to a purely classical level or to a completely numerical
level. Given that many new barrier distribution measure-
ments for exotic nuclei are expected to come out in the near
future, due to an increasing availability of radioactive beams,
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we believe that it is of considerable importance to clarify the
properties of the quasielastic barrier distribution in a more
reliable and transparent way.

The paper is organized as follows. In Sec. II, we consider
a single-barrier system and discuss test functions for the bar-
rier distribution, that is the representations of the barrier dis-
tribution for a single barrier case. We first briefly review the
fusion test function, and discuss the relation to the barrier
penetrability. We then use semiclassical perturbation theory
[11,12] to derive an analytical expression for the elastic cross
section at backward angles. Using the formula thus obtained,
we discuss the energy dependence of the quasielastic test
function, and compare it with that for the fusion test func-
tion. We also discuss the scaling property of the quasielastic
test function obtained at different scattering angles. In Sec.
III, we discuss the barrier distribution for coupled-channels
systems. Theoretically, barrier distributions have a clear
physical meaning only in the limit of zero angular momen-
tum transfer (that is, in the isocentrifugal approximation
[13–21]) with vanishing excitation energies for the intrinsic
degrees of freedom. In this limit the barrier distribution rep-
resentation may be derived analytically as a weighted sum of
test functions. Nevertheless, a simple two-level model sug-
gests that the concept holds to a good approximation even
when the excitation energy is finite[22]. And of course many
experimental data also show well-defined barrier structures,
which can be reproduced by coupled-channels calculations,
even for systems where the excitation energies are large.
However, although the validity of the isocentrifugal approxi-
mation has been shown to work well for fusion[18], its
applicability for scattering processes in the presence of the
long-range Coulomb interaction is less clear[17,19–21]. We
therefore re-examine its validity for the quasielastic barrier
distribution. In Sec. IV, we consider the quasielastic barrier
distribution as applied to reactions induced by exotic nuclei.
In particular, we demonstrate its usefulness by showing the
possible effects of the quadrupole excitation of32Mg in the
32Mg+ 208Pb system. We summarize the paper in Sec. V.

II. SINGLE-BARRIER PROBLEMS

In this section, we discuss heavy-ion reactions between
inert nuclei. For such a system, the incident flux of the pro-
jectile is either absorbed or elastically scattered from the tar-
get nucleus. We use a local optical potential which is energy
and angular momentum independent. Assuming that the
imaginary part of the optical potential is strong enough and
is localized well inside the Coulomb barrier, the absorption
cross section is identified with the fusion cross section.

A. Fusion test function

Let us first discuss the properties of the fusion test func-
tion. The classical fusion cross section is given by

sfus
cl sEd = pRb

2S1 −
B

E
DusE − Bd, s1d

where Rb and B are the barrier position and the barrier
height, respectively. From this expression, it is clear that the

first derivative ofEsfus
cl is proportional to the classical pen-

etrability for a one-dimensional barrier of heightB or
eqivalently thes-wave penetrability,

d

dE
fEsfus

cl sEdg = pRb
2usE − Bd = pRb

2PclsEd, s2d

and the second derivative to a delta function,

d2

dE2fEsfus
cl sEdg = pRb

2dsE − Bd. s3d

In quantum mechanics, the tunneling effect smears the
delta function in Eq.(3). An analytic formula for the fusion
cross section can be obtained if one approximates the Cou-
lomb barrier as an inverse parabola, and is given by[23],

sfussEd =
"V

2E
Rb

2 lnf1 + e2psE−Bd/"Vg, s4d

where"V is the curvature of the Coulomb barrier. Again, the
first derivative ofEsfus is proportional to thes-wave penetra-
bility for a parabolic barrier,

d

dE
fEsfussEdg = pRb

2 1

1 + expF−
2p

"V
sE − BdG = pRb

2PsEd.

s5d

Defining the functionGfussEd as

GfussEd ;
1

pRb
2

d2

dE2fEsfussEdg, s6d

Eq. (5) leads to

GfussEd =
dPsEd

dE
=

2p

"V

ex

s1 + exd2 , s7d

where x;2psE−Bd /"V. This function has the following
properties:(i) it is symmetric aroundE=B, (ii ) it is centered
on E=B, (iii ) its integral overE is unity, and(iv) it has a
relatively narrow width of around "V lns3+Î8d /p
,0.56"V. In the next section, we will show that a barrier
distribution can be expressed as a weighted sum of normal-
ized functionsGsEd [see Eq.(21)]. The function GfussEd
therefore plays the role of a test function, and we call it the
fusion test function.

B. Quasielastic test function

We now ask ourselves the question of how best to define
a similar test function for a scattering problem. In the pure
classical approach, in the limit of a strong Coulomb field, the
differential cross sections for elastic scattering atu=p is
given by

sel
clsE,pd = sRsE,pdusB − Ed, s8d

wheresRsE,pd is the Rutherford cross section. Thus the ra-
tio sel

clsE,pd /sRsE,pd is the classical reflection probability
RsEdf=1−PsEdg, and Eq.(7) suggests that the appropriate
test function for scattering is[8]
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GqelsEd = −
dRsEd

dE
= −

d

dE
SselsE,pd

sRsE,pd D . s9d

In realistic systems, however, due to the effect of nuclear
distortion, the differential cross section deviates from the Ru-
therford cross section even at energies below the barrier. Us-
ing the semiclassical perturbation theory[11,12,24], we de-
rive in the Appendix a semiclassical formula for the
backward scattering which takes into account the nuclear ef-
fect to the leading order. The result for a scattering angleu
reads

selsE,ud
sRsE,ud

= asE,lcd · uSsE,lcdu2, s10d

whereSsE,lcd is the totalsCoulomb+nucleard S matrix at
energyE and angular momentumlc=h cotsu /2d, with h be-
ing the usual Sommerfeld parameter. Note thatuSsE,lcdu2 is
nothing but the reflection probability of the Coulomb barrier.
For u=p, lc is zero, anduSsE,lc=0du2 is given by

uSsE,lc = 0du2 = RsEd =

expF−
2p

"V
sE − BdG

1 + expF−
2p

"V
sE − BdG s11d

in the parabolic approximation.asE,lcd in Eq. (10) is given
by

asE,lcd = 1 +
VNsrcd

ka

Î2apkh

E
F1 −

rc

ZPZTe2 · 2VNsrcd

3S rc

a
− 1DG , s12d

wherek=Î2mE/"2, with m being the reduced mass for the
colliding system. The nuclear potentialVNsrcd is evaluated at
the Coulomb turning pointrc=sh+Îh2+lc

2d /k, anda is the
diffuseness parameter in the nuclear potential.

The upper panel of Fig. 1 shows the excitation function of
the cross sections atu=p for the 16O+144Sm reaction. We
use an optical potential of the Woods-Saxon form, with pa-
rameters V0=105.1 MeV, r0=1.1 fm, a=0.75 fm, W
=30 MeV, rW=1.0 fm, andaW=0.4 fm. The solid line is the
exact solution of the Schrödinger equation, while the dashed
line is obtained with the semiclassical formula(10). The dot-
ted line shows the reflection probabilityRsEd= uSsEdu2. We
clearly see that the semiclassical formula accounts well for
the deviation of the elastic cross sectionselsEd from the Ru-
therford cross section around the Coulomb barrier.

The corresponding quasielastic test functions,GqelsEd
=−d/dEssel/sRd, are shown in the lower panel of Fig. 1. We
use a point-difference formula withDEc.m.=1.8 MeV (as in
an experiment) in order to evaluate the energy derivative.
Notice that the first derivative of the reflection probability
(dotted line) corresponds to the fusion test functionGfussEd
given in Eq. (7). Because of the nuclear distortion factor
asE,lcd, the quasielastic test function behaves a little less
simply than that for fusion. We find:(i) the peak position

slightly deviates from the barrier heightB (by 0.265 MeV
for the example shown in Fig. 1), and(ii ) it has a low-energy
tail. Equation(10) indicates that there are two contributions
to the quasielastic test function. One isasEd ·dRsEd /dE, and
the otherdasEd /dE·RsEd. In Fig. 2, we show these two con-
tributions separately. We notice that the low-energy tail of
the quasielastic test function comes from the latter, that is,
the energy dependence of the nuclear distortion factorasEd.

Despite these small drawbacks, the quasielastic test func-
tion GqelsEd behaves rather similarly to the fusion test func-
tion GfussEd. In particular, both functions have a similar, rela-
tively narrow, width, and their integral overE is unity. We
may thus consider that the quasielastic test function is an

FIG. 1. The ratio of elastic scattering to the Rutherford cross
section atu=p (upper panel) and the quasielastic test function
GqelsEd=−d/dEssel/sRd (lower panel) for the 16O+144Sm reaction.
The solid line is the exact solution of the optical potential, while the
dashed line is obtained with the semiclassical perturbation theory.
The dotted line denotes the reflection probabilityRsEd= uSsEdu2 for
s-wave scattering.

FIG. 2. Two separate contributions to the quasielastic test func-
tion. The solid line shows the functionasEd ·dRsEd /dE, while the
dashed line showsdasEd /dE·RsEd, whereasEd and RsEd are the
nuclear distortion function and the reflection probability,
respectively.
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excellent analog of the one for fusion, and we exploit this
fact in studying barrier structures in heavy-ion scattering.

Notwithstanding the above comments, it is clear that the
quasielastic test function defined above depends on the scat-
tering angle, and below we shall show how the test function
can be scaled in terms of an effective energy.

C. Scaling property of the quasielastic test function

One of the advantages of the quasielastic test function
over the fusion test function is that different scattering angles
correspond to the different grazing angular momenta. To
some extent, the effect of angular momentum can be cor-
rected by shifting the energy by an amount equal to the cen-
trifugal potential. Estimating the centrifugal potential at the
Coulomb turning pointrc, the effective energy may be ex-
pressed as[8]

Eeff , E −
lc

2"2

2mrc
2 = 2E

sinsu/2d
1 + sinsu/2d

. s13d

In deriving this equation, we have used the definition ofrc,
that is,E=ZPZTe2/ rc+lc

2"2/2mrc
2. Therefore one expects that

the function −d/dEssel/sRd evaluated at an angleu will cor-
respond to the quasielastic test function(9) at the effective
energy given by Eq.(13).

In order to check the scaling property of the quasielastic
test function with respect to the angular momentum, Fig. 3
compares the functionssel/sR (upper panel) and
−d/dEssel/sRd (lower panel) obtained at two different scat-
tering angles. The solid line is evaluated atu=p, while the
dotted line atu=160°. The dashed line is the same as the

dotted line, but shifted in energy byEeff−E. Evidently, the
scaling does work well, both at energies below and above the
Coulomb barrier.

We should note, however, that as the scattering angle de-
creases, the scaling becomes less good. See Fig. 4 for the
scaling property foru=140°. Thus in planning an experiment
(especially if it combines data taken in detectors at different
angles), one should take careful account of this effect. Also
at smaller angles, it is well known that the underlying elastic
cross section will display Fresnel oscillations, which would
cause the test function itself(and any derived distribution) to
oscillate. Detector angles are best chosen to minimize effects
of Fresnel oscillations.

III. BARRIER DISTRIBUTION FOR
MULTICHANNEL SYSTEMS

A. Barrier distributions in the sudden tunneling limit

Let us now discuss the barrier distributions in the pres-
ence of a coupling between the relative motionr and an
intrinsic degree of freedomj. The standard way to address
the effect of the coupling is to solve the coupled-channels
equations. For a problem of heavy-ion fusion reactions, these
equations are often solved in the isocentrifugal approxima-
tion [25], where one replaces the angular momentum of the
relative motion in each channel by the total angular momen-
tum J (this approximation is also referred to as the rotating
frame approximation or the no-Coriolis approximation in the
literature). The isocentrifugal approximation dramatically
simplifies the angular momentum couplings, and reduces the
dimension of the coupled-channels equations in a consider-
able way [13–21]. The coupled-channels equations in this
approximation are given by

FIG. 3. Comparison of the ratiosel/sR (upper panel) and its
energy derivative −d/dEssel/sRd (lower panel) evaluated at two
different scattering angles. The solid line is foru=p, while the
dotted line is foru=160°. The dashed line is the same as the dotted
line, but is shifted in energy by an amount equal to the centrifugal
potential evaluated at the distance of closest approach of the Ruth-
erford trajectory.

FIG. 4. The same as Fig. 3, but foru=140°.
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S−
"2

2m

d2

dr2 +
JsJ + 1d"2

2mr2 + V0srd − E + eIDuIsrd

+ o
I8

Î2l + 1

4p
fsrdkwI0uTl0uwI80luI8srd = 0, s14d

where uwIMl is an intrinsic wave function which satisfies
HintuwIMl=eIuwIMl. We have assumed that the coupling

Hamiltonian is given by Vcoup= fsrdYlmsr̂dT̂lm
* sjd. The

coupled-channels equations are solved with the scattering
boundary condition foruIsrd,

uIsrd → i

2
HHJ

s−dskirddI,I i
−Îki

kI
SI

JHJ
s+dskIrdJ , s15d

whereSI
J is the nuclearSmatrix.Hl

s−dskrd andHl
s+dskrd are the

incoming and the outgoing Coulomb wave functions, respec-
tively. The channel wave numberkI is given by
Î2msE−eId /"2, andki =kIi

=Î2mE/"2. The scattering angular
distribution for the channelI is then given by[17]

dsI

dV
=

kI

ki
uf Isudu2, s16d

with

f Isud = o
J

eifsJsEd+sJsE−eIdgÎ2J + 1

4p
YJ0sud

− 2ip
ÎkiklI

sSI
J − dI,I i

d

+ fCsuddI,I i
, s17d

wheresJsEd and fCsud are the Coulomb phase shift and the
Coulomb scattering amplitude, respectively.

In the limit of eI →0, the reduced coupled-channels equa-
tions (14) are completely decoupled. In this limit, the cou-
pling matrix defined as

VII8 ; eIdI,I8 +Î2l + 1

4p
fsrdkwI0uTl0uwI80l s18d

can be diagonalized independently ofr. It is then easy to
prove that the fusion and the quasielastic cross sections are
given as a weighted sum of the cross sections for uncoupled
eigenchannels[14,15],

sfussEd = o
a

wasfus
sadsEd, s19d

sqelsE,ud = o
I

sIsEd = o
a

wasel
sadsE,ud, s20d

where sfus
sadsEd and sel

sadsE,ud are the fusion and the elastic
cross sections for a potential in the eigenchannela, that is,
Vasrd=V0srd+lasrd. Here,lasrd is the eigenvalue of the cou-
pling matrix (18) [wheneI is zero,lasrd is simply given by
la · fsrd]. The weight factorwa is given bywa=U0a

2 , whereU
is the unitary matrix which diagonalizes Eq.(18). Equations
(19) and (20) immediately lead to the expressions for the
barrier distribution in terms of the test functions introduced
in the previous section,

DfussEd =
d2

dE2fEsfussEdg = o
a

wapRb,a
2 Gfus

sadsEd, s21d

DqelsEd = −
d

dE
SsqelsE,pd

sRsE,pd D = o
a

waGqel
sadsEd. s22d

As an example of these formulas, let us consider the effect
of rotational excitations of the target nucleus in the reaction
of 16O with the deformed154Sm. For this problem, cross
sections(19) and (20) can be computed as[26]

ssEd =E
0

1

dscosuTdssE;uTd, s23d

whereuT is the orientation of the deformed target. The angle
dependent potentialVsr ,uTd is given by

Vsr,uTd = VNsr,uTd + VCsr,uTd, s24d

VNsr,uTd =
− V0

1 + exphfr − R− RTb2Y20suTd − RTb4Y40suTdg/aj
,

s25d

VCsr,uTd =
ZPZTe2

r
+ o

l

Sbl +
2

7
Î 5

p
b2

2dl,2D
3

3ZPZTe2

2l + 1

RT
l

rl+1Yl0suTd. s26d

Figures 5(a) and 5(b) show the barrier distributions obtained
with Eq. (23) for the fusion and the quasielastic processes,
respectively. We use the potential whose parameters areV0
=220 MeV, R=1.13 sAT

1/3+AP
1/3dfm, and a=0.65 fm. The

deformation parameters are taken to beb2=0.306 andb4
=0.05. We replace the integral in Eq.(23) with the sImax

+2d-point Gauss quadrature[15] with Imax=10. That is, we
take six different orientation angles. The contributions from
each eigenbarrier are shown by the dashed line in Figs. 5(a)
and 5(b). The solid line is the sum of all the contributions,
which is compared with the experimental data[5,8]. The
agreement between the calculation and the experimental data
is reasonable both for the fusion and the quasielastic barrier
distributions. For the fusion barrier distributionDfus, the
agreement will be further improved if one uses a larger value
of diffuseness parametera [5,27] (see the dotted line). Figure
5(c) compares the fusion with the quasielastic barrier distri-
butions. These are normalized so that the energy integral
between 50 and 70 MeV is unity. As we discussed in Sec. II
for a single barrier case, we see that the two barrier distribu-
tions show a very similar behavior to each other.

B. Barrier distributions in systems with finite
excitation energy

In general, the approximation of neglecting the excitation
energieseI (that is, the sudden tunneling approximation) is
valid only for rotational states in heavy deformed nuclei.
Despite this, however, some of the most interesting effects
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have been found in the fusion barrier distributions for sys-
tems involved with highly vibrational nuclei as well[5,6].
One finds that the barrier structures still exist, but that the
weights of the different barriers can be strongly influenced
by nonadiabatic effects. In Ref.[22], we have explicitly dem-
onstrated that the fusion cross sections are in general given
by Eq. (19), but with the energy dependent weight factors
wasEd (in the sudden tunneling limit, the weight factors be-
come energy independent). For a simple two-channel prob-
lem, we found that although the weights may depend
strongly on the excitation energy, their dependence on the
incident energy is weak, suggesting that the concept of a
barrier distribution holds good even for finite intrinsic exci-
tation energies[22]. Since the quasielastic barrier distribu-
tion GqelsEd is related to the fusion barrier distribution
GfussEd through flux conservation(unitarity), a similar situa-
tion can be expected for the quasielastic barrier distribution.

C. Applicability of the isocentrifugal approximation

As we have mentioned in Sec. I, the validity of the iso-
centrifugal approximation has been well tested for heavy-ion

fusion reactions[18]. In contrast, it is known that the ap-
proximation fails to reproduce the exact result for scattering
angular distributions in the presence of the long-range Cou-
lomb force. The effect of the coupling is somewhat overes-
timated in the isocentrifugal approximation, and simple reci-
pes to renormalize the coupling strength have been proposed
in order to cure this problem[17,19–21]. On the other hand,
Esbensenet al. have argued, based on semiclassical consid-
erations, that the isocentrifugal approximation(without
renormalization of the coupling strength) works better for
backward angle scattering[17].

Since it has not yet been clear how well the isocentrifugal
approximation works in connection with the quasielastic bar-
rier distribution, we re-examine in this subsection the perfor-
mance of the approximation for large-angle scattering. To
this end, we consider the effect of quadrupole phonon exci-
tations in the target nucleus for the16O+144Sm reaction. In
order to emphasize the coupling effect, we increase the cou-
pling strength and reduce the excitation energy from the
physical values. The values which we use are:b2=0.2 (with
rcoup=1.06 fm) ande2=0.5 MeV. We have checked that our
conclusions are not altered irrespective of the values ofb2
and e2. For simplicity, we consider only a single phonon
excitation, and employ the linear coupling approximation
[28]. We use the same optical potential as in Sec. II.

Figure 6 shows the partial cross sections atEc.m.
=65 MeV for the angle-integrated inelastic scattering(upper
panel) and for the fusion reaction(lower panel) as a function
of the initial orbital angular momentuml i =J. The solid line
is the exact result of the coupled-channels equations with the
full angular momentum couplings, while the dashed line is
obtained with the isocentrifugal approximation. We find that

FIG. 5. (a) The fusion barrier distribution DfussEd
=d2sEsfusd /dE2 for the 16O+154Sm reaction. The solid line is ob-
tained with the orientation-integrated formula withb2=0.306 and
b4=0.05. The dashed lines indicate the contributions from the six
individual eigenbarriers. These lines are obtained by using a
Woods-Saxon potential with a surface diffuseness parametera of
0.65 fm. The dotted line is the fusion barrier distribution calculated
with a potential which hasa=1.05 fm. Experimental data are taken
from Ref. [5]. (b) Same as Fig.(a), but for the quasielastic barrier
distribution DqelsEd=−dfsqelsE,pd /sRsE,pdg /dE. Experimental
data are from Ref.[8]. (c) Comparison between the barrier distri-
bution for fusion (solid line) and that for quasielastic scattering
(dashed line). These functions are both normalized to unit area in
the energy interval between 50 and 70 MeV.

FIG. 6. The effect of a quadrupole-phonon excitation in the
target nucleus on the partial cross sections for the16O+144Sm re-
action atEc.m.=65 MeV. The upper and the lower panels show the
angle-integrated inelastic scattering and the fusion cross sections,
respectively. The solid line is the solution of the coupled-channels
equations with the full angular momentum coupling, while the
dashed line is obtained in the isocentrifugal approximation.
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the isocentrifugal approximation works rather well forJ
ø20, although the agreement is poor for larger values ofJ.
For fusion, only small values ofJ contribute, and the isocen-
trifugal approximation always makes an excellent approxi-
mation. Figure 7 shows the angular distributions for the elas-
tic (upper panel) and inelastic scattering(lower panel).
Although the isocentrifugal approximation does not repro-
duce the main structure of the angular distribution, it indeed
works very nicely at backward angles where the main con-
tribution comes from small values of angular momentum
[see Eq.(10) and Fig. 6]. In fact, the isocentrifugal approxi-
mation almost reproduces the exact result for the scattering
anglesuc.m..130°.

Figure 8 shows the excitation function for quasielastic
scattering(upper panel) and its energy derivative calculated
at u=170° in the laboratory frame. One sees that the isocen-
trifugal approximation well reproduces the exact solution.
We thus conclude that the isocentrifugal approximation
works sufficiently well for studies of quasielastic barrier dis-
tributions. This fact not only makes the coupled-channels
calculations considerably easier, but also assures the similar-
ity of fusion and quasielastic distributions even in the pres-
ence of channel couplings.

IV. QUASIELASTIC SCATTERING WITH
RADIOACTIVE BEAMS

It has been well recognized that low-energy reactions pro-
vide an ideal tool to probe the detailed structure of atomic
nuclei. The heavy-ion fusion reaction around the Coulomb
barrier is one of the typical examples. In the last decade,
many high-precision measurements of fusion cross sections
have been made, and the nuclear structure information has
been successfully extracted through the representation of the
fusion barrier distribution[1].

Low-energy radioactive beams have also become increas-
ingly available in recent years, and heavy-ion fusion reac-
tions involving neutron-rich nuclei have been performed for
a few systems[29–33]. New generation facilities have been
under construction at several laboratories, and many more
reaction measurements with exotic beams at low energies
will be performed in the near future(see Ref.[34] for a
recent theoretical review). Although it would still be difficult
to perform high-precision measurements of fusion cross sec-
tions with radioactive beams, the measurement of the quasi-
elastic barrier distribution, which can be obtained much more
easily than the fusion counterpart as we mentioned in the
introduction, may be feasible. Since the quasielastic barrier
distribution contains similar information as the fusion barrier
distribution, the quasielastic measurements at backward
angles may open up a novel way to probe the structure of
exotic neutron-rich nuclei.

In order to demonstrate the usefulness of the study of the
quasielastic barrier distribution with radioactive beams, we
take as an example the reaction32Mg and 208Pb. The
neutron-rich32Mg nucleus has attracted much interest as evi-
dence for the breaking of theN=20 spherical shell closure.
In this nucleus, a largeBsE2d value(454±78e2 fm4 [35] and
622±90e2 fm4 [36]) and a small value of the excitation en-
ergy of the first 2+ states885 keVd [35] have been experi-
mentally observed. The authors of Refs.[35–37] argue that
these large collectivities may be indicative of a static defor-
mation of 32Mg. On the other hand, mean-field calculations
[38] as well as quasiparticle random-phase approximation
(QRPA) [39] with the Skyrme interaction suggest that32Mg
may be spherical. In fact the energy ratio between the first 4+

and the first 2+ states,E41
+/E21

+, is 2.6[37], which is between
the vibrational and rotational limits[39].

Note that the distorted-wave Born approximation
(DWBA) yields identical results for both rotational and vi-

FIG. 7. The angular distributions for the elastic(upper panel)
and the inelastic(lower panel) scattering for the16O+144Sm reac-
tion at Ec.m.=65 MeV. The significance of each line is the same as
in Fig. 5.

FIG. 8. The excitation function for quasielastic scattering(upper
panel) and the quasielastic barrier distribution(lower panel) for the
16O+144Sm reaction calculated atu=170° in the laboratory frame.
The significance of each line is the same as in Fig. 5.
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brational couplings(to first order). In order to discriminate
whether the transitions are vibrationlike or rotationlike, at
least second-step processes(reorientation and/or couplings to
higher members) are necessary. The coupling effect plays a
more important role in low-energy reactions than at high and
intermediate energies. Therefore quasielastic scattering
around the Coulomb barrier may provide a useful method of
clarifying the nature of the quadrupole collectivity of32Mg.

Figure 9 shows the excitation function of the quasielastic
scattering(upper panel) and the quasielastic barrier distribu-
tion (lower panel) for this system. The solid and dashed lines
are results of coupled-channels calculations where32Mg is
assumed to be a rotational or a vibrational nucleus, respec-
tively. We estimate the coupling strengthb2 from the mea-
suredBsE2d value [35] to be 0.51. We include the quadru-
pole excitations in32Mg up to the second member(that is,
the first 4+ state in the rotational band for the rotational cou-
pling, or the double phonon state for the vibrational cou-
pling). In addition, we include the single octupole phonon
excitation at 2.615 MeV in208Pb [40]. The potential param-
eters which we use areV0=180 MeV, r0=1.15 fm, anda
=0.63 fm, that give the same barrier heightsB
=106.6 MeVd as the Akyüz-Winther potential[41]. For the
imaginary potential, we useW=50 MeV, rw=1.0 fm, and
aw=0.4 fm, but the results are insensitive to this as long as it
is localized inside the barrier with a large enough strength.
We use the computer codeCQUEL [42] in order to integrate
the coupled-channels equations. This code is a version of
CCFULL [25], where the coupling is treated to all orders in the
coupling Hamiltonian and the isocentrifugal approximation
is employed in order to reduce the dimension of the coupled-
channels equations. In the codeCQUEL, we use the regular

boundary condition at the origin, instead of the incoming
boundary condition, and we remove the restriction of
CCFULL, which computes only the fusion cross sections.

In the figure, we can see well separated peaks in the
quasielastic barrier distribution both for the rotational and for
the vibrational couplings. Moreover, the two lines are con-
siderably different at energies around and above the Cou-
lomb barrier, although the two results are rather similar be-
low the barrier. We can thus expect that the quasielastic
barrier distribution can indeed be utilized to discriminate be-
tween the rotational and the vibrational nature of the quad-
rupole collectivity in32Mg, although these results might be
somewhat perturbed by other effects which are not consid-
ered in the present calculations, such as double octupole-
phonon excitations in the target, transfer processes or hexa-
decapole deformations.

V. SUMMARY

The quasielastic barrier distribution is a counterpart of the
fusion barrier distribution in the sense that the former is re-
lated to the reflection probability of a potential barrier while
the latter is related to the transmission. In this paper, we have
studied some detailed properties of the quasielastic barrier
distribution. Using semiclassical perturbation theory, we
have obtained an analytic formula for the quasielastic barrier
distribution for a single barrier(that is, the quasielastic test
function). The formula indicates that this test function con-
sists of two factors: one is related to the effect of the nuclear
distortion of the classical trajectory, while the other is the
reflection probability of the potential barrier. Due to the
nuclear distortion, we found that the quasielastic barrier dis-
tribution is slightly less well behaved than the fusion barrier
distribution. For instance, the peak position of the quasielas-
tic barrier distribution slightly deviates from the barrier
height, and it has a low-energy tail. Nevertheless, the quasi-
elastic barrier distribution behaves rather similarly to that for
fusion on the whole, and both are sensitive to the same
nuclear structure effects.

In multichannels systems, the validity of the barrier dis-
tribution relies on the isocentrifugal approximation, where
the angular momentum of the relative motion in each chan-
nel is replaced by the total angular momentumJ. We have
examined the applicability of this approximation for scatter-
ing processes and have found that it works well at least for
backward angles, where such experiments are performed.

The measurement of quasielastic barrier distributions is
well suited to future experiments with low-intensity exotic
beams. To illustrate this fact, we have discussed as an ex-
ample, the effect of quadrupole excitations in the neutron-
rich 32Mg nucleus on quasielastic scattering around the Cou-
lomb barrier, and argued that the quasielastic barrier
distribution would provide a useful tool to clarify whether
32Mg is spherical or deformed. In this way, we expect that
the barrier distribution method will open up a novel means to
allow the detailed study of the structure of neutron-rich nu-
clei in the near future.
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FIG. 9. The excitation function for quasielastic scattering(upper
panel) and the quasielastic barrier distribution(lower panel) for the
32Mg+208Pb reaction around the Coulomb barrier. The solid and the
dashed lines are the results of coupled-channels calculations which
assume that32Mg is a rotational and a vibrational nucleus, respec-
tively. The single octupole-phonon excitation in208Pb is also in-
cluded in the calculations.
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APPENDIX: SEMICLASSICAL PERTURBATION THEORY

In this Appendix, we derive Eq.(10) for the backward-
angle elastic cross section using semiclassical perturbation
theory. Our formula is an improvement of the one in Ref.
[12], since we take into account the effect of nuclear distor-
tion of the classical trajectory[24].

The scattering amplitudefsud for a spherical optical po-
tential is given by

fsud =
1

2ik
o

l

s2l + 1dPlscosudsSl − 1d, sA1d

whereu is the scattering angle andk=Î2mE/"2. Since we
are interested in backward scattering nearu,p, we replace
the Legendre polynomialsPlscosud with their asymptotic
form,

Plscosud , s− dlÎp − u

sin u
J0FSl +

1

2
Dsp − udG , sA2d

whereJ0sud is the Bessel function. We now apply the well
known Poisson sum formula to Eq.(A1) to obtain

fsud =
1

k
Îp − u

sin u
o
n

s− dnE
0

`

dl lSsld

3J0flsp − udges2n−1dipl, sA3d

where l= l +1/2. At energies around the Coulomb barrier
and for backward scattering, the contribution fromn=0
dominates the sum in Eq.(A3) [11]. Taking only n=0 and
evaluating the integral in the stationary phase approximation,
one obtains(see Sec. 5.7 of Ref.[11])

fsud ,Î l

k2sin uuQ8sldu
e−islu−p/2dSsld, sA4d

whereQsld=2 Red8sld is the deflection function,dsld be-
ing the phase shift, andl satisfies the stationary phase con-
dition Qsld=u. Here, the dash denotes the derivative with
respect to the argument. This equation yields

ssud
sRsud

= UQc8slcd
Q8sld

U l

lc
uSsldu2. sA5d

Landowne and Wolter evaluated Eq.(A5) using a pertur-
bation theory based on the semiclassical approximation[12].
The stationary conditionQsld=Qcslcd=u and the definition
of the nuclear deflection function,Qsld=Qcsld+QNsld,
yield [12]

UQc8slcd
Q8sld

U l

lc
, 1 +

h

2lc
QNslcd +

h

2
QN8 slcd, sA6d

to first order inl−lc. In deriving this equation, we have
assumed thath is much larger thanlc. In the semiclassical
approximation, the nuclear phase shift is given by[11]

dNsld =E
r1

`

ksrddr −E
rc

`

kcsrddr, sA7d

ksrd = Î2mfE − VNsrd − VCsrd − Vlsrdg/"2, sA8d

kcsrd = Î2mfE − VCsrd − Vlsrdg/"2, sA9d

where VNsrd and VCsrd are the nuclear and the Coulomb
potentials, respectively, andVlsrd=l2"2/2mr2 is the cen-
trifugal potential. The classical turning pointsr1 and rc sat-
isfy ksr1d=kcsrcd=0. To first order in the nuclear potential,
the semiclassical phase shift is given by

dNsld , −
m

"2E
rc

` VNsrd
kcsrd

dr. sA10d

Expanding kcsrd around r =rc and assuming thatVNsrd
,−V0e

−r/a nearrc, one obtains[11,12]

FIG. 10. Comparison of the semi-classical formulas with the
exact solution for the16O+144Sm reaction. The upper and the lower
panels show the nuclear phase shift and the ratio of the elastic to the
Rutherford cross sections at the scattering anglep, respectively.
The solid line is obtained by numerically integrating the
Schrödinger equation, while the dotted line is the result of the
primitive semiclassical perturbation theory, Eqs.(A11) and (A12).
The dashed line indicates the result of the semiclassical perturbation
theory which takes into account the effect of nuclear distortion of
the classical trajectory, Eqs.(A16) and (10).
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2dNsld , − VNsrcd
Î2apkh

E
+ Osl2/h2d. sA11d

Using the perturbative phase shift(A11)in Eq. (A6), Land-
owne and Wolter obtained a simple form for the backward
cross sections which is given by[12]

selsE,ud
sRsE,ud

= S1 +
VNsrcd

ka

Î2apkh

E
D · uSsE,lcdu2. sA12d

An improved formula may be obtained by taking into ac-
count the effect of nuclear distortion of the classical trajec-
tory. To this end, we follow the method suggested by Brink
and Satchler[24]. Transforming the coordinate in the first
integral in Eq.(A7) to the one which satisfiesksrd=kcssd, the
semiclassical phase shift may be expressed as

dNsld =E
rc

`

kcssd
d

ds
frssd − sgds= −E

rc

`

frssd − sg
d

ds
kcssdds.

sA13d

The condition ksrd=kcssd yields 0=VNssd+fVN8 ssd+VC8 ssd
+Vl8ssdgsr −sd to first order inr −s. We thus obtain

dNsld , −
m

"2E
rc

` VC8 ssd + Vl8ssd
VN8 ssd + VC8 ssd + Vl8ssd

·
VNssd
kcssd

ds,

sA14d

,F1 −
VN8 srcd

VC8 srcd + Vl8srcd
G ·

m

"2E
rc

` − VNsrd
kcsrd

dr,

sA15d

,F1 −
VN8 srcd

VC8 srcd + Vl8srcd
G ·S− VNsrcd

2
DÎ2apkh

E

+ Osl2/h2d. sA16d

Here, we have expandedr −s with respect toVN in Eq. (A14)
and evaluated it at the radiusrc. Substituting Eq.(A16) into
Eq. (A5), we finally obtain Eq.(10).

Figure 10 compares the semiclassical formula with the
exact result(solid line) for the 16O+144Sm reaction. We use
the same optical potential as in Sec. II. The dotted line is
obtained by the semiclassical perturbation of Landowne and
Wolter, Eqs.(A11) and(A12). The dashed line is the result of
semiclassical approximation which takes into account the
nuclear distortion, Eqs.(A16) and(10). We see that the semi-
classical perturbation theory works reasonably well around
the Coulomb barrier when the effect of nuclear distortion is
included. The deviation of the nuclear phase shift from the
exact solution above the barrier would be improved by using
the full semiclassical phase shift[43]. However, we note that
the backward cross sections are already reproduced reason-
ably well even with the present semiclassical perturbation
theory.
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