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The expressions for the intensity distribution in birefringence images and computer-simulated 
images of a straight, pure screw dislocation with Burgers vector a[ 11 l] viewed end-on in 
cubic crystals have been obtained for the first time by considering the anisotropy of both elastic 
and photoelastic properties of the material. The effect of elastic and photoelastic 
anisotropy on birefringence images of screw dislocation viewed end-on has been discussed. 
And the computer-simulated images have been compared with the experimental 
images observed in Ba( NO& crystals grown from aqueous solution. 

1. INTRODUCTION 

Since birefringence topography was first used to image 
the stress fields of individual edge dislocations viewed 
end-on by Bond and Andrus,’ much theoretical and exper- 
imental work has been done. Bullough2 calculated the im- 
age contrast for such defects. Indenbom, Nikitenko, and 
Mitevskii3 showed that the slip plane and the sense of the 
Burgers vector could be identified by their contrast behav- 
ior. Fathers and Tanner developed a theory of stress-bire- 
fringence image due to both screw and edge dislocations 
viewed from the side for anisotropic crystals4 and isotropic 
crystals5 which were verified with their own experiment? 
and other’s observations.“P7 Stacking- faults,’ inclu- 
sions,5*9*‘0 magnetic domain walls, ’ * ferroelectric domain 
walls,4 twin lamellae, and grain boundaries” were also 
characterized by birefringence topography. With the devel- 
opment of magneto-optic devices, solid state laser devices 
and electro-optic semiconductor devices, this technique has 
become an important method for the characterization of 
defects in the crystals related to these devices, such as 
garnet crystals5,6+24 and III-V compounds.25-33 Hdwever, 
birefringence topography has rarely been employed for in 
situ observation of crystal growth or dissolution except in a 
few cases.34 This is because all previous theoretical treat- 
ments of stress birefringence contrast due to dislocations 
have predicted that screw dislocations viewed end-on, 
which play an important role in crystal growth or dissolu- 
tion, will be invisible. Recently, Ge and co-workers dem- 
onstrated both experimental and theoretically that birefrin- 
gence images of a screw dislocation viewed end-on are 
visible in an elastically isotropic but photo-elastically an- 
isotropic materiali that contains a long-range plane stress 
field.13 In this article an account will be given of results 
obtained theoretically for the birefringence image of a 

screw dislocation with Burgers vector a[1 1 l] viewed 
end-on in cubic crystals by considering the anisotropy of 
both elastic and photoelastic properties of .this material, 
which have been compared with experimental image ob- 
served in Ba( N03)2 crystals grown from aqueous solution. 

II. iTRESS BIREFRINGENCE ,.^ 

In any given coordinate system, the equation of the 
index ellipsoid in the unstressed perfect crystal, including 
cubic, tetragonal, hexagonal, and trigonal crystal is 

ByX2 + 3iY2 + BiZ2 + 2B4YZ.+ @ZX + 2B”$Y= 1, 

where B”, (m=1,2,1..,6) are the.,elements of the relative 
dielectric- impermeability tensor that are equal to the in- 
verse of the dielectric tensor E, ( 1,2,...,6). In the principal 
coordinate system, the off-diagonal elements vanish, and 
we have 

Bi=E; l==ni2 (m=1,2,3), 

where n, (m = 1,2,3) are principal refractive indices of the 
crystal. For an unstressed perfect cubic crystal, n1=n2 
= n3 = no, which means that such a crystal is an optically 
isotropic medium and its index ellipsoid is a sphere. 

It is assumed that the propagation law of electric-mag- 
netic wave in an anisotropic homogeneous medium can be 
applied to a crystal subjected to a stress of a dislocation 
and the stress field only changes the shape, size, and ori- 
entation of the index ellipsoid by the photoelastic effect, On 
applying the stress field of a dislocation, the ellipsoid is 
changed into another one whose equation may be written 
as 

B,X2 + B2Y2 + B3Z2 + 2B4YZ + 2B,ZX + 2B$Y= 1. 
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The small change of refractive index may be produced by 
the stress field of a dislocation. This change is mostly con- 
veniently specified by giving the small changes on the co- 
efficients B, ( WZ= 1,2 ,..., 6). .And we have 

B,=Bi + AB, (m= 1,2,3 ,... 6). X.1) 

If we neglect higher-order terms thanthe first in the stress 
field of dislocations, the small changes on the coefficients’ 
can be written as .’ 

AB,=III,,o, (m,n==1,2,3 ,... 6),*. (2) 

where IImn are the piezooptical coefficients and o,, are the 
stresses around a dislocation. It is worth noting that we 
have to transform the component of the piezo-optical ten- 
sor, n,,, and the stress tensor of a dislocation, a,, to the 
given coordinate system. _~ 

In order to determine the three principle axes, we take 
the defining property of principle ,axes that, at their inter- 
sections with the ellipsoid, the normal to the ellipsoid is 
parallel to the radius vector. The condition can be written 
as3s 

B1 - l/n2 B6 B5 
B6 B2 - l/n2 B4 =o. (3) 
4 B4 Bj -L l/n2 

This cubic equation in (l/n’) is called the secular equa- 
tion. The three roots, nl, n2, n3, say, define three directions 
in which the radius vector of the ellipsoid is parallel to the 
normal, that is, three principal axes. For light propagating 
in the Z direction of the given coordinate system, the sec- 
ular equation becomes 

B1 - l/n2 & 
Bb B2 - l/n2 =O* (4) _ 

This yields the major axis and minor axis of the intersec- 
tion ellipse of the plane normal to the direction of light 
propagation, the Z axis, with the index ellipsoid. The two 
allowed polarization directions are parallel to the axes of 
the ellipse and consequently perpendicular to the direction 
of light propagation as well ,as to each other. The two 
waves polarized along these direction have, respectively, 
refractive indices, nl and n2, which can be determined by 
two roots, l/n; and l/n& of Eq. (4). Thus the difference 
between nl and n2 and an angle (r: between the x axis in a 
given coordinate system and the major axis of the ellipse is 
given approximately by 

n2 - nl=(n22)[(BZ - B1)2 + 4Bi]“2, 

2cr=tan-‘[2BJ(B2 -B,)]. (5) 

The intensity distribution in the birefringence image 
under crossed polars36 is 

I=a’ sin2(2f$)sin2(6/2) , (6) 

where a is the amplitude of the incident plane-polarized 
light, CJ~ is the angle between vibration direction of the po- 
larizer and semimajor axis of the ellipse, 6 is the phase 

FIG. 1. Construction for 
finding indices of refraction 
and two allowed polariza- 
tions for the given direction 
of light propagation, 2 axis. 

x 
The ellipse is the intersec- 
tion of the X-Y plane with 
the index ellipsoid. 

difference between the two waves emerging from the wafer 
with thickness Al, which can be written as 

2 l/2 = (nn;AZ//z) [ (B2 - B1)2 + 4B6] , (7) 

where il is the wavelength of the incident light. In general, 
S is small and thus sin(W2) = W2. If fi is the angle be- 
tween the vibration direction of the polarizer and X axis, 
4 = a! + fi, as shown in Fig. 1. In this case, Eq. (6) can be 
expressed as 

Xsin2(2fi f 2a), 

2cu=tan-‘[2B6/(B2- B1)]. -. (8) 
Equation (8) is an expression for the intensity distribution 
in birefringence images of any type of dislocations in a 
crystal (not only cubic crystal). In principle, the stress 
field, wm, for a given type of dislocation in a given crystal 
can be known, thus, the AB,,, B,, then.the distribution of 
intensity in birefringence images, I, can be obtained ac- 
cording to Eqs. (2), (l), and (8). 

Ill. BIREFRINGENCE IMAGES OF A (111) SCREW 
DlS&OCATlON IN CUBIC CRYSTALS 

I _ In general for elastically anisotropic cubic materials, 
such as .Ba(N03)2 crystal, only three independent con- 
stants are required, that is, the elastic compliance con- 
stants: sll,S12,S44, or elastic stiffness constant: Cllrc12,c44 in a 
physical coordinate system x,y,z along [loo], [OlO], and 
[OOl]. In this article, we shall take these as one absolute 
magnitude (say c4J and two ratios. One of these ratios is 
related to Poisson’s ratio, N= - s~~/s~~=c,~/(c~~ + c12). 
The other more truly represents the elastically anisotropy 
and is A=2(s,, - ~12)/~44=2~44/(~ll- c12), which is also 
known as the Zener ratio. 

The intensity distribution in the birefringence image of 
a straight dislocation in anisotropic media is most easily 
analyzed if the Z axis -of a coordinate system is oriented 
parallel to the ,dislocation line and the direction of light 
propagation as well (viewed end-on), which may be called 
a dislocation coordinate system. For a straight screw dis- 
location with Burgers vector a[1 111, it is most convenient 
to use a dislocation coordinate system, X, Y, 2, with Z 
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parallel to the direction of the dislocation line and light 
propagation, [ 1111, and X, Y along [ 1121 and [ilO], respec- 
tively. First of all, our task is to find out how the values of 
components of two fourth rank tensors, the elastic stiffness 
constant c,, and the piezo-optical coefficient IImn 
(m,n= 1,2,3,...6), transform when the coordinate system is 
transformed from [loo], [OlO], [OOl], to [I 121, [ilO], [ill]. 
The transformation of c,, and IImn is shown in the Ap- 
pendix. 

The stress field of a straight, pure screw ‘dislocation 
with a (111) Burgers vector in an elastically anisotropic 
cubic crystal with infinite size and without any external 
loads has been obtained by Chou and MitcheLJ7 On choos- 
ing the dislocation coordinate system and following 
Chou,37 the stress components of a screw dislocation, a, 
(m= 1,2,3 ,..., 6), can-be written as 

ul= (bR2S,5/2~S~&) [x2y(3x2 -y2>/QJ, 

a,= (bR3S,5/2mSwS44) [y3(3x2 -y2>/Q], 

a3= - (bR3S15/2?rS*&) [(s12 + q/3)/G*, --217/3)] 

x[v(x~+Y~)(~x~-Y~)/QI, 

u4= (bR/277-&,+) (x/Q) [(x2 -y2) (x2 - 3y2) 

+ 2R2y2(3x2-y2)], 

I 

us= (bR/2n;S& (j/Q) 

x [2x2(x2 - 39) - R2(x2 -y2)(3x2 -y2>], 

u6= (bR3S15/2nS,,S,) [xy”(3x2 -y2,/Q], (9) 

where Q=x2(x2 - 3v2j2 + R2y2(3x2 --Y~)~ and S,,(m,n 
= 1,2,3,...,6) are the modified elastic complications, which 
are convenient for the plane strain problem, are defined by 
Stroh.38 When one principal strain is zero a crystal is said 
to be in a state of plane strain. Pure shear is a special case 
of plane strain, and a pure screw dislocation is just so. S,, 
are related to the three independent elastic parameters, c,, 
N, A, used in this article by 

s11=s22 

[(16N- 11) +A(2N+ l)] 
=(A’12C44) [ -2(N+ 1) +A(2N+ l)] + (2/A) ’ 

[(2ON-7) -A(2N- l)] 
S12=(A'12C44) [ -2(N+ 1) +A(2N- I)] - (2/A) ’ 

&4=&s= (l/3+$) (24 + l), 

s66= (l/34 (A - 2), 

SIS= - S25= - ( l/2)S4,= (l/3 Jzc44) (1 - A), (10) 

and the other parameters in the expressions for the stress components, Eq. (9), are defined as follows: 

(16N- 11) +A(2N-- 1) + (2/&[ -2(N+ 1) +~4(2~--- I)] 
R2=(16N- 11) +A(2N- 1) - [2(A -4)/l&4 + I)][ -2(N+ 1) +A(2N-- 111 ' 

r]=(1/2C44)(A- l), sl,=A/[2C44(N+ I)], S~~=~-AN/[~C,J~(N-~- I)]. 

It can be seen from Eq. (9) that there are six stress components for a straight, pure ( 111) screw dislocation by considering 
the anisotropy of elastic properties of the crystal. On setting A= 1, then St5 = 0, see Eq. (lo), this yields 
(TV = cr, = c3 = o6 = 0 from Eq. (9) and the expressions of o4 and a5 are reduced to that- in isotropic materials.3g 

Substituting a,, Eq. (9), and II,,, the Appendix into Eq.. (2) and then into Eq. ( I), the expressions for AB, and B, 
are obtained. Finally, we obtain the intensity distribution in the birefringence image of a screw dislocation with Burgers 
vector b, (11 l), viewed end-on in an elastically and photo-elastically anisotropic cubic crystal by substituting the expres- 
sion of B, into Eq. (8), which can be written as 

I=(a2b2&@/14A2) [I $%n - q3)x[ (x2 -y2> (i2- 3y2) + 2R2y'(3x2 -y2)] + 2&i-,, - (l/2) (7q2 + T,~) 

- 77441r[2X2(x2 - 3y2) - R2(x2 -y2H3x2 -x2)] - (SIs/S1l) [ ‘i-11 - (l/2) (?2 + r13) + 2r44]R2.Yb2 --v2> 

x(3x24) + &w%,~h2- rrdR2vZ(3x2 -y2)12 + 4{( - @2) (r12 - TJ-,~)~[~x~(x~ - 3y2> 

--'{x2-y2)(3x2-y2)] + @[ fill- (l/2) (a2 + q3) - z-~]x[ (x2 -y2)(x2 - 3y2) + 2R2(3x2 -y2)y2] 

i- midst,) bll - (l/2)h2 + 7713) f 2~dR%~(3~%~2) + ( $~2)(s,5/s1,)(~12 - ~~~)R2~(32 -.J+ 

x (x2 -y2)121 (R2/@S&)sM2a: + WI, (lla) 
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TABLE 1. The physical contents of YAG, YGG, Ge, and RbCl crystals. 

Crystal 

YAG 

YGG 

Ge 

RbCl 

Lattice 
parameter 

12.005 

12.280 

5.6576 

3.749 

no 

1.832 
d = 0.8 pm 

1.930 
A = 0.6 pm 

4.00 
,I = 10.6 pm 

1.48 
/2=4pm 

(&+a) 

115 

95.5 

67.1 

4.70 

Cl1 Cl2 RI1 nlz 
(GPa) (GM (TPa) - ’ (TPa) - ’ 

324 112 0.120 0.050 

290.3 117.3 0.359 - 0.057 

129 48 1.373 0.941 

36.4 6.3 7.04 2.99 

(TLT- ’ 

- 0.535 

0.827 

1.857 

- 7.86 

tan2o={- &( 77-12 - .RI~)Y[~~‘(x~ - 3y2) - R”(x2 -y2) (3x2 -.?)I + 2 &T,, - (l/2) (7rt2 + rt3) - 7r44] 

Xx[(x2--‘)(x2- 3.~7~) +2R2(3x’--y2)] +2(S15/S11)[ ~TTII - (1/2)(W+%3) + 2Q]R2Xy2(3X2 -J”> 

-I- &%~SII) ( r12 - q3)R2y(3x2 -y2Hx2 -y2,)/{ &r12 - IT,~)x[ (x2 -y”) (x2 - 3y2, 

+ 2R2ti(3x2 -+)I + 2$[ ~11-- (1/2)(q2+a13) -Q~~]JJ[~x~(x~-~~~) --‘(x2-y2)(3x2-y2)] 

i (SdS11) bql - (l/2) (al2 + 77131 + 2TdR2-b’(X2 - y2) (3X2 yY2) 

-I- &W%) (~12 - ~T~~)R~x.JJ~(~x~ -~“0. (lib) 

IV. THE EFFECT OF ANISOTROPY ON 
BIREFRINGENCE CMAGE OF A (111) SCREW 
DISLOCATION VIEWED END-ON IN CUBIC CRYSTALS 

As mentioned above, three independent elastic coeffi- 
cients are required for elastically anisotropic cubic crystals, 
and the Zener ratio, A=2c44/(ct1 - ct2), more truly rep- 
resents the elastically anisotropy. For an elastically isotro- 
pic material, we have A = 1 and then St5 = 0, see Eq. ( 10). 

In order to consider the anisotropy of photoelasticity 
in cubic crystal, the cubic classes divide into two groups. 
Four independent coefficients qll, 7r12, r13, and gM, are 
needed to define the photoelastic properties in classes 23 
and m3, where the cube axes are diads; the-other group, 
that is, classes 33m, 432, and m3m, where the cube axes 
are tetrads, needs only three independent coefficients, rl,, 
7~2, and ~44 with 7r13 = rrlP For the sake of characteriza- 
tion of the photoelastic anisotropy, two parameters are de- 
fined, that is, J)=T~ZITT~~ and T=[rtt - (1/2)(?rt, 
+ 7r13)]/7r,,,+ For photoelastically isotropic materials, we 

have D=l and T=l. 
Equation ( 11) is the expression for the birefringence 

image of (111) screw dislocation viewed end-on for both 
elastically and photoelastically anisotropic cubic crystals, 
which belongs to 23 and m3 cube classes; and three aniso- 
tropic parameters A, T, and D, should be considered. On 
setting D= 1, that is, 7rt2 -= r13, Eq. ( 11) is reduced to the 
expression for 43m, 432, and m3m cube classes. On setting 
D- 1 and A = 1, Eq. ( 11) is reduced to the expression for 
elastically isotropic but photoelastically anisotropic cubic 
crystals ($3m, 432, m3m classes) which was deduced by 
Ge et al. and used to explain the birefringence images of 
(111) screw dislocations viewed end-on observed in YAG- 
and GGG crystals.t2 It is well known that the Zener ratio, 
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A, of YAG and GGG is equal to 1.036 and 1.049, respec- 
tively, and thus YAG and GGG can be considered as ap- 
proximately elastically isotropic crystals. On setting D= 1, 
T=l, and A=1 (S,,=O), it can be seen from Eq. (11) 
that I=O, that is, the screw dislocations viewed end-on in 
isotropic materials are invisible. 

The aim of this section is to discuss the effect of an- 
isotropy on the birefringence image. Therefore, we con- 
sider four kinds of cubic crystals with different typical an- 
isotropic parameters as examples of structures. The (111) 
screw dislocation in some example structures such as RbCl 
and Ge may be not really exist.3g However, this does not 
influence the discussion of the effect of anisotropy on the 
image. All four kinds of crystals considered belong to the 
m3m class and thus D= 1. In order to determine the an- 
isotropic parameters, the elastic compliances and the pi- 
ezo-optical coefficients of all materials used in this paper 
are obtained from Landolt-Bornstein,40 see Table I. The 
computer-simulated images of ( 111) screw dislocation 
viewed end-on in RbCl (A=0.312; T-0.515; D=l), 
YAG(A= 1.036; T=O.130; D=l), YGG(A=1.104; 
T=O.503; D=l), and Ge(A=1.657; T=O.866; D=l) 
crystals are obtained respectively according Eq. ( 11). As 
shown in Fig. 2(a). the contour of equal intensity in com- 
puter-simulated image of (111) screw dislocation in YAG 
crystal (A = 1.036) approximately, but not exactly, con- 
sists of two circles in contact with each other at the origin 
[the contour of equal intensity of image in an elastically 
isotropic (A = 1) but photoelastically anisotropic material 
exactly consists of two circles which was deduced by Ge 
and co-workers12]. The computer-simulated images of 
screw dislocations in RbCl and YGG are shown in Figs. 
2(b) and 2(c). It is clear that the shapes of equal intensity 
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(a) <b) 

(0) Cd) 

FIG. 2. The computer simulated images and effect of anisotropic param- 
eters A and T on the birefringence images of a straight, pure screw dis- 
location with Burgers vector a[1 1 l] viewed end-on in (a) YAG crystal 
withA=1.036, T=O.130, (b) RbClcrystal withA=0.312, T=O.515, (c) 
YGG crystal with A=1.104, TzO.503, (d) Ge crystal with A=1.657, 
T=0.866. The polarizer is parallel to [ll?] of the wafer which is hori- 
zontal in each case, that is, B = 0”. 

contours deviate from the circles which mainly results 
from the deviation of Zener ratio A from unity; the photo- 
elastic anisotropy of RbCl and YGG is smaller than that of 
YAG or the anisotropic parameter T of~the two materials 
is closer to unity than that of YAG. The computer-simu- 
lated image of screw dislocation in a Ge crystal which has 
the largest Zener ratio A among these four kinds of crystals 
is shown in Fig. 2(d). By comparing Figs. 2(a), 2(c), and 
2(d), it appears that the more the Zener ratio deviates 
from unity, the more the shape of equal intensity contour 
changes from circular. It may also be of interest to com- 
pare the relative intensities of birefringence images of [ 11 l] 
screw dislocations in the four kinds of crystals. From Eq. 
( 1 l), it is clear that there are two factors which influence 
the relative intensity of birefringence image if the thickness 
of the crystal wafer, Al, and the amplitude of incident 
light, a, is given. One is (b2&12) which can be calculated 
according to Table I. Thus ratio of the factors for YAG, 
YGG, Ge, and RbCI is 1.00:2.12:3.26X 10 T2:6.78X 10 13. 
The other is in heavy square brackets of Eq. (11) which 
results from the elastic stiffness constant: cll, CHICK, and 
piezo-optical coefficient: II t r, II,, TIM, and can be obtained 
according to the relative grey levels in the computer sim- 
ulation. The ratio of the factors for YAG, YGG, Ge, and 
RbCl is 1.00:1.12:31.6:1.70. It seems that the influence on 
the ratio of second factors results from Zener ratio mainly. 
On combining the two sets of factors, the ratio of relative 
intensities in birefringence images for YAG, YGG, Ge, 
and RbCl is 1.OO:2.37:1.O3:1.15X1O-2. Thus an assess- 

ment of birefringence topography for the characterization 
of dislocations for a given transparent crystal has been 
given. 

It is to be noted that the cubic classes 23m, 432, m3m, 
just discussed above, need to consider only two anisotropic 
parameters, A and T. However, three parameters, A, T, 
and D need to be considered in classes 23 and m3. We will 
discuss an example that belongs to m3 class, that is, 
Ba(N03)2, in the next section. 

V. COMPUTER-SIMULATED IMAGES AND 
EXPERIMENTAL hIAGES OF A (111) SCREW 
DISLOCATION IN Ba(NO,), 

The Ba(NO,), crystal belongs to the m3 class: three 
anisotropic parameters, A, T, D, .are needed to define elas- 
tic and photoelastic anisotropicity. Ba(N03), is a typical 
anisotropic crystal with large anisotropic parameters: 
A =2.943, T= 10.538, D= 1.136. It has been demonstrated 
by x-ray topography that the straight, pure screw disloca- 
tions with Burgers vector a[ 11 I] really exist in Ba (NO, ) 2 
crystals.s’ Therefore, we choose this crystal as an example 
in which the computer-simulated images and experimental 
images of (111) screw dislocation are obtained and com- 
pared with each other. 

Ba(N03)2 single crystal specimens were grown for 
aqueous solution. The feed materials (analytical reagent) 
of Ba( N03)2 are commercially available and recrystalliza- 
tion from aqueous solution for three times was employed 
with refinement. The dominant impurities are Ca and Sr, 
present at less than O.Ol%, respectively. The apparatus to 
grow crystals was in principle the same as that of Tsuka- 
moto and Sunagawa’2 and Maiwa and co-workers.41 The 
temperature fluctuation in the growth vessel were main- 
tained < 0.01 “C!. A solution with saturation temperature at 
34.00 “C! was used. The ranges of the growth temperature 
and the supersaturation were 3 1.24 “C-33.5 1 “C and 
l.Ol%-5.95%, respectively. The growth habit of the 
Ba(N0,)2 crystal is commonly constructed by {ill) and 
{lOO} surfaces under the growth conditions, mentioned 
above. In the { 111) growth sector, three types of disloca- 
tions were identified by x-ray topography,4’ that is, the 
edge dislocation, the screw dislocation, and the mixed dis- 
location with Burgers vector a[liO], a[1 111, and a[1 IO], 
respectively. Most of the dislocations are generated from 
the interface between seed crystals and regrown crystals or 
inherited from the seed. Once the growth conditions had 
stabilized, the dislocations ran almost normal to the ( 111) 
surface in the (111) growth sector and new dislocations 
were not generated. Thus, as the crystal grew the disloca- 
tion density decreased. More importantly, the tendency has 
led to large regions of crystal containing a few dislocations. 
The regions are suitable for direct observation of disloca- 
tions by means of birefringence topography. The crystal 
wafer, approximately 1.5-2.0 mm thick with surfaces par- 
allel to ( 111) plane from the regions, mentioned above,, 
was prepared by meansof sawing the bulk crystal with 
rotating wet cotton thread, which gave no strain to a crys- 
tal by the operation. The wafer were then etched in water 
so as to eliminate the possible surface damage. Birefrin- 
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B =45’ fi =60’ /l =75” 

FIG. 31 Computer-simulated images of a 
straight, pure screw dislocation with Bur- 
gers vector a[1 1 l] viewed end-on in 
Ba(N03)2 crystal with Az2.943, 
T= 10.538, D= 1.136 for several orienta- 
tions of the polarizer relative to [l 121 di- 
rection of the wafer, that-is, p = CY, 15’, 
30”, 45, 60”, 79. The [112] is horizontal 
in each case. 

with-Burgers vector a[1 1 l] viewed 
end-on in Ba(NOS), crystal for 
several orientations of the polar- 
izer relative to the I1 1% direction 
of ‘the wafer, that ‘Is p= o”, 15’, 
30”, 45’, 60”, 75”. The [l 151 is hor- 
izontal in each case. 
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(aa) B =o’ (b) fi =15’ 

gence images of screw dislocations that had been deter- 
mined by x-ray topography were observed in an Olympus 
vanox polarizing microscope. In order to eliminate the in- 
fluence of the surface flatness on the birefringence images, 
the wafer observed was immersed in monomethylaniline,. 
the refractive index, of which is very close to that of the 
Ba(N0s)2 crystal. 

The computer-simulated images and experimental im- 
ages of a straight, pure screw dislocation with Burgers vec- 
tor ~[lll] viewed end-on in the Ba(NOs), crystal are 
shown in Figs. 3 and 4, respectively, in which the images 
correspond to several orientations of the polarizer relative 
to the [llz] of the water, that is, fl = o”, W, 30”, 45”, 60”, 
75“. The contours of equal grey level measured from the 
negative film of Fig. 4 by means of a microphotometer are 
shown in Fig. 5, in which the contours of the equal grey 
level only correspond to three orientations of the polarizer, 
that is fi = O”, IY, 30”. On comparing Fig. 3-5, the shapes 
of contours of absolute value of equal intensity in the com- 
puter simulated images and experimental images are in 
good agreement. Obviously, the images observed in Fig. 4 
show the black-white contrast in opposite petals which is 
still a problem to be solved in the future. However, it is a 
common phenomenon that the reversal of contrast in op- 
posite petals of the experimental images of defects such as 
inclusions,‘.” edge dislocations,5’9,43-5 screw disloca- 
tions, I2 mixed dislocations,25 subboundaries is usually ob- 
served in real crystals in which internal strains due to ther- 
mal stresses, inhomogeneity of composition, lattice 
mismatch or other defects with a long-range strain field 
always exist. In order to explain this phenomenon, the 
intensity distribution in the images has been analyzed with 
a long-range plane strain superposed on the strainfield of 
inclusion in isotropic materials,’ edge dislocations in iso- 
tropic materia1s5’45’46 and in anisotropic materials,i2 and 
screw dislocations in elastically isotropic but photoelasti- 
tally anisotropic materials. l3 Although this phenomenon 
in both elastically and photoelastically anisotropic materi- 
als has not yet been explained by the theory described 
above yet, we believe that it results from the same reason. 
It is worth noting that the images of a (111) screw dislo- 
cations viewed end-on in such a crystal shown in Fig. 3 
p = 0” and Fig. 4 fi = 0” are more complicated and widely 
different in the shape of the contours of equal intensity of 
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FIG. 5. The contours of equal grey 
level of the negative lilms of the bi- 
refringence images of a pure screw 
dislocation viewed end-on in 
Ba(N0.J2 crystal shown in figs. 4 
(a), 4(b), 4(c), measured by a mi- 
crophotometer. 

(cl B =30” 

the images from that in the class m3m crystals shown in 
Fig. 2. It will be seen from this that the influence of large 
-4, T, and also D, on the shape of equal intensity contours 
in image is of great importance. 

APPENDIX 

The transformation of elastic stiffness constant C,,, 
and piezo-optical coefficient III,, from the physical coordi- 
nate systems, [loo], [OlO], [OOl], to the dislocation coordi- 
nate system [ll?], [iio], [ill]. 

For the purpose of transforming from the physical co- 
ordinate system to the dislocation coordinate system it is 
necessary to use the full four-index form of elastic stiffness 
and piezo-optical tensors. The tensors then obey the nor- 
mal transformation rule: 

\ [l 121 

FIG. 6. Physical coo~din+ system [lOO], [OlO], [OOl] and dislocation 
coordinate system [112], [l IO], [ill]. The x,,x,,x3 and Xi.Xs,Xs are unit 
vectors of coordinate axes of physical coordinates and dislocation coor- 
dinates, respectively, andXi = (I/ fi)x, + (l/ %c, - (21 @x3, X2 

-(l/Jz)x, + (l/E%,, x, E (l/J%, + (l/J3%, 
5 (l/J%,. 
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where lh = Xj*xq and Xj ( j= 1,2,3) are unit vectors along method, which is fully explained in Nye’s book35 (pp. 118- 
[llz], [llO], 11111 axes, and xq (q= 1,2,3) are unit vectors 
along [loo], [OlO], [OOl] (see Fig. 6). 

121, 133-135, 138, 139), so we will not go into details here, 

In order to calculate the transformed component, we 
we just give the final results which are shown in following 

will use an abbreviated method, the direct inspection 
tensors: 

I 

The elastic stiffness constant in the coordinate system [lls], [ilO], [ill] for the cubic crystals [cc,,]: 

$cc,, + Cl, + 3% ;w,, + 5c,, - 2C44) fw,, -t 2G2 - 2C44) 0 -$(c,, - c,, - 2c.d 0 

iCGl + SC,, - 2C44) h + c,, + 2C44) f(G + 2G, - 2C44) 0 -$k,, - '% - 2c.d 0 

j(C,, + 2% - 344) fw,, + 2% - 2%) f(C,, -t 2% + 4G4) 0 0 0 

0 0 0 fG - Cl2 + G4) 0 -$(C,, - c,, - 2C44) 

-9 cc,, - c,, - 2C44) $(C,, - c,, - 2C44) 0 0 LkGl - Cl2 + G4) 0 

0 0 0 $cc,, - c,, - 2%) 0 aw,, - c,, + 4C44) 

The piezo-optical coeflicient in the coordinate system [l 121, [ilO], [l 111, for the cubic classes 23 and m3, [II,,]: 

h* + KM) + at*,, + Q) 
AhI - %4) + &-,z + Q) 
fh - %I + &.rr,* + P,j) 

3 --I2 - a) 
-+I2 - %461) +$h,, + 813) 

$(%2 - n,a) 

-$4 ff,, - 7-w) +$bIz + a131 

-p( VI, - x4444) - -&T, + r13j 
0 

J3 
--+?I - 813) 

:(2all + %I - fb-12 + 813) 

-$h - ff,3) 

b-w- r4444) + &-,2 + a,,) h,* - r44) + &-I2 -t 7%) -+$,2 - r,3) 

h, +. 4 + $cn,, + r,J hl - %4) + jh* f P,3) -3 TlZ - 7713) 

fh, - q444) + ;cr,2 + 813) 4b-,, + 27J.44 + f(w c T,3) 0 

--g&2 - 813) 
0 5m,, + r4444) - fh + 8,)) 

qi P,l - ff4444) -- -&,2 + 813) 
0 -p( Tl2 - 7h3) 

4 
--&T, - ?,I 

0 A2 
3 (?I - r4444) -$ CT,2 f n-,3) 

J3 
--g(T* - 7713) 

-$C q12 - 7713) 

0 

+Z( 
Pll - n44) - -y&,2 + B,3) 

-g-C 7Tl2 - pi31 

sb-w + 27-r44) - dh2 + n,3) 
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