

Dielectric ordering and colossal magnetodielectricity in the antiferromagnetic insulating state of -(BEDT-TSF)2FeCl4

著者	松井 広志
journal or	Physical review. B
publication title	
volume	71
number	1
page range	012416-1-012416-4
year	2005
URL	http://hdl.handle.net/10097/35563

doi: 10.1103/PhysRevB.71.012416

Dielectric ordering and colossal magnetodielectricity in the antiferromagnetic insulating state of λ -(BEDT-TSF)₂FeCl₄

E. Negishi,¹ T. Kuwabara,¹ S. Komiyama,² M. Watanabe,² Y. Noda,² T. Mori,³ H. Matsui,¹ and N. Toyota¹

¹Physics Department, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

²Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

³Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

(Received 27 October 2004; published 28 January 2005)

We report on the temperature and magnetic-field dependence of dielectric constant ε_1^c and conductivity σ_1^c along the *c* axis in the antiferromagnetic insulating (AFM-I) state of λ -(BEDT-TSF)₂FeCl₄, which indicate some dielectric ordering in coexistence with AFM-I. There appears a sharp upturn of saturated electric polarizations and a colossal magnetodielectricity (CMD) in magnetic fields. On a basis of the π -*d* superexchange interaction we propose a charge ordering-induced polarization model leading to two candidates of ferroelectric or antiferroelectric orderings, and discuss the prominent magnetoelectric effects associated with CMD in terms of the field-induced unlocking or melting charge ordering.

DOI: 10.1103/PhysRevB.71.012416

PACS number(s): 75.50.Ee, 77.22.-d, 71.30.+h, 75.30.-m

There have been long-term studies of ferroelectromagnets in which magnetic and electric orders coexist.¹ Recently, extensive work has been devoted with a renewed interest in rare-earth manganites,²⁻⁴ since a reciprocal control using a magnetoelectric (ME) effect that a magnetic (electric) field controls dielectric (magnetic) properties, is highly expected for an application to a multifunctional electronic device. In a perovskite TbMnO₃, for example, an application of magnetic field causes the prominent ME effect on the ferroelectric polarizations via a magnetoelastic coupling in the commensurate antiferromagnetic state.³ Here we describe a ME effect in a π -d coupled-charge transfer salt λ -(BEDT-TSF)₂FeCl₄ which is a quasi-two-dimensional (Q2D) paramagnetic metal (PM) containing Fe³⁺ ions with the high spin $S_d = 5/2$; where BEDT-TSF is an abbreviation of bis(ethylenedithio)tetraselenafulvalene, simply denoted as BETS.⁵

The material takes a triclinic structure of the space group $P\overline{1}$ with an inversion symmetry. Four independent BEDT-TSF donors form a columnar structure along the *a* axis via a face-to-face overlap, and each column is coupled via a sideby-side overlap along the c axis (see Fig. 5). The metallic state with paramagnetic spins S_d turns into an antiferromagnetic insulating (AFM-I) state at the metal-insulator (MI) transition temperature $T_{\rm MI}$ =8.3 K. Below $T_{\rm MI}$, the in-plane resistance increases drastically more than six orders of magnitude. On the other hand, the magnetic susceptibility χ shows a discontinuous change at $T_{\rm MI}$, which evidences an appearance of quantum spins $S_{\pi}=1/2$ of localized π electrons to form the S_{π} - S_d coupled antiferromagnetic (AFM) ordering at $T_{\rm MI}$.⁶ At a critical magnetic field $H_{\rm MI}$, however, AFM-I becomes unstable against forming the reentrant metallic states with a field-forced alignment of S_d , leaving π electrons to be mobile again.⁷ Recently, there have been disclosed phenomena both in the high-temperature PM and in the low-temperature AFM-I. The former is an anomalous metallic state coexistent with dielectric anomalies revealed by microwave conductivity measurements,8 and then supported by successive observations of structure-related anomalies by specific-heat,⁹ proton NMR,¹⁰ and x-ray diffraction measurements.¹¹ An origin of the extraordinary dielectricity in PM has been discussed in terms of a spontaneous electronic phase separation into normal metallic and relaxor ferroelectric domains.¹² The latter is a nonlinear transport phenomenon associated with a negative resistance (NR) and switching effects in AFM-I (Ref. 13) which systematically depend on magnetic fields.¹⁴ These results both in PM and AFM-I have disclosed that some charge instabilities as well as magnetic interactions are of intrinsic importance in the present magnetic conductor. This paper presents evidence for a dielectric ordering coexisting with AFM-I, and the ME effect associated with a colossal magnetodielectricity (CMD).

The capacitance $C = \varepsilon_1 S/d$ and conductance $G = \sigma_1 S/d$, where d is a distance of about 0.5 mm apart between electrical contacts and S the cross section of an order of 10^{-3} mm², were measured by a three-terminal method using acapacitance bridge at the excitation frequency $f(=\omega/2\pi)$ of $10^{1}-10^{4}$ Hz and the excitation voltage v_{ac} fixed at 10 or 100 mV. Our measurements were unable to be made near the $H_{\rm MI}$ -T phase boundary [see the inset of Fig. 4(a)], where the huge recovery of G higher than $10^2 \mu S$ became too large to measure C and G. The dc bias (E_{bias}) dependence of C and G along the c axis was measured in order to evaluate the polarization curve ΔP -E and the current-voltage (I-V) characteristics, the latter of which were in situ measured also on the same sample immersed in liquid helium to avoid a selfheating effect.¹³ Magnetic fields were applied to the b^* axis perpendicular to the ac conducting plane.

Figure 1 shows the temperature dependence of ε_1^c along the *c* axis at 1 kHz. With increasing temperature ε_1^c becomes very large, amounting to the order of 10⁴ in magnitude, although the data are not available near $T_{\rm MI}$ due to a huge recovery of conductivity. For comparison we also plot ε_1^c measured at 44.5 GHz by a microwave cavity perturbation method.¹² Here ε_1^c starts to increase above 6 K, takes a peak just below $T_{\rm MI}$, and remains constant above $T_{\rm MI}$. (For the anomalous dielectricity in PM, refer to Ref. 12. In comparison to $\varepsilon_1^{a^*,b^*}$ along other directions shown in the inset, the magnitude of the dielectric response is found to be tremendously anisotropic with respect to the orientation of the ac

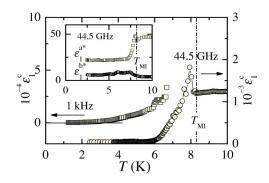


FIG. 1. The *c*-axis dielectric constant ε_1^c at 1 kHz and 44.5 GHz¹² as a function of temperature. The inset shows the dielectric constants $\varepsilon_1^{a^*}$ and $\varepsilon_1^{b^*}$ along a^* and b^* at 44.5 GHz.

electric field to the crystallographic axis in AFM-I as well as in PM.

Figure 2 shows the E_{bias} dependence of ε_1^c and $\Delta \sigma_1^c$. First of all, we discuss the data at H=0. At low E_{bias} , $\Delta \sigma_1^c$ sharply increases with E_{bias} . This is compared with J-E curves in the inset. These curves at higher E (not shown here) reproduce our previous data exhibiting nonlinear transports with NR and switching effects.^{13,14} The closed squares in Fig. 2 are the differential conductivity $\sigma_{\text{diff}} = dJ/dE$ calculated from the *J-E* curve at H=0. An overall agreement between $\Delta \sigma_1^c$ and $\sigma_{\rm diff}$ proves that σ_1^c exclusively detects a response of π electrons responsible for steady, nonlinear J-E characteristics. On the other hand, ε_1^c decreases drastically by a factor of 10 with increasing E_{bias} and diminishes at higher E_{bias} than 110-120 V/cm. This behavior is reversible with respect to E_{bias} . The polarization curves $P(E_{\text{bias}})$ evaluated by $\int_0^{E_{\text{bias}}} \varepsilon_1^c dE$ are shown in Fig. 3. ΔP at H=0 increases rather sharply at low E_{bias} , and then tends to saturate at high E_{bias} . To note, these polarizations should exhibit a negligibly small dielectric loss as mentioned above.

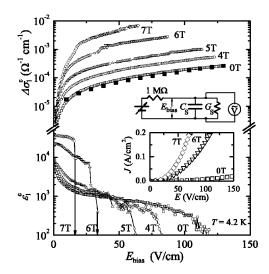


FIG. 2. E_{bias} dependence of ε_1^c and $\Delta \sigma_1^c$ at T=4.2 K and H=0-7 T. The measuring circuit with sample capacitance C_s , conductance G_s , and the road resistor of 1 M Ω is illustrated. To note, only the relative change can be reliably obtained for σ_1^c due to the internal resistance of the voltage source to which the magnitude of G_s^{-1} can be comparable. The inset shows *J*-*E* curves at 4.2 K.

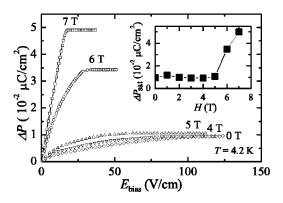


FIG. 3. The relative change of polarization ΔP as a function of E_{bias} at T=4.2 K and H=0-7 T. To note, only ΔP can be obtained due to the uncertain integration constant. The inset shows the magnetic-field dependence of the saturation value ΔP_{sat} .

Magnetic-field effects already displayed in Fig. 2 are as follows. The E_{bias} dependence of σ_1^c becomes much enhanced monotonously with H, being consistent with a rapid growth of nonlinearity in the J-E curves. From the steady conductivity point of view, it indicates that a magnetic field acts as a breaker to the highly insulating state to bring the system into more conducting states. On the other hand, the magnetic-field effect on ε_1^c is quite different at H below and above 5 T, as shown in Fig. 3. In $H \le 5$ T, the saturated polarization ΔP_{sat} is almost independent on H as shown in the inset, while E_{bias} giving the saturation decreases with H. At H=6 and 7 T, however, there is a sharp increase of ΔP at low E_{bias} , and ΔP_{sat} takes a sharp upturn as shown in the inset. Thus H of about 5-6 T is found to be a certain threshold magnetic field separating dielectrically different states. It indicates that a magnetic field acts as a promoter to the state with higher dielectric response. To note, this threshold magnetic field agrees with H^* giving a crossover from highly resistive AFM-I of $\sim 10^{-2}$ nS to highly conductive AFM-I of $10^3 - 10^4$ nS as observed in the nonlinear transport. (See Fig. 1 in Ref. 14.)

Figure 4(a) shows the magnetic-field dependence of ε_1^c and σ_1^c at 4.2 K, where open and closed triangles indicate data taken with increasing and decreasing *H*, respectively. The solid line in the inset of Fig. 4(a) shows $H_{\text{MI}}(T)$ which separates AFM-I from the reentrant PM. Figure 4(a) reveals a huge increase of ε_1^c with *H* as well as σ_1^c ; $[\varepsilon_1^c(7.5 \text{ T}) - \varepsilon_1^c(0)]/\varepsilon_1^c(0) \sim 10^2$ and $[\sigma_1^c(7.5 \text{ T}) - \sigma_1^c(0)]/\sigma_1^c(0) \sim 10^4$. Figure 4(b) shows the magnetic-field dependence of ε_1^c and σ_1^c at 2.5 K $\leq T \leq 6.5$ K. The divergent increase of ε_1^c observed just above 7 T at 4.2 K [Fig. 4(a)] shifts systematically to lower fields with increasing temperature. This divergence is clearly seen in the vicinity of upper limiting *H* which is close both to the threshold magnetic field for ΔP_{sat} (Fig. 3) and to H^* .¹⁴ [See the dotted curve in the inset of Fig. 4(a).]

As described so far, a certain dielectric ordering is reasonably expected to exist in AFM-I and relevant electric dipoles may exhibit CMD. Here fundamental questions arise: Where and why can such electric dipoles emerge? We propose a model for the dielectric ordering based on charge ordering (CO) of π electrons as follows. Figure 5 illustrates the crys-

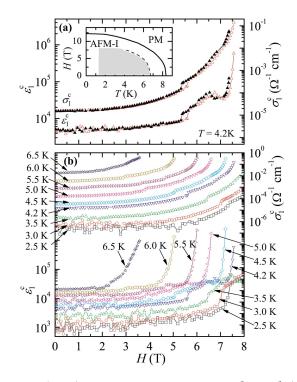


FIG. 4. (Color) Magnetic-field dependence of ε_1^c and σ_1^c ; (a) at 4.2 K and (b) at 2.5–6.5 K, where $G (=\sigma_1^c S/d) < 10^2 \mu S$ and $C(=\varepsilon_1^c S/d) < 10^2 pF$. The inset shows the *H*-*T* phase diagram. The solid and dotted lines show a phase boundary $H_{\rm MI}$ and upper limits in our measurements, respectively. The shaded region represents the measurable regime. Note the appearance of several jumps and their hysteresis (Ref. 15) both in ε_1^c and σ_1^c (for example, around H = 5.5-7.0 T at 4.2 K).

tal structure projected along the c axis, featuring two columns running along the a axis with three independent transfer integrals, t_A , t_B , and t_C . Molecular-orbital calculations based on an extended Hükel method indicate a strong dimerization for pairs B'-A and B-A' as shown in the figure. Therefore π electrons are expected to be most stably localized within a dimer and furnished with $S_{\pi}=1/2$. Mori and Katsuhara¹⁶ calculated magnetic exchange interactions and spin polarizations, which have been consistent so far with experiments such as the antiferromagnetic resonance^{17,18} and field-induced superconductivity.¹⁹ The most important result is that the strongest superexchange interaction $J_{\pi d}$ of 3d orbitals via Cl is found to be with π orbitals at selective Se sites of BETS donors labeled B' and B. [We call this interaction as $J_{\pi d}(6)$ after Fig. 2 and Table 6 in Ref. 16.] This superexchange interaction of about -14 K in magnitude is stronger by a factor of 10 than those with other six π orbitals at S sites. Due to this exclusively large superexchange interaction, the charge as well as the spin of π electrons is expected to be localized at these Se sites of B' and B as shown in the figure. The AFM order between S_{π} and S_d is thus realized by the energy gain of this magnetic ordering which may overcompensate the intersite repulsive Coulomb interaction between localized π electrons at B' and B. Therefore CO should be the primary origin to induce the PM-to-AFM-I transition.

Accordingly, thus localized π electrons (holes) can form

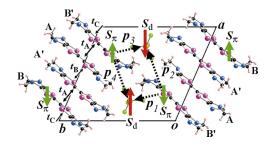


FIG. 5. (Color) Crystal structure projected along the *c* axis with possible electric dipoles p_i (*i*=1–4) and AFM spin arrangement. BEDT-TSF molecules stack along the *a* axis and two FeCl₄ anions with Fe³⁺ spin S_d are illustrated. The transfer integrals are t_A =33.55 (in a unit of 10⁻³), t_B =18.27, and t_C =14.83. Each column is coupled by side-by-side transfer integrals, t_p =-2.80, t_q =-9.30, t_r =13.00, t_s =17.11, and t_t =2.56 (see Fig. 2 in Ref. 16).

an electric dipole moment with a negative charge in the center of FeCl₄ anions. Figure 5 illustrates the arrangement of four possible dipoles p_i (i=1-4). We call this model a charge ordering-induced polarization (COP) model. Here p_1 and p_3 are directly concerned with $J_{\pi d}(6)$, while p_2 and p_4 are other possible dipoles. To note, the total polarization $P_t \equiv \sum_{i=1}^4 p_i$ =0, since $p_1 + p_3 = p_2 + p_4 = 0$ due to the inversion symmetry. Recently, the first-order structural phase transition was observed at $T_{\rm MI}$.¹¹ Since the structural analysis is not made yet for AFM-I, two possibilities may arise at present. One is a uniform transformation to P1 which is a unique subgroup of P1 for the high-temperature PM phase. Here, P1 is the most primitive space group in which only translation symmetry remains to hold with losing the inversion symmetry in P1. An alternative candidate is a nonuniform transformation to form some superlattice. In the former case, a ferroelectric arrangement with $P_t \neq 0$ could be expected; while, in the latter case, there could be expected a variety of dielectric arrangements which might induce an antiferroelectric ordering or some polarization waves.

As already mentioned, dielectric anomalies occur at $T_{\rm MI}$ $< T < T_{\rm FM} \simeq 70$ K in PM. It was found quite recently that the width of (007) Bragg reflection becomes broader around $T_{\rm FM}$ and the peak gets split.²⁰ This structural anomaly in PM is ascribed to an appearance of a possible heterogeneous structure with dielectric relaxor domains of about 0.4 μ m in size. If we assume that the inversion symmetry is locally broken in the domain, we may expect a ferroelectric ordering responsible for the extraordinary dielectric response of microwave electric fields, in particular, along the c axis (Fig. 1). This picture, in which some relaxor ferroelectrics appears as a precursory phenomenon to the low-temperature structural phase transition, naturally leads us that a ferroelectric ordering could be induced below $T_{\rm MI}$. Since the $E_{\rm bias}$ dependence of ΔP (Fig. 3) is reminiscent of ferroelectricity, it is important to study whether a spontaneous polarization and/or characteristic hysteresis occur or not. It is noted that the ferroelectric order is clearly observed in TbMnO₃.³

In this COP model, the localized π electrons, which are *locked* at the Se sites at low *H* and *T* in order to keep $J_{\pi d}(6)$ as effectively as possible, are considered to tend to be *unlocked* or *melted* around H^* . Both the sharp upturn of ΔP_{sat}

and the rapid increase of ε_1^c and σ_1^c seems to be induced in this unstable CO states, leading to quite a sensitive response of the polarization to $E_{\text{bias}} || v_{\text{ac}} || c$. Eventually, at $H \ge H_{\text{MI}}$, the unlocked CO collapses to let π electrons free in the reentrant PM. In conclusion, the present λ -(BETD-TSF)₂FeCl₄ provides ME and CMD effects that can be attributed to unlocking or melting CO induced by magnetic fields. The present CMD effect on a basis of the COP model, the mechanism of which is quite different from that of TbMnO₃,³ may provide an intriguing opportunity to explore ME effects in other magnetic molecular systems.

This work was financially supported by the MEXT of Japan (09440141, 15201019).

¹G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. **25**, 475 (1982).

- ²G. Srinivasan, E. T. Rasmussen, B. Levin, and R. Hayes, Phys. Rev. B **65**, 134402 (2002).
- ³T. Kimura, T. Goto, H. Shintani, K. Ishizuka, T. Arima, and Y. Tokura, Nature (London) **426**, 55 (2003).
- ⁴N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, Nature (London) **429**, 392 (2004).
- ⁵For a review, see H. Kobayashi, A. Kobayashi, and P. Cassoux, Chem. Soc. Rev. **29**, 325 (2000).
- ⁶M. Tokumoto, T. Naito, H. Kobayashi, A. Kobayashi, V. N. Laukhin, L. Brossard, and P. Cassoux, Synth. Met. **86**, 2161 (1997).
- ⁷L. Brossard, R. Clerac, C. Coulon, M. Tokumoto, T. Ziman, D. K. Petrov, V. N. Laukhin, M. J. Naughton, A. Audouard, F. Goze, A. Kobayashi, H. Kobayashi, and P. Cassoux, Eur. Phys. J. B 1, 439 (1998).
- ⁸H. Matsui, H. Tsuchiya, E. Negishi, H. Uozaki, Y. Ishizaki, Y. Abe, S. Endo, and N. Toyota, J. Phys. Soc. Jpn. **70**, 2501 (2001).
- ⁹E. Negishi, H. Uozaki, H. Tsuchiya, S. Endo, Y. Abe, Y. Ishizaki, H. Matsui, and N. Toyota, Synth. Met. **133–134**, 555 (2003).
- ¹⁰S. Endo, T. Goto, T. Fukase, H. Matsui, H. Uozaki, H. Tsuchiya, E. Negishi, Y. Ishizaki, Y. Abe, and N. Toyota, J. Phys. Soc. Jpn.

71, 732 (2002).

- ¹¹M. Watanabe, S. Komiyama, R. Kiyanagi, Y. Noda, E. Negishi, and N. Toyota, J. Phys. Soc. Jpn. **72**, 452 (2003).
- ¹²H. Matsui, H. Tsuchiya, T. Suzuki, E. Negishi, and N. Toyota, Phys. Rev. B 68, 155105 (2003).
- ¹³N. Toyota, Y. Abe, H. Matsui, E. Negishi, Y. Ishizaki, H. Tsuchiya, H. Uozaki, and S. Endo, Phys. Rev. B 66, 033201 (2002).
- ¹⁴N. Toyota, Y. Abe, T. Kuwabara, E. Negishi, and H. Matsui, J. Phys. Soc. Jpn. **72**, 2714 (2003).
- ¹⁵These anomalies are necessarily observed also in the *T* and *H*-dependences of dc resistance (see Fig. 1 in Ref. 13), which will be discussed elsewhere.
- ¹⁶T. Mori and M. Katsuhara, J. Phys. Soc. Jpn. 71, 826 (2002).
- ¹⁷T. Suzuki, H. Matsui, H. Tsuchiya, E. Negishi, K. Koyama, and N. Toyota, Phys. Rev. B **67**, 020408(R) (2003).
- ¹⁸I. Rutel, S. Okubo, J. S. Brooks, E. Jobiliong, H. Kobayashi, A. Kobayashi, and H. Tanaka, Phys. Rev. B **68**, 144435 (2003).
- ¹⁹L. Balicas, J. Brooks, K. Storr, S. Uji, M. Tokumoto, H. Tanaka, H. Kobayashi, A. Kobayashi, V. Barzykin, and L. P. Gor'kov, Phys. Rev. Lett. **87**, 067002 (2001).
- ²⁰S. Komiyama, M. Watanabe, Y. Noda, E. Negishi, and N. Toyota, J. Phys. Soc. Jpn. **73**, 2385 (2004).