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Orbital Kondo effect in CexLa12xB6: Scaling analysis

H. Kusunose* and Y. Kuramoto
Department of Physics, Tohoku University, Sendai, 980-8578, Japan

~Received 7 August 1998!

Peculiarity of the Kondo effect in CexLa12xB6 is investigated on the basis of the scaling equations up to
third order. For the case where thef 1-f 2 charge fluctuation enters in addition to thef 1-f 0 one, the effective
exchange interaction becomes anisotropic with respect to the orbital pseudospins that represent the two differ-
ent orbitals in theG8 ground state. Because of different characteristic energies for electric and magnetic
tensors, scaling with the single Kondo temperature does not apply to physical quantities such as the resistivity
and magnetic susceptibility. Possibility of a bizzare phase is pointed out where the RKKY interaction leads to
the spin ordering without orbital ordering. This phase serves as a candidate of the phase IV that is observed to
be isotropic magnetically.@S0163-1829~99!01203-5#
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I. INTRODUCTION

Orbital dynamics in a number of heavy-fermion syste
has recently attracted great interest.1–6 In the presence o
orbital degeneracy, orbital~electric! tensors in addition to
spin ones have an opportunity to be active, and show
phenomena resulting from entanglement with spin~mag-
netic! degrees of freedom. The orbital degrees of freed
couple with lattice ones, and often lead to the Jahn-Te
effect. In other cases, a quenching mechanism for these
grees of freedom such as the orbital Kondo effect preve
static distortion of the lattice. Hence the study of the coup
spin and orbital fluctuations should be important for und
standing heavy-fermion systems as a whole.

Under a high-symmetry such as the cubic one, there
chances for the orbital degeneracy to remain. A typical
ample is the cubic compound CeB6: its crystal-field ground
state is theG8 quartet, which consists of two degenera
Kramers doublets. The excited doubletG7 is well separated
by about 540 K~Ref. 7! and plays little role in low-energy
physics. CeB6 exhibits curious phase diagram at low tem
perature in magnetic field.8–10 The phase boundary betwee
the paramagnetic phase, called phase I, and the antiferro
drupolar phase, called phase II, shows unusual depend
on magnetic field: transition temperature increases as m
netic field increases. The magnetic field dependence of p
II has been ascribed either to the intersite interactions
tween higher-order multipoles,11,4 or the quadrupolar
fluctuations.3,6

In the course of systematic dilution study,12–14 a strange
phase, called IV, was observed recently in CexLa12xB6. The
magnetic susceptibility shows a cusp on entering the ph
IV from the paramagnetic phase I with decreasing tempe
ture. This suggests that the Ne´el state is present here. I
contrast to phase III, which has both antiferromagnetic a
quadrupolar orders, phase IV has a very small magnetic
isotropy in the susceptibility13 and almost no
magnetoresistance.14 In realizing this phase the interplay be
tween intersite correlation and on-site Kondo effect seem
be essential.

In a previous paper,15 one of the present authors noted t
importance of the orbital Kondo effect in understandi
PRB 590163-1829/99/59~3!/1902~10!/$15.00
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phase IV; the orbital Kondo effect can be active even in
presence of a spin ordering. Then a new method was
posed to perform perturbative renormalization to arbitra
higher orders. In order to quantify the idea, however, o
must estimate the actual magnitude of relevant interacti
under the realistic point-group symmetry. Up to the prese
investigation of the Kondo-type interaction in the presen
of crystalline-electric-field~CEF! effects has been made b
various methods.1,2,16,17 It has turned out essential to tak
into account the splitting of the localized states in accorda
with the point-group symmetry.1 As a result, the effective
exchange interaction needs many parameters for chara
ization. In the conventional field theoretical scaling proc
dure, it is tedious to deal with such large number of para
eters.

In this paper we generalize the scaling method of Ref.
so that it is applicable to arbitrary point-group symmet
The scaling equations for symmetry adapted coupling c
stants are written down generally in terms of structure c
stants of the relevant Lie algebra. As a specific case,
third-order scaling for the cubic symmetry is performed e
plicitly with a minimum amount of intermediate steps. W
show that the pseudospin representing the orbital mom
has an anisotropic exchange interaction as a result of sca
On the other hand, the magnetic pseudospin remains iso
pic in the case where thef 1-f 0 fluctuation dominates the
f 1-f 2 one. Since the third-order scaling does not work fo
strong-coupling fixed point, the local Fermi liquid cannot
identified by the present approach as it stands. Howe
with available knowledge from various sources, we can
most certainly classify all the fixed points of the model.
turns out that there is an unexpected symmetry in the
change interaction that interchanges both the spin and or
indices simultaneously. We show that this hidden symme
is specific to the SU(2)3SU(2) symmetry, which is rel-
evant to theG8 CEF state.

This paper is organized as follows: In the following se
tion, we describe the method to derive the effective excha
interaction starting form the Anderson model. This section
mainly an adaptation of earlier treatment16 to respect the
point-group symmetry from the beginning. The details
explicit derivation are given in the Appendix. In Sec. III w
1902 ©1999 The American Physical Society
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derive the third-order scaling equation in the most gene
case of the point group. In Sec. IV we apply the gene
result to the specific case of the CexLa12xB6 system and give
detailed analysis of the scaling equations. The final sec
summarizes the present paper with implications for ident
ing the mysterious phase IV.

II. EXCHANGE INTERACTION IN IRREDUCIBLE
REPRESENTATION

The atomic structure of a single magnetic ion withf elec-
trons is treated by the CEF theory together with the Russ
Saunders (LS) coupling scheme. In this scheme the loc
state is specified uniquely by the following quantum nu
bers: the number off electronsf n, the orbital, the spin, and
the total angular momentsL,S,J, and the irreducible repre
sentationG ~abbreviated as irrep! of the double point group
with time-reversal operation and its componentg together
with the branching multiplicity labelQ, which is required for
the case where the irrepG occurs more than once~e.g.,
D5/25G6% 2G7 for tetragonal symmetry!. We often abbrevi-
ate the local statesu f nLSJQGg& asufng& for notational sim-
plicity. In the same manner the one-particle state off electron
is described asujl&, where j is the abbreviation of
(l 53,s51/2,jqL) with q being the multiplicity label, and
L specifying the irrep of the one-particle state. The cor
sponding creation operator is written asf jl

† . It is useful to
express a Bloch state conduction operatorcks

† using ckjl
†

with the symmetry adapted basis around the impurity
The Anderson Hamiltonian then takes the form

H5Hk1H f1Hhyb, ~1!

Hk5(
kjl

ekjckjl
† ckjl , ~2!

H f5(
fng

Ef~fn!ufng&^fngu, ~3!

Hhyb5(
kj

(
l

@Vkjckjl
† f jl1H.c.#, ~4!

where we restrict the hybridization between the local and
conduction electrons to the same set of symmetry~not only
Lc5L f but alsojc5j f). We regard the labelj as the chan-
nel index of independent scattering processes andl as the
internal degrees of freedom, which is responsible for
Kondo effect.

If the most stable configurationf n is well separated from
f n61 ones, one can restrict the model space18 to the multiplet
( f nLSJ) by integrating out the virtual charge fluctuations
the f n61 configurations. The effective Hamiltonian in th
model space is written as

Heff5Hk1PH fP1Hex1O~V4!, ~5!

Hex5 (
a,bPM

ua&^auV~Eb2H f !
21QVub&^bu, ~6!

whereP denotes the projection operator to the model sp
M andQ512P. We have neglectedHk in the resolvent of
al
l

n
-

ll-
l
-

-

e

e

e

intermediate state assuming that the relevant conduct
electron states have energies smaller than those for ex
states ofH f . The exchange process via the excited config
rations is shown schematically in Fig. 1. Then the excha
interaction generally takes the form

Hex5(
ia

Jia c†xic•uf8&Xa^fu, ~7!

where the meanings of the indicesi anda are to be specified
later. The matricesxi and Xa describe the transition pro
cesses for conduction electrons and the localized states
spectively. Summation over quantum numbers of each s
is implied by the matrix multiplication. The numbers of in
dependent matrices are 14221 for the conduction electron
anddJ

221 for the multiplet (f nLSJ) with the degeneracydJ .
The unit matrices that give the potential scattering do
enter the exchange Hamiltonian.

The invariance under the point-group operation is impli
in Eq. ~7!. To make it explicit,16 we introduce the irreducible
tensor operators19 defined as follows:

xD* d*
~r !

~j8j!5 (
k8l8kl

ck8j8l8
† ckjlS L8

l8
D S L8* D* L

l8* d* l
D

r

,

XDd
~ t ! ~fn8fn!5(

g8g

ufn8g8&^fnguS G8

g8
D S G8* D G

g8* d g D
t

,

~8!

where the one-column and the three-column brackets i
cate 2jm and 3jm symbols with the multiplicityr or t.19

These are natural extensions of the 1j and 3j symbols of
Wigner. It is clear that the tensor operatorxD* d*

(r ) (j8j) trans-
forms like the keturD* d* &, or equivalently like the bra
^rDdu, under the point-group operations. The irreps of t
localized-state tensors are determined so as to have the
3 jm symbols. Namely, decompositions of the direct prod
G8* ^ G containsD. Similar decomposition also determine
the irreps of the conduction-electron tensors. We write
exchange interactionJia as another matrixg in the invariant
form. Namely, Eq.~7! is equivalently written as

Hex5 (
j8jfn8fn

(
Drt

gD
~rt !~j8j;fn8fn!(

d
S D

d D xD* d*
~r !

~j8j!XDd
~ t !

3~fn8fn!. ~9!

FIG. 1. The exchange process via the excited configurati
fn61g6 . The solid ~dashed! line denotes the conduction~one-
particle f ) electron. The double solid line represents the localiz
state in the projected space.
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1904 PRB 59H. KUSUNOSE AND Y. KURAMOTO
Here the 2jm symbol is inserted in the exchange interactio
With the rotational symmetry, Eq.~9! reduces to the known
result involving the spherical tensors.16,2

The magnitude of the coupling constants, which will
obtained explicitly in the Appendix, are given by

gD
~rt !~j8j;fn8fn!

5 (
fn11

AD
~rt !~fn11!^fn8uu f j8uufn11&^fn11uu f j

†uufn&

1 (
fn21

AD
~rt !~fn21!^fn8uu f j

†uufn21&^fn21uu f j8uufn&,

~10!

where AD
(rt )(fn61) is of the order of uVu2/@Ef(fn61)

2Ef(fn)#. The first summation is taken for the excited co
figuration f n11 such that both the direct productsG8^ L8
^ G1 and G1 ^ L ^ G contain the identity representation
Similar selection rule is available to thef n21 configuration.20

Hereafter we restrict our discussion for simplicity to t
case where the irrepDd is real and the corresponding 2jm
symbol can be set to unity. Moreover, both the initial and
final states belong to the ground-state CEF multipletfg .
Then the localized-state tensors become Hermitian and
have definite signs with respect to the time-reversal op
tion. The conduction-electron tensor does not have the d
nite sign in general, since the time-reversal operation in
changesj8 with j. However, if one considers the matrix o
the tensors in the combined spacej8% j, which are defined
as

x̂Dd
~r !~j8j!5H xDd

~r !~j8j! ~j85j!

xDd
~r !~j8j!1@xDd

~r !~j8j!#† ~otherwise!;
~11!

then the matrix of the tensors have definite signs under
time reversal.16 In the above discussion we use the fact th
the coupling constants are real and symmetric against in
change ofj8 andj which is ensured by the Hermiticity an
the time-reversal symmetry of the exchange interaction
the treatment above the same coupling constant is autom
cally imposed for the different channels. This property w
essential to derive the two-channel Kondo Hamiltonian
tetragonal and hexagonal symmetries.20 We rewrite the ex-
change interaction in the restricted case as

Hex5 (
^j8j&

(
Drt

gD
~rt !~j8j;fg!(

d
x̂Dd

~r !~j8j!XDd
~ t ! ~fg!,

~12!

where the summation of channels is taken for combination
a pair of j8 and j because of the symmetrized express
introduced by Eq.~11!.

III. SCALING EQUATIONS FOR GENERALIZED
EXCHANGE INTERACTION

We derive the scaling equations up to third order for
exchange interaction in terms of the irreducible tensors.
index i in Eq. ~7! is the abbreviation of (rDd,j8j) and the
indexa of (tDd,fg). In dealing with the matrices represen
.
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all
a-
fi-
r-
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e
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ing the irreducible tensor operators, we note that the ma
xi actually depends only on a subset of quantum numb
(D,L8,L), and the matrixXa on (D,Gg) whereGg is the
irrep of fg . We write the dimensiond(D,L8,L) of xi sim-
ply asdi and the dimensionD(D,Gg) of Xa asDa . To treat
all matrices on an equal footing, each matrix should be e
bedded in a space of 14314 matrix. The exchangeJia in Eq.
~7! is defined asJia5gD

(rt )(j8j;fg) for (Dcdc)5(D fd f) and
zero otherwise. HereJia does not depend on the compone
index d.

The matrices satisfy the orthogonality relation

Tr~xixj !5did i j ,

Tr~XaXb!5Dadab . ~13!

The commutation rule is given by

@xi ,xj #5 i(
k

1

dk
f i jkxk, ~14!

@Xa,Xb#5 i(
g

1

Dg
FabgXg. ~15!

Equivalently the structure constant is given explicitly by

f i jk52 i Tr~@xi ,xj #xk!, ~16!

Fabg52 i Tr~@Xa,Xb#Xg!. ~17!

It is obvious that the structure constantsf i jk and Fabg are
completely antisymmetric against interchange of a pair
indices.

According to the renormalization formalism based on t
open-shell Rayleigh-Schro¨dinger perturbation theory,15 a
change of the band cutoffEc induces the following expan
sion of the effective interaction matrix:

hint5hex1dhint
~2!1dhint

~3!1•••, ~18!

where the superscript indicates the order of the bare coup
constant, and the lowest-order matrixhex is given by

hex5(
ia

JiaxiXa. ~19!

The second-order contribution shown in Figs. 2~a! and
2~b! to the effective interaction is given by

dhint
~2!/d~ lnEc!5(

i j
(
ab

JiaJj b@xi ,xj #~XaXb!

5
1

2(i j (
ab

JiaJj b@xi ,xj #@Xa,Xb#, ~20!

where we have interchanged the dummy indic
( i ,a)↔( j ,b) in deriving the second equality.

Figure 2~c! shows a diagram for the third-order contrib
tion to the effective interaction. One should also take in
account the ‘‘folded diagram’’15 shown in Fig. 2~d!. Taking
the average of the original and Hermite-conjugate coun
part of the folded diagrams, we obtain
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dhint
~3!/d~ lnEc!5

1

2(i jk (
abg

JiaJj bJkgxiTr~xjxk!$Xb@Xg,Xa#

2@Xb,Xa#Xg%

5
1

2(i jk (
abg

JiaJj bJkgxiTr~xjxk!

3@Xb,@Xg,Xa##. ~21!

Here we have also interchanged the dummy indi
( j ,b)↔(k,g) in deriving the second equality.

By computing the commutators we find that thehint has
the same matrix structure as the lowest-order parthex. Thus,
we obtain the scaling equations in terms of the structure c
stants as

]

]l
Jae5bae

~2!1bae
~3! ,

bae
~2!52

1

2daDe
(
i j

(
ab

JiaJj b f i jaFabe ,

bae
~3!5

1

2De
(
abg

Jaa(
j

djJj bJj g(
d

1

Dd
FagdFebd , ~22!

with l 5 lnEc . This is the most general form of the third
order scaling, which is valid for any point-group symmet
We emphasize that noncommuting property of tensor op
tors is concisely taken into account in terms of structure c
stants of the underlying Lie algebra.

IV. APPLICATION TO CUBIC SYMMETRY

In this section the scaling analysis developed in the p
vious sections is applied to the case of dilute syst
CexLa12xB6, which exhibits the remarkable entanglement
magnetic and electric tensors in static and dynamic pro
ties. We first derive the exchange interaction with use
pseudospins and then discuss the nature of scaling.

FIG. 2. Scattering processes~a!,~b! in second order and~c!,~d!
in third order. The solid line shows a conduction-electron sta
while the dashed line the local electron. The backward propaga
of the dashed line in~d! is characteristic of the folded diagram
Each index denotes the corresponding coupling constant. The i
mediate conduction-electron states is required to have energies
the cutoffEc .
s

n-

.
a-
-

-

f
r-
f

A. Exchange interaction

The magnetic ion Ce31 ( f 1) lies in the cubic-symmetry
(Oh) CEF. The degeneracy of the ground multiplet2F5/2 is
lifted to the excited doubletG7 and the ground quartetG8 .
The partial waves of conduction electron are also classi
by the cubic symmetry:

D5/25G7% G8 , ~23!

D7/25G6% G7% G8 . ~24!

We define the basis sets for both conduction~j! and localized
~J! states as follows:

~i! j , J55/2

uG7 :~↑,↓ !&5A1

6U65

2L 2A5

6U73

2L , ~25!

uG8 :~1↑,1↓ !&5A5

6U65

2L 1A1

6U73

2L , ~26!

uG8 :~2↑,2↓ !&5U61

2L , ~27!

~ii ! j 57/2

uG6 :~↑,↓ !&56A 5

12U77

2L 6A 7

12U61

2L , ~28!

uG7 :~↑,↓ !&56A 9

12U65

2L 7A 3

12U73

2L , ~29!

uG8 :~1↑,1↓ !&56A 3

12U65

2L 6A 9

12U73

2L , ~30!

uG8 :~2↑,2↓ !&56A 7

12U77

2L 7A 5

12U61

2L , ~31!

where irrelevant quantum numbers have been omitted.
specify the components of irrep, we have used the symbo↑
and ↓ for the time-reversal partner and the extra orbital
bels6 for the G8 irrep. The relative phases of the basis a
chosen so that the Kramers pair transforms like the spin
under the time-reversal operationu, i.e., uu↑&5u↓&, uu↓&
52u↑&.

Before we express the irreducible tensors, it is conven
to introduce two pseudospinssa and t i ~each of them is
defined according to the usual convention of Pauli matrice!,
which act on the Kramers and the non-Kramers pairs, resp
tively, without changing the other degrees of freedom.3,4,6,11

The six pseudospin operators are classified by the ti
reversal operation. Due to the definition of the pseudos
and the basis, it is easy to obtain their property under
time reversal:

sx,sy,sz,ty, odd~magnetic!

tx,tz, even~electric!. ~32!

,
n

er-
ear
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Notice that the pure imaginary operatorty has the same
transformation property as magnetic moment.

Once we fix the basis sets, we can express the irreduc
tensors19,21 in a concise way by using the pseudospins. W
defines0 andt0 as unit matrices in the spin and the orbit
spaces, respectively, and the linear combinations oftx andtz

as
le
e

h65 1
2 ~6A3tx2tz!, ~33!

z652 1
2 ~6A3tz1tx!. ~34!

All tensors for possible combination of the basis sets
given as follows:
~i! G63G6

G4m : @sx,sy,sz#, ~35!

~ii ! G73G7

G4m : @sx,sy,sz#, ~36!

~iii ! G83G8

G2m : @tys0#,

G3e : @tzs0,txs0#,

G4m
~1! : @t0sx,t0sy,t0sz#,

G4m
~2! : @h1sx,h2sy,tzsz#,

G5m : @z1sx,z2sy,txsz#,

G5e : @tysx,tysy,tysz#, ~37!

~iv! G63G7

G2e : F S 0 s0

s0 0 D G ,
G5m : F S 0 sx

sx 0 D ,S 0 sy

sy 0 D ,S 0 sz

sz 0 D G , ~38!

~v! G63G8

G3e : A3

2F S 0 0 s0

0 0 0

s0 0 0
D ,S 0 s0 0

s0 0 0

0 0 0
D G ,

G4m : A3

2F 1

2S 0 2A3sx sx

2A3sx 0 0

sx 0 0
D ,

1

2S 0 A3sy sy

A3sy 0 0

sy 0 0
D , 2S 0 0 sz

0 0 0

sz 0 0
D G ,

G5m : A3

2F 1

2S 0 sx A3sx

sx 0 0

A3sx 0 0
D ,

1

2S 0 sy 2A3sy

sy 0 0

2A3sy 0 0
D , 2S 0 sz 0

sz 0 0

0 0 0
D G , ~39!

~vi! G73G8
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G3e : A3

2F S 0 s0 0

s0 0 0

0 0 0
D , 2S 0 0 s0

0 0 0

s0 0 0
D G ,

G4m : A3

2F 1

2S 0 sx A3sx

sx 0 0

A3sx 0 0
D ,

1

2S 0 sy 2A3sy

sy 0 0

2A3sy 0 0
D , 2S 0 sz 0

sz 0 0

0 0 0
D G ,

G5m : A3

2F 1

2S 0 2A3sx sx

2A3sx 0 0

sx 0 0
D ,

1

2S 0 A3sy sy

A3sy 0 0

sy 0 0
D , 2S 0 0 sz

0 0 0

sz 0 0
D G , ~40!
E
he
ch
om
e

e

e

ct
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where the subscriptm representsmagneticande is electric.
The exchange interaction can be cast into the form

~12! by using the explicit form of the irreducible tensors. T
number nD

(t) of independent coupling constants for ea
localized-state tensor is evaluated by counting possible c
binations of scattering channels in the same irrep. Precis
there are 56 in total:n2m5n5e53, n3e58, n5m510, and
n4m

(1)5n4m
(2)516.

We note thatf 1-f 0 charge fluctuation involves only th
scattering channels of (j 55/2, G8) symmetry in the ex-
change interaction because of the selection rule, Eq.~10!.
Thus, if one ignoresf 1-f 2 charge fluctuation, the exchang
interaction reduces to that of the SU~4! Coqblin-Schrieffer
~CS! model.

B. Explicit form of scaling equations

In deriving the scaling equations explicitly, we restri
ourselves for simplicity to the case where thef 1-f 0 charge
fluctuation dominates over thef 1-f 2 one. In this case, the
f 1-f 2 fluctuation gives two different corrections to the SU~4!
CS model:~i! modification of coupling constants breakin
the SU~4! symmetry, and~ii ! generation of additional scat
tering channels besides (j 55/2, G8). The latter correction
gives very low characteristic energy as compared with
one given by thef 1-f 0 fluctuation and hardly affect the
renormalization of the SU~4! CS model. On the other hand
q.

-
ly,

e

the former correction changes the renormalization fl
qualitatively and gives rise to multiple characteristic energ
even though it is small.

We take into account the effect off 1-f 2 fluctuations only
for such processes that are absent in the SU~4! CS model.
Then there appear the exchange interaction with the irr
D52m,3e,5m,5e,4m by the decomposition ofG8^ G8 . Of
these the last oneD54m has the multiplicity 2, which we
distinguish by using the matrixg4m

(rt ) with r ,t51,2. We deal
with the following exchange interaction:

Hex5
1

4F (
DÞ4m

gD~xX!D1 (
r ,t51

2

g4m
~rt !~xrXt!4mG , ~41!

where we define the summation of the components as

~xrXt!D5(
d

x̂Dd
~r !~j8j!XDd

~ t ! ~fg!, ~42!

with the scattering channel,j85j5( j 55/2,G8) and the lo-
cal ground-state configurationfg5( f 1, 2F5/2,G8). It is
noted that the SU~4! CS model is reproduced by setting a
coupling constants as equal tog except for g4m

(12) , g4m
(21)

(50).
We use the formulas~16!, ~17!, and~22! together with the

definition of tensors~37! to obtain the set of scaling equa
tions:
]

]l
g2m52~g3e

2 13g4m
~22!g5m!1 1

2 g2m@2g3e
2 13~g4m

~12!21g4m
~22!21g5m

2 !#, ~43!

]

]l
g3e52 1

2 @2g2mg3e13g5e~g4m
~22!1g5m!#1 1

4 g3e@2~g2m
2 1g3e

2 !13~g4m
~12!21g4m

~22!21g5m
2 12g5e

2 !#, ~44!

]

]l
g4m

~11!52 1
4 @4g4m

~11!21g4m
~22!222~g4m

~12!21g4m
~21!2!16g4m

~22!g5m1g5m
2 14g5e

2 #

1@g4m
~11!32g4m

~12!g4m
~21!g4m

~22!1g4m
~11!~g4m

~21!21g4m
~22!21g5e

2 1g5m
2 !#, ~45!
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]

]l
g4m

~12!52 1
2 @g4m

~21!~g4m
~22!23g5m!22g4m

~11!g4m
~12!#1 1

4 @g4m
~12!324g4m

~11!g4m
~21!g4m

~22!

1g4m
~12!$4g4m

~21!21g4m
~22!212~g2m

2 1g3e
2 1g5e

2 !15g5m
2 %#, ~46!

]

]l
g4m

~21!52 1
2 @g4m

~12!~g4m
~22!23g5m!22g4m

~11!g4m
~21!#1@g4m

~21!32g4m
~11!g4m

~12!g4m
~22!1g4m

~21!~g4m
~11!21g4m

~12!21g5e
2 1g5m

2 !#, ~47!

]

]l
g4m

~22!52 1
2 @g4m

~12!g4m
~21!1g4m

~11!~g4m
~22!13g5m!12~g3eg5e1g2mg5m!#1 1

4 @g4m
~22!$4g4m

~11!21g4m
~12!212~g2m

2 1g3e
2 1g5e

2 !15g5m
2 %

1g4m
~22!324g4m

~11!g4m
~12!g4m

~21!#, ~48!

]

]l
g5m52 1

2 @3~g4m
~11!g4m

~22!2g4m
~12!g4m

~21!!12~g4m
~22!g2m1g3eg5e!1g4m

~11!g5m#1 1
4 @g5m$4~g4m

~11!21g4m
~21!2!15~g4m

~12!21g4m
~22!2!

12~g2m
2 1g3e

2 1g5e
2 !%1g5m

3 #, ~49!

]

]l
g5e52@2g4m

~11!g5e1g3e~g4m
~22!1g5m!#1 1

2 @2g5e
3 1g5e$2~g4m

~11!21g4m
~21!21g3e

2 !1g4m
~12!21g4m

~22!21g5m
2 %#. ~50!
fo
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We note that these apparently complicated expressions
low straightforwardly from Eq.~22!. The correctness of the
expression has been checked by taking various limit
cases.

C. Nature of scaling

Let us discuss implication of the scaling equations. T
set of equations has eight stable as well as saddle-point fi
points, which are summarized in Table I. Because all fix
points have the relationsg4m

(22)* 5g5m* and g4m
(12)* 5g4m

(21)*
50, the exchange interaction at fixed points reads

Hex5
1
4 J(

a
sc

as f
a1 1

4 @K'~tc
xt f

x1tc
zt f

z!1Kztc
yt f

y#

1 1
4 (

a
@ I'~tc

xt f
x1tc

zt f
z!1I ztc

yt f
y#sc

as f
a , ~51!

TABLE I. The stable and the saddle-point fixed points for sc
ing equations. The coupling constants in the redefined notation
written in the second line.

g4m
(11)* g3e* g2m* g4m

(22)* 5g5m* g5e* g4m
(12)* 5g4m

(21)*
J K' Kz I' I z

~i! 1 0 0 0 0 0
~ii ! 0 0 Kz0 0 0 0
~iii ! 0 61 1 0 0 0
~iv! 1 0 Kz0 0 0 0
~v! 1 61 1 0 0 0
~vi! 1 0 Kz0 0 11 0
(vi8) 1 0 Kz0 0 21 0
~vii ! 1 0 1 61 0 0
~viii ! 1 61 1 61 11 0
(viii 8) 1 61 1 71 21 0
l-

g

e
ed
d

where the coupling constants have been redefined as follo

g4m
~11!5J, g3e5K' , g2m5Kz ,

g4m
~22!5g5m5I' , g5e5I z . ~52!

The pseudospins for conduction electrons are rewritten
plicitly as

tc
i sc

a5(
k8k

(
m8m

6

(
s8s

↑,↓

ck8m8s8
† rm8m

i rs8s
a ckms ~ i ,a50,x,y,z!,

~53!

wherera with a5x, y, or z denote the Pauli matrices andr0

is the unit matrix. A similar definition is also used for th
pseudospins for localized states. In the redefined expres
of exchange interaction~51!, difference in time-reversa
characters of the irreducible tensors appear as the exch
anisotropy of pseudospins. This kind ofs-t double tensor
exchange model has been studied in the literature. Howe
unnecessary imposition on the parameters caused ambig
conclusion about the fixed points.22

The two fixed points in a given row in Table I are esse
tially the same since the one with the upper sign changes
another with the lower sign by a unitary transformati
which changes simultaneously the signs of the transve
couplings,K' andI' . The groups with and without a prim
are related to each other by the transformation (I' ,I z)↔
2(I' ,I z). This hidden symmetry will be discussed later.

In the absence of the last term in Eq.~51!, the s and t
spaces are decoupled. Thus the fixed points~i!, ~ii !, and~iii !
correspond to~i! the non-Fermi-liquid~NFL! fixed point in
s space, and~ii ! the Ising and~iii ! the NFL fixed points int
space, respectively.

The last term coupless and t spaces. In the absence o
K' , the term ofI z leads to fixed point~vi! where the NFL
appears only ins space with the coupling constantsJeff5J
1I ztc

yt f
y , while the term ofI' leads to fixed point~vii !. In

-
re
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the presence ofI z or I' together with the transverse couplin
K' , the coupling constants flow to fixed point~viii ! with
SU~4! symmetry. It is known that the Coqblin-Schrieffe
model does not have the NFL fixed point. Then, the fin
magnitude of the fixed-point coupling is an artifact of t
third-order scaling. The correct fixed point should be atJ*
5K'

* 5Kz* 5` and gives the local Fermi liquid. The stabi
ity of the saddle-point fixed points against each type of p
turbation is summarized in Table II.

Let us discuss renormalization evolution and characte
tic energies for some simplified cases. First, we consider
isotropic case:K'5Kz5K and I'5I z5I . In this case, the
scaling equations are reduced to those discussed in Ref.

]

]l
J52~12J!~J213I 2!, ~54!

]

]l
K52~12K !~K213I 2!, ~55!

]

]l
I 522I ~J1K !1I ~J21K212I 2!. ~56!

In the absence of the couplingI, it is obvious that there exis
two characteristic energies corresponding to each Kondo
fect: TK

J /Ec5Jexp(21/J) andTK
K/Ec5Kexp(21/K). On the

other hand, the case of SU~4! symmetry withI 5J5K gives
single characteristic energy,TK

CS/Ec5I 1/4exp(21/4I ). It is
noted thatTK

CS is larger thanTK
J,K since the number of the

screening channels is larger. The renormalization evolu
of the coupling constants is shown in Fig. 3 for the init
coupling constantsJ050.2 and K050.1 with I 051026,
1024, and 1022. The three different characteristic energi
corresponding toJ, K, and I merge together asI 0 increases.
The average of the characteristic energies also increasesI 0
increases.

Next, we focus on the difference in time-reversal prope
and putJm5J5Kz5I' andJe5K'5I z . The scaling equa-
tions are simplified in this case as

]

]l
Jm52~12Jm!~3Jm

2 1Je
2!, ~57!

]

]l
Je522Je@2Jm2~Jm

2 1Je
2!#. ~58!

TABLE II. The destinations of the saddle-point fixed points~i!–
(vi8) in the first column against each type of perturbation.

J.0 J,0 K' Kz I' I z.0 I z,0

~i! ~v! ~iv! ~vii ! ~vi! (vi8)
~ii ! ~iv! ~ii ! ~iii ! ~vii ! ~vi! (vi8)
~iii ! ~v! ~iii ! ~viii ! ~viii ! (viii 8)
~iv! ~v! ~vii ! ~vi! (vi8)
~v! ~viii ! ~viii ! (viii 8)
~vi! ~viii ! ~viii !
(vi8) (viii 8) (viii 8)
~vii ! ~viii ! ~viii ! (viii 8)
r-

s-
e

as

f-

n
l

s

y

In the absence of the electric couplingJe , the characteristic
energy corresponding to the magnetic Kondo effect is giv
by TK

m/Ec5Jm
1/3exp(21/3Jm). TK

m is also smaller thanTK
CS

since only the magnetic channels contribute to the Kon
effect. The renormalization evolution is shown in Fig. 4 f
the initial coupling constantsJm050.05 with various values
of the ratioa5Je0 /Jm0 . The two different characteristic en
ergies corresponding toJm and Je merge together asa ap-
proaches unity.

Before closing this section, we discuss the hidden sy
metry I↔2I . Let us consider the following particle-hol
transformation for the conduction electrons:

ckms→(
ia

TmiSsac2kia
† , ~59!

where the matricesS and T are unitary. The transformation
does not change the kinetic-energy part of the Hamilton
unless the conduction band is asymmetric with respect to
Fermi level. On the other hand, the spin operatorssc

i andtc
a

are transformed, respectively, as

FIG. 3. The renormalization evolution of coupling constants
the initial coupling constantsJ050.2 andK050.1 with increasing
I 051026, 1024, and 1022. The three different characteristic ene
gies corresponding toJ, K, and I rapidly merge together asI 0 in-
creases.

FIG. 4. The renormalization evolution of coupling constants
the initial magnetic coupling constantJm050.05 with an increase in
the ratioa5Je0 /Jm0 , Je being the electric coupling constant. Th
two different characteristic energies corresponding toJm and Je

merge together asa approaches unity.
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tc
i→2(

k8k
(

sm8m

ck8m8s
† r̄m8m

i ckms , ~60!

sc
a→2(

k8k
(

ms8s

ck8ms8
† r̄s8s

a ckms , ~61!

tc
i sc

a→2(
k8k

(
m8ms8s

ck8m8s8
† r̄m8m

i r̄s8s
a ckms , ~62!

where the minus signs come from the anticommutation
conduction-electron operators. The transformed spin op
tors with bars are given by

r̄ i5@T†r iT# t, r̄a5@S†raS# t. ~63!

Let us assume the presence of unitary transformationsS and
T, which make the transformed spin operators proportiona
the original one. Namely, we haver̄ i5Ar i andr̄a5Bra for
all components whereA andB are independent of the com
ponent indices. Then the transformed exchange interactio
equivalent to the original one with the coupling constantJ̄

52AJ, K̄52BK, and Ī 52ABI. There indeed exist suc
transformations in the case of the SU~2! symmetry; the ma-
trices are given byS5T5ry, which gives A5B521.
However, in the case of SU(N) symmetry withN.2, such
transformations cannot be found since the rank of the SUN)
symmetry is higher than 2. We note that the hidden symm
try for SU~2! plays a special role in rejecting the NFL fixe
point that is present in the large limits of bothN andM in the
SU(N)3SU(M ) exchange model discussed in Ref. 15.

V. SUMMARY

In this paper we have proposed a systematic procedure
deriving the exchange interaction and the scaling equat
up to third order with maximum use of the point-group sy
metry. Various moments are described by the irreducible
sors with proper time-reversal property. Then the excha
interaction is obtained in the scalar-product form of the ir
ducible tensors. The third-order scaling equations for sy
metry adapted coupling constants are written down gener
in terms of structure constants of the relevalnt Lie algebr

The procedure is applied to the case of CexLa12xB6
where the CEF ground quartetG8 shows rich phenomen
resulting from the entanglement of electric and magnetic t
sors. We derive the exchange interaction integrating out
charge fluctuations tof 0 or f 2 configurations. We discuss th
nature of scaling for the case where thef 1-f 0 fluctuation
dominates over thef 1-f 2 one. In this case, the main contr
bution to the Kondo screening comes from the partial wa
with j 55/2, G8 symmetry of conduction electrons.

As a result of scaling, the effective exchange interactio
described by thes-t double exchange model with the e
change anisotropy int space. The anisotropy comes from t
fact that one of three components of the orbital pseudos
ty has different time-reversal property from others. The
fective exchange model has non-Fermi-liquid fixed points
the absence of thes-t coupled term. In the presence of th
coupled term the system flows to the local Fermi-liquid fix
point. The different characteristic energies corresponding
f
a-

to

is

e-

or
ns
-
n-
e
-
-

lly
.

-
e

s

is

in
-
n

to

the exchange couplings for eithers or t rapidly merge to-
gether with increasing magnitude of the coupling. If one co
siders only the time-reversal difference, the system has
two different characteristic energies corresponding to
electric and the magnetic exchange interactions. We iden
the special symmetry of SU~2!, which plays an important
role in rejecting the non-Fermi-liquid fixed point resultin
from the argument of the SU(N)3SU(M ) exchange mode
in the large limit ofN andM.15

Concerning the physical quantities in the intermediate
gime toward the fixed point, magnetic and electric quantit
can have different energy scales. Therefore, the conventi
argument with the single Kondo temperature has to be
vised in the presence of the orbital degeneracy. This sho
affect the previous analysis of the resistivity and magne
susceptibility. For this purpose, a quantitative argumen
required beyond the perturbative scaling analysis. Elsewh
we use the numerical renormalization group23 to derive
physical quantities at finite temperature.

In the presence of intersite interactions, the orbital a
spin degeneracies can be split by a molecular field associ
with long-range order. It is known that CexLa12xB6 has at
least four different phases. Of these phase II is character
by the orbital~or quadrupole! order without magnetic order
The magnetic order present in phase III seems to accomp
the orbital order. If the molecular field corresponds to t
internal magnetic field, not only spin but orbital degenera
is lifted because Zeeman splitting depends on each orb
Provided that the intersite spin exchange interaction is str
ger than the orbital one, we can think of the situation wh
the spin Kondo effect gives way to long-range order but
orbital Kondo effect does not. In such a situation the ma
netically ordered phase should keep the nearly isotro
magnetic property as in the paramagnetic phase. We ex
that a detailed quantitative study with the scenario descri
above will provide us with an understanding of the nature
the curious phase IV in CexLa12xB6.
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APPENDIX: EXPLICIT DERIVATION
OF EXCHANGE INTERACTION

Here we derive the explicit expression of the coupli
constants by applying the second-order perturbation to
Anderson model~1!. The exchange interaction via then11
configuration is given by

Hex
152 (

j8jfn8fn

(
fn11

I 1 (
g8gk8l8kl

ck8j8l8
† ckjlufn8g8&

3^fngu(
g1

S G1* L8 G8

g1* l8 g8
D

q8

* S G1* L G

g1* l g
D

q

,

~A1!
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with

I 15
Vj8Vj*

Ef~fn11!2Ef~fn!
^fn8uu f j8uufn11&^fn11uu f j

†uufn&.

~A2!

The reduced matrix elements of the creation operator ca
calculated by using, e.g., the Racah factorization lemma
addition to the coefficient of fractional parentage.19,24

The summation of the products of the 3jm symbols in Eq.
~A1! can be converted to the summation of another com
nation of 3jm symbols that are related to the product of t
irreducible tensors.16 For this purpose the following identity
is useful:

(
g1

S G1* L8 G8

g1* l8 g8
D

q8

* S G1* L G

g1* l g
D

q

5 (
Ddrt

H D* L8* L

G1 G G8
J

tq8qr

uDu$G1* LGq%$G* D* G8t%

3$G* %S D

d D S L8

l8
D S L8* D* L

l8* d* l
D

r

S G8

g8
D

3S G8* D G

g8* d g D
t

, ~A3!

where the 6j symbol in the point-group irrep has appear
together with the 2j and 3j phases.19 By using the defini-
tions of the irreducible tensors, Eq.~8!, we obtain the cou-
pling constants for then11 process as
n

y

be
in

i-

gD1
~rt !5 (

fn11

I 1H D* L8* L

G1 G G8
J

tq8qr

uDu~21!P, ~A4!

with the phase

~21!P52$G1* LGq%$G* D* G8t%$G* %. ~A5!

A similar argument for then21 configuration provides
the coupling constants for then21 process:

gD2
~rt !5 (

fn21

I 2H D* L L8*

G2 G G8
J

tqq8r

uDu~21!P8, ~A6!

with

I 25
Vj8Vj*

Ef~fn21!2Ef~fn!
^fn8uu f j

†uufn21&^fn21uu f j8uufn&,

~A7!

~21!P85$D* %$L* %$G* %$G2G8* Lq%$L* DL8r %

3$G8* DGt%. ~A8!

Thus, the full form of the exchange interaction is given b

Hex5 (
j8jfn8fn

(
Drt

gD
~rt !~j8j;fn8fn!(

d
S D

d D xD* d*
~r !

~j8j!

3XDd
~ t ! ~fn8fn!, ~A9!

gD
~rt !~j8j;fn8fn!5gD1

~rt !1gD2
~rt ! . ~A10!
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