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Orbital Kondo effect in Ce,La;_,Bg: Scaling analysis

H. Kusunose and Y. Kuramoto
Department of Physics, Tohoku University, Sendai, 980-8578, Japan
(Received 7 August 1998

Peculiarity of the Kondo effect in Gka; _,Bg is investigated on the basis of the scaling equations up to
third order. For the case where th&f2 charge fluctuation enters in addition to thef® one, the effective
exchange interaction becomes anisotropic with respect to the orbital pseudospins that represent the two differ-
ent orbitals in thel'g ground state. Because of different characteristic energies for electric and magnetic
tensors, scaling with the single Kondo temperature does not apply to physical quantities such as the resistivity
and magnetic susceptibility. Possibility of a bizzare phase is pointed out where the RKKY interaction leads to
the spin ordering without orbital ordering. This phase serves as a candidate of the phase IV that is observed to
be isotropic magnetically.S0163-1829)01203-3

I. INTRODUCTION phase IV; the orbital Kondo effect can be active even in the
presence of a spin ordering. Then a new method was pro-
Orbital dynamics in a number of heavy-fermion systemsposed to perform perturbative renormalization to arbitrary
has recently attracted great intert®t.In the presence of higher orders. In order to quantify the idea, however, one
orbital degeneracy, orbitalelectrig tensors in addition to must estimate the actual magnitude of relevant interactions
spin ones have an opportunity to be active, and show riclunder the realistic point-group symmetry. Up to the present,
phenomena resulting from entanglement with sfimag- investigation of the Kondo-type interaction in the presence
netic degrees of freedom. The orbital degrees of freedonof crystalline-electric-field CEF) effects has been made by
couple with lattice ones, and often lead to the Jahn-Tellevarious method$2%7 It has turned out essential to take
effect. In other cases, a quenching mechanism for these d@yto account the splitting of the localized states in accordance
grees of freedom such as the orbital Kondo effect preventsith the point-group symmetry.As a result, the effective
static distortion of the lattice. Hence the study of the coupledexchange interaction needs many parameters for character-
spin and orbital fluctuations should be important for under-zation. In the conventional field theoretical scaling proce-
standing heavy-fermion systems as a whole. dure, it is tedious to deal with such large number of param-
Under a high-symmetry such as the cubic one, there areters.
chances for the orbital degeneracy to remain. A typical ex- In this paper we generalize the scaling method of Ref. 15
ample is the cubic compound CgBits crystal-field ground so that it is applicable to arbitrary point-group symmetry.
state is thel's quartet, which consists of two degenerate The scaling equations for symmetry adapted coupling con-
Kramers doublets. The excited doublét is well separated stants are written down generally in terms of structure con-
by about 540 K(Ref. 7) and plays little role in low-energy stants of the relevant Lie algebra. As a specific case, the
physics. CeB exhibits curious phase diagram at low tem- third-order scaling for the cubic symmetry is performed ex-
perature in magnetic fieR:'° The phase boundary between plicitly with a minimum amount of intermediate steps. We
the paramagnetic phase, called phase |, and the antiferroqushow that the pseudospin representing the orbital moment
drupolar phase, called phase Il, shows unusual dependenbas an anisotropic exchange interaction as a result of scaling.
on magnetic field: transition temperature increases as mag@n the other hand, the magnetic pseudospin remains isotro-
netic field increases. The magnetic field dependence of phagic in the case where thé*-f° fluctuation dominates the
Il has been ascribed either to the intersite interactions bef'-f2 one. Since the third-order scaling does not work for a
tween higher-order multipolés$;* or the quadrupolar strong-coupling fixed point, the local Fermi liquid cannot be
fluctuations>® identified by the present approach as it stands. However,
In the course of systematic dilution stutfy*a strange with available knowledge from various sources, we can al-
phase, called IV, was observed recently inlCGg_,Bg. The  most certainly classify all the fixed points of the model. It
magnetic susceptibility shows a cusp on entering the phadeirns out that there is an unexpected symmetry in the ex-
IV from the paramagnetic phase | with decreasing temperagchange interaction that interchanges both the spin and orbital
ture. This suggests that the &lestate is present here. In indices simultaneously. We show that this hidden symmetry
contrast to phase lll, which has both antiferromagnetic ands specific to the SU(2xSU(2) symmetry, which is rel-
quadrupolar orders, phase IV has a very small magnetic arevant to thel'g CEF state.
isotropy in the susceptibilif and almost no This paper is organized as follows: In the following sec-
magnetoresistancé.In realizing this phase the interplay be- tion, we describe the method to derive the effective exchange
tween intersite correlation and on-site Kondo effect seems tinteraction starting form the Anderson model. This section is
be essential. mainly an adaptation of earlier treatm&hto respect the
In a previous papet; one of the present authors noted the point-group symmetry from the beginning. The details of
importance of the orbital Kondo effect in understandingexplicit derivation are given in the Appendix. In Sec. Il we
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derive the third-order scaling equation in the most general
case of the point group. In Sec. IV we apply the general
result to the specific case of the,La; _,Bg system and give
detailed analysis of the scaling equations. The final section
summarizes the present paper with implications for identify-
ing the mysterious phase IV.

II. EXCHANGE INTERACTION IN IRREDUCIBLE FIG. 1. The exchange process via the excited configurations
REPRESENTATION ¢n+17Y+ . The solid (dashedl line denotes the conductiofone-
particle f) electron. The double solid line represents the localized
The atomic structure of a single magnetic ion withlec-  state in the projected space.

trons is treated by the CEF theory together with the Russell-

Saunders I(S) coupling scheme. In this scheme the localintermediate state assuming that the relevant conduction-
state is specified uniquely by nthe following quantum num-ejectron states have energies smaller than those for excited
bers: the number df electronsf", the orbital, the spin, and = states ofH;. The exchange process via the excited configu-

the total angular moments,S,J, and the irreducible repre- rations is shown schematically in Fig. 1. Then the exchange
sentationl” (abbreviated as irrgpof the double point group interaction generally takes the form

with time-reversal operation and its componentogether

with the branching multiplicity labe®, which is required for

the case where the irrep occurs more than oncée.g., Ho= > Jig c'xlc- | )XY ¢, )
Dg,=1'g® 2I'; for tetragonal symmetjy We often abbrevi- E

ate the local statg$"L SJ as for notational sim-
d Q') as|dny) where the meanings of the indiceand « are to be specified

plicity. In the same manner the one-patrticle statéajéctron : h ey o : h >
is described as|é\), where £ is the abbreviation of ater. The matricesc and X describe the transition pro-
cesses for conduction electrons and the localized states, re-

(/=3,s=1/2jgA) with q being the multiplicity label, and _ .
A specifying the irrep of the one-particle state. The Corre__spect|vely. Summation over quantum numbers of each state

: . : : . is implied by the matrix multiplication. The numbers of in-
sponding creation operator is Wntten % jtis qsefu!r o dependent matrices are %41 for the conduction electron
express a Bloch state conduction operatpy using Ckex

with the symmetry adapted basis around the impurity anddﬁ— 1 for the multiplet {"L.SJ) with the degeneracg; .
The Anderson Hamiltonian then takes the form The unit matrices that give t_he potential scattering do not
enter the exchange Hamiltonian.
H=H+H¢+Hpyp, (1)  Theinvariance under the %omt—.group operation is implicit
in Eq. (7). To make it explicit® we introduce the irreducible
tensor operatotS defined as follows:

He= ;\ €keCrarCken » i)
‘ . . ATV[ATE AT A
XA*&(&’%): z CrgrnCken A AT N
_ k' N" kN r
Hf—;y Er(én)l da¥)(dn?, 3)
XSH pnbn) =2 [ny' W& |(F,)(F'* ° F)
= Y Y I )
thb:kEg;[kaclﬁffk""H'cJ' (4) Ao Yy " "Ly o vl
)

where we restrict the hybridization between the local and the .
conduction electrons to the same set of symmétot only where the one-.column and th_e three-coIL.Jm.nl bracketls9 indi-
A.=A; but alsoé.= &). We regard the labe] as the chan- cate Jm and 3Jm symbol_s with theT mult|p_I|C|tyr ort.
nel index of independent scattering processes Jara the ~ 1nese are natural extensions of thg dnd 3 symbols of
internal degrees of freedom, which is responsible for thaNigner. Itis clear that the tensor operaiQR .. (&' ) trans-
Kondo effect. forms like the ket|[rA* §*), or equivalently like the bra

If the most stable configuratioff' is well separated from (rAd|, under the point-group operations. The irreps of the
f"*1 ones, one can restrict the model sp&te the multiplet  localized-state tensors are determined so as to have the finite
(f"LSJ) by integrating out the virtual charge fluctuations to 3jm symbols. Namely, decompositions of the direct product
the f"*! configurations. The effective Hamiltonian in the I''*®I" containsA. Similar decomposition also determines

model space is written as the irreps of the conduction-electron tensors. We write the
exchange interactiod;, as another matrig in the invariant
He=Hy+ PH P+ He,+ O(VY), (5  form. Namely, Eq(7) is equivalently written as

_ _ -1 ) A
Hex aEM la)(a|lV(Ep—H¢) " tQV|b)b|,  (6) Hom S AEN QX”(§’§:¢n¢n)E§ ( 5)x§la*(§'§)x<§g
&' édpdn
whereP denotes the projection operator to the model space ,
M andQ=1—7P. We have neglecteH, in the resolvent of X(bnn). )
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Here the 2m symbol is inserted in the exchange interaction.ir_lg the irreducible tensor operators, we note that the matrix
With the rotational symmetry, Eq9) reduces to the known x' actually depends only on a subset of quantum numbers

result involving the spherical tensot? (A,A’,A), and the matrixX* on (A,I'y) wherel' is the

The magnitude of the coupling constants, which will beirrep of ¢4. We write the d|menS|on|(A A", A) of X' sim-

obtained explicitly in the Appendix, are given by ply asd; and the dimensio®(A,I';) of X* asD,. To treat
all matrices on an equal footing, each matrix should be em-

aWV(&' & ) bedded in a space of ¥414 matrix. The exchangg,, in Eq.

(7) is defined asl;,,=g{" (&' & @) for (A.8c)=(A¢d;) and
= 2 ALY (s ) bpllfer ||¢n+1>(¢n+1||fg||¢n> zero otherwise. Heré;, does not depend on the component

bns1 index 6.
The matrices satisfy the orthogonality relation
+¢§1 AN (G- Ball FEll B 1) bn-1lIferl b, Trodnd)=d; 8,
(10)
Tr(X*XP)=D 48 4p- (13

where A{Y(¢,.,) is of the order of [V|2/[E¢(pn-1)
—E¢(¢n)]. The first summation is taken for the excited con- The commutation rule is given by
figuration f"*1 such that both the direct producks ® A’
'y and ', ® A®I' contain the identity representation. X XJ]_IE
Similar selection rule is available to tfi&~* configuratior?®

Hereafter we restrict our discussion for simplicity to the
case where the irrep § is real and the corresponding 1
symbol can be set to unity. Moreover, both the initial and the [X%XP1=i2 D_FasX"- (15
final states belong to the ground-state CEF multipbgt [
Then the localized-state tensors become Hermitian and aﬁquiva|ent|y the structure constant is gi\/en exp|icit|y by
have definite signs with respect to the time-reversal opera-
tion. The conduction-electron tensor does not have the defi- fij=—1 Tr([x',x1]x"), (16)
nite sign in general, since the time-reversal operation inter-
change&’ with £. However, if one considers the matrix of F

the tensors in the combined spaged &, which are defined ) i
as It is obvious that the structure constaritg andF gz, are

completely antisymmetric against interchange of a pair of

X§HE'E) (£'=6) indices.

") () &1 1t o According to the renormalization formalism based on the
Xao(€'6) T [Xyx(§'6)]"  (otherwisg; open-shell Rayleigh-Schdinger perturbation theory, a

1) change of the band cutof. induces the following expan-

then the matrix of the tensors have definite signs under thgion of the effective interaction matrix:
time reversat® In the above discussion we use the fact that ) 3
the coupling constants are real and symmetric against inter- hint=hext ST + Shig + - - (18
change of¢’ and ¢ which is ensured by the Hermiticity and
the time-reversal symmetry of the exchange interaction. |
the treatment above the same coupling constant is automati-
cally imposed for the different channels. This property was
essential to derive the two-channel Kondo Hamiltonian for hey= 2, Ji XX (19
tetragonal and hexagonal symmetri&Ve rewrite the ex- fa
change interaction in the restricted case as

IJkX (14)

wpy= "1 Tr([X%XP]X). (17)

x{HE 6=

where the superscript indicates the order of the bare coupling
onstant, and the lowest-order mathiy, is given by

The second-order contribution shown in Figga)2and
2(b) to the effective interaction is given by
Hom 2 2 oi(€ &g 2 K€ XN Sg),

(&g A o
(12) ShRIS(INE) =20 2, Jjadj X, X (XOXP)
ij ap

where the summation of channels is taken for combination of

a pair of ¢’ and ¢ because of the symmetrized expression _ l 1 Ty T Y w8
introduced by Eq(11). = 2%‘4 % Jiadjpl X' XX XF], (20)
Il. SCALING EQUATIONS FOR GENERALIZED where we have interchanged the dummy indices
EXCHANGE INTERACTION (i,a)«(j,B) in deriving the second equality.

Figure Zc) shows a diagram for the third-order contribu-
We derive the scaling equations up to third order for thetion to the effective interaction. One should also take into
exchange interaction in terms of the irreducible tensors. Thaccount the “folded diagram®® shown in Fig. 2d). Taking
indexi in Eq. (7) is the abbreviation ofrA6,¢' €) and the  the average of the original and Hermite-conjugate counter-
indexa of (tAJ,¢g). In dealing with the matrices represent- part of the folded diagrams, we obtain
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A. Exchange interaction

The magnetic ion G& (f?) lies in the cubic-symmetry
(Oy) CEF. The degeneracy of the ground multipf€ts, is
lifted to the excited doublel; and the ground quartdtg.

The partial waves of conduction electron are also classified
by the cubic symmetry:

© d)
1 he

io
B ky

Dgp=I7@1g,

D7/2:F6@F7@F8.

(23

(24)

FIG. 2. Scattering processéas),(b) in second order anct),(d)
in third order. The solid line shows a conduction-electron stateyye define the basis sets for both conductjorand localized
while the dashed line the local electron. The backward propagatiom) states as follows:
of the dashed line ifd) is characteristic of the folded diagram. (i)j, J=5/2
Each index denotes the corresponding coupling constant. The inter- ’
mediate conduction-electron states is required to have energies near

1 5 5 3
the cutoffE, . . = \ﬁ P \ﬁ T—
IT7:(1,1)) 6 i2> 6 +2>, (25)
1 : )
Shi¥1S8(InEy) = = Jiadi 5o X TrOIXE) XA X7, X 5 5 1 3
int ( c) 2%:4 C%y iavjpYky ( ){ [ ] |F8:(+T,+i)>: bt P “x2), (26)
6] 2 6| 2
—[XF,X*]X7}
1
1 ) : (=1 — =|+=
:_2 z ‘]ia‘]'lB‘]k XITr(X]Xk) |r8( Ti »L)> i2>1 (27)
21K apy Y
X[XE,[X7,X“]]. p (=72
. - 5 7 7 1
Here we have also interchanged the dummy indices ITg:(1,1))==* \ﬁ‘l_>i\ﬁi_>’ (28)
(j,B)< (k,y) in deriving the second equality. 122 122
By computing the commutators we find that thg has
the same matrix structure as the lowest-order basrt Thus, _ \F 5 _\F 3
we obtain the scaling equations in terms of the structure con- T2:(1.D)==\13*3)* V13 3 (9
stants as
. Y 1T D 1 R
iJ _ g4 0 ITg:(+1,+1)== 253/ * N3 3 G0
a/ ae ae ae !

7| 7 5 1
|F8:(_Tl_l)>:t\/l:215>1\/l:2t§>i (31)

where irrelevant quantum numbers have been omitted. To

specify the components of irrep, we have used the symbols

and | for the time-reversal partner and the extra orbital la-

bels = for theI'g irrep. The relative phases of the basis are

chosen so that the Kramers pair transforms like the spin 1/2

under the time-reversal operatian i.e., 8|1)=1]), 6||)

with /=InE;. This is the most general form of the third- =—|17).

order scaling, which is valid for any point-group symmetry.  Before we express the irreducible tensors, it is convenient

We emphasize that noncommuting property of tensor operaop introduce two pseudospins® and 7 (each of them is

tors is concisely taken into account in terms of structure condefined according to the usual convention of Pauli matyjces

stants of the underlying Lie algebra. which act on the Kramers and the non-Kramers pairs, respec-

tively, without changing the other degrees of freedthi:!!

The six pseudospin operators are classified by the time-

IV. APPLICATION TO CUBIC SYMMETRY reversal operation. Due to the definition of the pseudospin

In this section the scaling analysis developed in the preand the basis, it is easy to obtain their property under the

vious sections is applied to the case of dilute systenfime reversal:

Cela; _,Bg, which exhibits the remarkable entanglement of

magnetic and electric tensors in static and dynamic proper-

ties. We first derive the exchange interaction with use of

pseudospins and then discuss the nature of scaling.

1
(€ P —
ae ZdaDE% aEﬂ ‘Jia‘JjBfijaFaﬁev

1
(3)—
:Bae 2D

> Jan

eaBy ]

dJJZlF F 22
Pigdives p Far psr (22

o*,a¥,0% 7, odd(magneti¢

™, 7%, even(electrig. (32



1906 H. KUSUNOSE AND Y. KURAMOTO

Notice that the pure imaginary operatef has the same
transformation property as magnetic moment.

Once we fix the basis sets, we can express the irreducible
tensor$®?in a concise way by using the pseudospins. We
defines® and 7° as unit matrices in the spin and the orbital
spaces, respectively, and the linear combinations aihd 7*

[r=—3(=\3r+ 7).

PRB 59

(33

(34

All tensors for possible combination of the basis sets are

as given as follows:
(i) ['gxTg
Tym: [0%,0Y,07], (35
(i) ';xTI'y
F4m: [O-X!O-ylo-z]y (36)
(i) FgxTg
FZm: [Tyo-o]l
Iy [70°, 700,
Fgl) [ 20, %Y, 7%07],
N LA A
sm [§+O.X,g—0_y’7,x0.2],
Ise: [P, 7PoY, 7%, (37
(iv) TgxTI';
0 o
T2 a® o/
r 0 o¥\[{0 oY\ /0 oF ag
°m o 0)'\o¥ 0)'\e* 0} (38)
(v) T'gxT'g
2 0 0 ¢o° 0 o° 0)\]
e \[E 0 0 0|, O Of],
o® 0 0 0 0 0/
3_1 0 —\3c* o* L 0 J3a¥ oY 0 0 o*
Cum: 5l 3 ~J3¢* 0 o], 3 V3« 0 0], -0 o0 ,
L a* foad 0 0 g 0 O
3_1 o 3" L 0 o —\3gY 0 ¢ 0
F5m: E E O'X 0 0 s E O'y 0 0 s — O'Z 0 0 s (39)
L \ V30 0 —J3¢¥ 0 0 0 0 0

(Vi) T,X T




PRB 59 ORBITAL KONDO EFFECT IN Cegla; _,Bg: ... 1907

0 % 0 0 0 o
3 0
s sl 0 0o —|0 0 off
0 0 O ad® 0 0
[ 0 o 30* 0 N Y o? 0\ |
31 1
rm:\[EE o 0 0 | Il & o 0 |, —[o* 0 0],
NET ) —J30¥ 0 0 0o 0 0]
[ 0 —\35* o 0 3 o 0 0 o\ ]
3/ 1 1
Tem: 5l 5 ~J3¢* 0 o], 3 3¢y 0 of, -0 0 0o]], (40)
L o* 0 0 oY 0 0 g 0 0/ |

where the subscriph representsnagneticande is electric the former correction changes the renormalization flow
The exchange interaction can be cast into the form Eqqualitatively and gives rise to multiple characteristic energies

(12) by using the explicit form of the irreducible tensors. The even though it is small.

number n{) of independent coupling constants for each We take into account the effect 6f-f? fluctuations only

localized-state tensor is evaluated by counting possible confor such processes that are absent in thé45CS model.

binations of scattering channels in the same irrep. Preciselyihen there appear the exchange interaction with the irreps
there are 56 in totaln,,=nse=3, N3.=8, ns,=10, and A =2m,3e,5m,5¢,4m by the decomposition oF g®I'g. Of
n{H=n{2=16. these the last onA =4m has the multiplicity 2, which we

*We note thatf1-f0 charge fluctuation involves only the distinguish by using the matrig{;) with r,t=1,2. We deal
scattering channels ofj €5/2, I'g) symmetry in the ex- Wwith the following exchange interaction:
change interaction because of the selection rule, (EQ.
Thus, if one ignoreg!-f? charge fluctuation, the exchange (rt)
interaction reduces to that of the 8 Coqblin-Schrieffer Hex= 4l . E ga(XX)a+ E 9am (X X am|, (41)
(CS model. i )

where we define the summation of the components as
B. Explicit form of scaling equations

In deriving the scaling equations explicitly, we restrict (X Xp)a= E X(Ar()s(f f)x(tg(%) (42)
ourselves for simplicity to the case where tief® charge
fluctuation dominates over the'-f2 one. In this case, the Wwith the scattering channef,’zgz(j=5/2,‘l“8) and the lo-
f1-f2 fluctuation gives two different corrections to the @J  cal ground-state configuratiorpy=(f*,%Fs;,I'g). It is
CS model:(i) modification of coupling constants breaking noted that the Si4) CS model is reproduced by setting all
the SU4) symmetry, andii) generation of additional scat- coupling constants as equal g except forg{?, g2l
tering channels besides#£5/2, I'g). The latter correction (=0).
gives very low characteristic energy as compared with the We use the formula€l6), (17), and(22) together with the
one given by thef!-f® fluctuation and hardly affect the definition of tensorg37) to obtain the set of scaling equa-
renormalization of the S(4) CS model. On the other hand, tions:

J

— 7 %am=~ (93 3040 sm) + 702l 203+ (0l “+ Qi >+ G3) ], (43
J (122 (222 2 2
57 93e=~ 3[29om03e+ 3056957 + O5m) 1+ 503e 2(95m+ 956) + 3(95a + 9527+ 95+ 208.) 1, (44)

=~ HAG+ 02— 2(G 04 + 60122 Qo+ G 405

+[g(11 g4ln?g(21)g(22) (11(9(21)2 (22)2+95e+95m)] (45)
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/95&5) — 310k (9ke — 30sm) — 20in 04 1+ 3 [l " — 40k 940 gl
+ Gl {494m *+ G *+ (5 + 05+ GBe) + 505}, (46)

/9<21> — H[g12(9{2 - 3gsm) — 20092V ]+ [9E° - g I g 2922 + g2 (g 2+ 922+ g2+ g2,)],  (47)

. /gfn?— — 30292 + g (9'22 + 30sm) + 2(GseTse+ GomGsm) 1+ 5[0 {A0V2 + g4i22+ 2(g3  + 93+ O26) + 502}

+ Qi 4G4 O 9l 1 (48)

d
=7 9sm=— 3[3(9km 9t — 9l 9hin') + 2(9kim o+ GaeFse) + Gl Usm] + [ Gsm{4( Qi *+ Qi *) +5(glirn *+ Gl )

+2(Gom+ 9Bt 92} + 02, (49)

d
57 95e= ~[204m G5 + Gae( Ol + Gsm) 1+ 2[ 2050+ Ose{ 2(lry *+ 0l *+ 08e) + Gl “+ Qi “+Q3}]. (50)

We note that these apparently complicated expressions folhere the coupling constants have been redefined as follows:
low straightforwardly from Eq(22). The correctness of the

expression has been checked by taking various limiting g ﬁ)—\]. 03e=K., Oom=Ky,
cases. 2
9l =0sm=11, Gse=I;. (52
C. Nature of scaling The pseudospins for conduction electrons are rewritten ex-

Let us discuss implication of the scaling equations. ThePlicitly as

set of equations has eight stable as well as saddle-point fixed + 1]
oints, which are summarized in Table I. Because all fixed —
p 22 _ ok (120 _ (21 TI O- E 2 2 C m/o_/pm mp(T’(ermU' (l a= OX Y, Z)
points have the relationgy"* =0z, and gz =0im kK'k m'm o'
=0, the exchange interaction at fixed points reads (53

wherep® with a=x, y, or z denote the Pauli matrices apl
3 w a1 ‘ x 72 vy is the unit matrix. A similar definition is also used for the
Hex= ZJ; ocor +a[Ky(Terit 7ers) + Koreri] pseudospins for localized states. In the redefined expression
of exchange interaction51), difference in time-reversal
1S L (P4 ) £ (51) chgracters of the irreduc;ible tensors appear as the exchange
4y LLTeTE T TeTe) T 2 Te trilogoy, anisotropy of pseudospins. This kind of7 double tensor
exchange model has been studied in the literature. However,
TABLE I. The stable and the saddle-point fixed points for scal- Unnecessary imposition on the parameters caused ambiguous

ing equations. The coupling constants in the redefined notation ar(éOnCIUSIorl a_bout th_e flx,ed po,'rﬁ%' .
written in the second line. The two fixed points in a given row in Table | are essen-

tially the same since the one with the upper sign changes into
(2D another with the lower sign by a unitary transformation

1% (22% _ 12)% _

( * * * (
94? ?(38 ngm dim | %o glse Jim = Gim which changes simultaneously the signs of the transverse

- ‘ = ‘ couplings,K, andl, . The groups with and without a prime
0] 1 0 o0 0 0 0 are related to each other by the transformatiop,(,) <
(i) 0 0 Ky 0 0 0 —(l,,1,). This hidden symmetry will be discussed later.
(i) 0 +1 1 0 0 0 In the absence of the last term in E&§1), the o and 7
(iv) 1 0 Ky 0 0 0 spaces are decoupled. Thus the fixed paintdii), and(iii)
(v) 1 +1 1 0 0 0 correspond tgi) the non-Fermi-liquidNFL) fixed point in
(vi) 1 0 Ky 0 +1 0 o space, andii) the Ising andiii ) the NFL fixed points inr
(vi") 1 0 Ky 0 -1 0 space, respectively.
(vii) 1 0 1 +1 0 0 The last term couples and 7 spaces. In the absence of
(viii ) 1 +1 1 +1 +1 0 K, , the term ofl, leads to fixed pointvi) where the NFL
(viii ") 1 +1 1 1 -1 0 appears only iro space with the coupling constantg;=J

+1,7¢7!, while the term ofl, leads to fixed pointvii). In
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TABLE Il. The destinations of the saddle-point fixed poifils-
(vi') in the first column against each type of perturbation.

—
o
T

(=}
o0

¢ S
o
v v

J>0 J<0 K, K, I, 1,50 1,<0

0] ) (iv)  (vii) (i) (vi')
(i) Gv)y Gy i) Wiy (i) (vi")
(iii) v (i) (i) (viii) (Vi)
(iv) W) (vii) (i)  (vi")
V) (i) (viii) (Vi) 0
?\I/Ii)') ((\yilizl’)) ((\yilizl’)) 10° 10710t 100 10710 El/(g
(vii) (viii) (i) (viii")

o
~
T

effective coupling constants
o
~o

FIG. 3. The renormalization evolution of coupling constants for
the initial coupling constant§;=0.2 andK,=0.1 with increasing
the presence df, or | | together with the transverse coupling 1,=10%, 104, and 10 2. The three different characteristic ener-
K, , the coupling constants flow to fixed poifiiii) with gies corresponding td, K, and! rapidly merge together ds, in-
SU(4) symmetry. It is known that the Coqgblin-Schrieffer creases.
model does not have the NFL fixed point. Then, the finite
magnitude of the fixed-point coupling is an artifact of the | the absence of the electric couplidg, the characteristic
third-order scaling. The correct fixed point should beJat — energy corresponding to the magnetic Kondo effect is given
=Ki=K; = and gives the Io'cal Fermi liquid. The stabil- py TE = J%%exp(-1/33,). T is also smaller tharr$®
ity of the saddle-point fixed points against each type of persince only the magnetic channels contribute to the Kondo
turbation is summarized in Table Il. = _effect. The renormalization evolution is shown in Fig. 4 for

Let us discuss renormalization evolution and characteristhe initial coupling constantd,,=0.05 with various values
tic energies for some simplified cases. First, we consider thgf the ratioar=Jgy/J,g. The two different characteristic en-
isotropic caseK, =K,=K andl =1,=I. In this case, the ergies corresponding ta, andJ, merge together as ap-
scaling equations are reduced to those discussed in Ref. 15 ggyaches unity.

P Before closing this section, we discuss the hidden sym-

J=—(1-3)(J?+312), (54) metry |+ —1. Let us consider the following particle-hole

s transformation for the conduction electrons:
iK:—(1—|<)(K2+3|2) (55)
ar ' Chmo— 2 TmiSeaCl ki (59
la
i =—21(J+K)+1(J?+K2+2I2 56 : i :
771 = T2 AFK)HI(I7+H K+ 217). (56)  where the matrice$ and T are unitary. The transformation

does not change the kinetic-energy part of the Hamiltonian

In the absence of the couplinigit is obvious that there exist unless the conduction band is asymmetric with respect to the
two characteristic energies corresponding to each Kondo efFermi level. On the other hand, the spin operattirsand rs
fect: TR/E.=Jexp(—1/J) andTK/E.=Kexp(—1/K). Onthe  are transformed, respectively, as
other hand, the case of $4) symmetry withl =J=K gives
single characteristic energyl,x”E.=|Yexp(1/4). It is
noted thatTg® is larger thanTyX since the number of the
screening channels is larger. The renormalization evolution
of the coupling constants is shown in Fig. 3 for the initial
coupling constantsl,=0.2 and K,=0.1 with 1,=10"5,
104, and 102. The three different characteristic energies
corresponding td, K, andl merge together ak, increases.
The average of the characteristic energies also increasgs as
increases.

Next, we focus on the difference in time-reversal property
and put,,=J=K,=1, andJ.=K, =I,. The scaling equa- 0.0
tions are simplified in this case as

N o o
&~ N o0

effective coupling constants

o
&

103 104 103 102 10! 10°
EC/ECO
2. 12 o . .
=79m=~ (1=3)(335,+Je), (57 FIG. 4. The renormalization evolution of coupling constants for

the initial magnetic coupling constafy,,=0.05 with an increase in
the ratioa=J/Jmo, Je being the electric coupling constant. The

Jo= —2Je[2Jm—(Jﬁq+J§)]. (58) two different characteristic energies correspondingltpand J
merge together aa approaches unity.

J
o/
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the exchange couplings for eitheror 7 rapidly merge to-

i T . X . 4
T = 2 2 Chims P mChime s (60  gether with increasing magnitude of the coupling. If one con-
k'k om'm siders only the time-reversal difference, the system has also
two different characteristic energies corresponding to the
a el e 61 electric a'nd the magnetic exchang.e interactions. We identify
Te™” k% m;‘(r k'mo’P o’ o ko G the special symmetry of S©), which plays an important

role in rejecting the non-Fermi-liquid fixed point resulting
, : S from the argument of the SH) X SU(M) exchange model
ol —2 2 ChmiePrmParCkmes (62 in the large limit ofN and M.
k'k m'mo’ o Concerning the physical quantities in the intermediate re-
where the minus signs come from the anticommutation ofime toward the fixed point, magnetic and electric quantities

conduction-electron operators. The transformed spin oper&:2n have different energy scales. Therefore, the conventional
tors with bars are given by argument with the single Kondo temperature has to be re-

vised in the presence of the orbital degeneracy. This should
et it arot acit affect the previous analysis of the resistivity and magnetic
p=[TP'TL, p=[Sp*S]. (63 susceptibility. For this purpose, a quantitative argument is
Let us assume the presence of unitary transformatesd required beyond the perturbative scaling analysis. Elsewhere
T, which make the transformed spin operators proportional t§/€ Use the numerical renormalization grétipio derive

. — — physical quantities at finite temperature.
the original one. Namely, we hayé=Ap' andp“=Bp“ for In the presence of intersite interactions, the orbital and

all components wheré andB are independent of the com- gpin degeneracies can be split by a molecular field associated
ponent indices. Then the transformed exchange interaction {gith long-range order. It is known that e, _,Bg has at
equivalent to the original one with the coupling constahts least four different phases. Of these phase Il is characterized
=—AJ, K=—BK, andl = — ABI. There indeed exist such bY the orbital(or quadrupolgorder without magnetic order.
transformations in the case of the @Jsymmetry; the ma- The magnetic order present in phasga [l seems to accompany
trices are given byS=T=p’, which givesA=B=—1. the orbital order. If the molecular field corresponds to the
However, in the case of SB) symmetry withN>2, such internal magnetic field, not only spin but orbital degeneracy

. . is lifted because Zeeman splitting depends on each orbital.
tra;?:‘]ortrrnaitlorr]lis ﬁarn?hmnbg fwndnsinc; tfg(:hrar;:? d%f t;‘e'\srgr(n Provided that the intersite spin exchange interaction is stron-
symmetry 1S higher than 2. ¥e note that the en sy e@]er than the orbital one, we can think of the situation where
try for SU(2) plays a special role in rejecting the NFL fixed o ¢ Kondo effect gives way to long-range order but the
point that is present in the large limits of bdthandM in the

: X orbital Kondo effect does not. In such a situation the mag-
SU(N)X SU(M) exchange model discussed in Ref. 15. netically ordered phase should keep the nearly isotropic

magnetic property as in the paramagnetic phase. We expect
V. SUMMARY that a detailed quantitative study with the scenario described

. ] above will provide us with an understanding of the nature of
In this paper we have proposed a systematic procedure f@he curious phase IV in Gea; _,B.
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charge quctua’qons tb” or f~ configurations. We dlscugs the OF EXCHANGE INTERACTION
nature of scaling for the case where thef° fluctuation
dominates over thé'-f2 one. In this case, the main contri-  Here we derive the explicit expression of the coupling
bution to the Kondo screening comes from the partial wavesonstants by applying the second-order perturbation to the
with j=5/2, T's symmetry of conduction electrons. Anderson mode(1). The exchange interaction via tie- 1
As a result of scaling, the effective exchange interaction igonfiguration is given by
described by ther-7 double exchange model with the ex-

change anisotropy i space. The anisotropy comes from the_ Hi=— DN DS Cl/g/wck§>\| bly')
fact that one of three components of the orbital pseudospin £ e dy Pty Yk N KN

7 has different time-reversal property from others. The ef-

fective exchange model has non-Fermi-liquid fixed points in A T\ (It AT
the absence of the-7 coupled term. In the presence of the X<¢n7’|2 Ny ON oyl
coupled term the system flows to the local Fermi-liquid fixed e a or a

point. The different characteristic energies corresponding to (A1)
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with A* A’
[ [A[(-=D), (Ad)

(ryy _
: =2 e r'} ,
I, = Ve Vi (D1 el s 1) Dl £l i) n+1 war
’ Ei(pnr1) —Ei(dn) ' 7" & %n+1 n+1lTel|Pn)-

(A2)

The reduced matrix elements of the creation operator can be (=1)P=—{TTATGHI* A*T"tHT*}. (A5)

calculated by using, e.g., the Racah factorization lemma in - ' . .
addition to the coefficient of fractional parentadé* A similar argument for then—1 configuration provides

The summation of the products of thgn8 symbols in Eq. (e coupling constants for the—1 process:
(A1) can be converted to the summation of another combi-

with the phase

* I%
nation of 3m symbols that are related to the product of the giV= 2 |[A AA ] IAl(—1)P, (A6)
irreducible tensor$® For this purpose the following identity ror e
is useful: .
with
r~ A" T'"\*(T'% AT
s vevi f
Y+ Y+ A Y q’ Y+ A Y q I__Ef((bn— ) E(¢)<¢n|| §||¢n 1><¢n 1|| §||¢n>
A* Ar* (A?)
=2, [ ] |A{TTATQHI™ A*T "t} )
S e T T gy (=17 ={AHA*HTHT T * AGH{A* AN T}
w0
SIVNT AN &t A r Y Thus, the full form of the exchange interaction is given by
r« A T
Ny 5 4] (A3 . g DIERTND ( )xw (£¢)
bn

where the ¢ symbol in the point-group irrep has appeared ) a7
together with the P and 3 phases? By using the defini- X Xsolbnén), (A9)
tions of the irreducible tensors, E(B), we obtain the cou- t) 0, (rt)
pling constants for the+1 process as (&' & dndn) =0a+ : (A10)
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