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We have formulated the exciton dynamics in a disordered linear chain with exciton wave functions
given by the one-dimensional Frenkel exciton Hamiltonian with disorder. It is assumed that
exciton—phonon coupling is weak and that the dynamics is governed by the competing processes of
phonon scattering and radiative decay. The phonon scattering rate is given on the assumption that
excitons do not change the site by the scattering. The strength of exciton—phonon coupling and the
density of phonon states are independent of energy. The radiative decay rate is given by the
Einstein’s A coefficient. The detail of the numerical procedure is also described. Absorption spectra,
luminescence spectra, the time response of luminescence intensity, and temperature dependence are
calculated for the model system of p@hn-hexylsilang film. It is discussed that long-range
dipole—dipole interaction is responsible for the luminescence depolarizatior200@ American
Institute of Physics.[DOI: 10.1063/1.1339267

I. INTRODUCTION herence length, i.e., the segment length. The inhomogeneous
width of the absorption band is explained by the distribution
Recently, exciton dynamics in luminescent conjugatechf the segment length. The Stokes shift is explained in terms
polymers has been extensively investigated, motivated nqif exciton transfer from a shorter excited segment to a longer
only by the application to light emitting devicés}but also  segment where an exciton recombines. However, the expla-
by the physical interests to understand the nature of excite§ation has been always phenomenological. Quantitative in-

states in conjugated polymets’® Conjugated polymers are 5npjicability of the segment model to explain the absorption
regarded as the ultimate quantum wires because the th'le)'rofiIe is also pointed odf!
ness of polymers is regarded as zero or the atom size. In the 15 1andom-walk mod&i~-26
one-dimensional system, localization occurs by the Anderso
mechanisn?’ This is a comprehensive problem because Conaomly walks within an arrayor a boy of the sites of which

formal disorder of polymer chains and the fluctuation of Cir'energies fluctuate in the normal distribution. This model ex-

cumstance around polymer strands exist inherently in theI . . . .
) . ains the resonant luminescence intensity. However, the
polymer systems. Therefore, conjugated polymers provide aR

: . . : . odel does not give any microscopic picture of the exciton
ideal stage for the one-dimensional dynamics of excitons af- . s .

. dynamics which is strongly influenced by the phonon scat-
fected by disorder.

Among many polymers, polgi-n-hexylsilané (PDHS, tering rate and the ra@ayve decay rate. .
which is often called ao-conjugated polymer due to the R(_acentl)_/, a quantitative approach has_bee_n d°f‘e W'th the
delocalization ofo-bonding electrons, is a suitable material ope—c(j;mran_?;]qnﬂ Fr_Fnkgl excnon_ _Halrlnlltomsr; mslutlj_lng
for the investigation of exciton dynamics using IuminescencéjISOr er. IS Hami tory@a_r;llwas originally used for the n-
spectroscopies. The exciton—phonon coupling of PDHS i§&' molgts:flar. aggregates™ to understand the absorption
extremely weak! and quantum efficiency for luminescence spectra’” This attempt seems to be successful to explain
is quite high® The weak exciton—phonon coupling is impor- the asymmetric profile of the absorption band seen in onv
tant to understand the role of disorder against the translgémperature glassy solution of PDHS, although the Hamil-
tional motion of excitons because strong coupling causes exonian was not applied to the exciton dynamics revealed by
citons to be self-trapped. the luminescent processes. In our previous papenge have

To understand the exciton dynamics in PDHS, the seg[eported that the time response of luminescence intensity in
ment modéi'* has been phenomenologically used. In thePDHS films @ 2 K depends on the observed energy. We
segment model, a polymer chain is assumed to be an assefave also formulated the exciton dynamics as the competing
bly of segments which are ordered fractions of backbonegrocesses of radiative decay and phonon scattering, using
divided by conformal defects. In analogy with the excitation€Xciton wave functions obtained by the one-dimensional
energy of oligomer&?°it is considered that the longer seg- Frenkel exciton Hamiltonian with disorder, and have shown
ment has the lower excitation energy due to the exciton cothat the theory reproduces the time respons@ & quite

well.
dpresent address: The Institute of Physical and Chemical In .thls paper, we report' the deta|I§ Of. the thgory and
Research (RIKEN), Wako 351-0198, Japan. Electronic mail; numerical results for the exciton dynamics in the disordered
shimizoo@postman.riken.go.jp linear chains. In order to treat the translational coherence of

also describes the exciton
Hynamics phenomenologically. In this model, an exciton ran-
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an exciton obstructed by the conformal disorder, the theorglistance is expressed ds In Eq. (3), we further introduce
extends the approach by the one-dimensional Frenkel excitaie approximation formula for simplification. The angle and
model in the disordered linear chain. Exciton wave functionghe positional disorders are included in the prefaciqy;,
obtained by the numerical diagonalization of the Hamil-=a,,,d" 3, which corresponds in magnitude to the intersite
tonian are used to formulate the incoherent dynamics ofransfer energy at the nearest-neighbor distashc&or the
competition between radiative decay and phonon scatteringprefactory,,,, the normal distribution with a mean value of
It is postulated that matrix elements of phonon scatteringy, and a standard deviation of is assumed

depend on the spatial overlap between the initial state and )

the final state of scattering. A numerical procedure is also ¢, ex;{ _ (rmn—%0) ]
described. Luminescence spectra and the time response of \/ﬁa 207
luminescence intensity as well as temperature dependence

. . . To investigate the role of the long-range part of the in-
are calculated. The importance of long-range dipole—dipol . . :
. A . . . ersite transfer energ§,,,, the nearest-neighbor approxima-
interaction is discussed in comparison with the nearest-:

. o tion is also examined. In the nearest-neighbor approximation,
neighbor approximation. : ) :
the intersite transfer is represented as

4

II. Theory Bmn= YmnOmn=1, ®)

A. Basic model where y,, is given by Eq.(4). When not referred, we as-

To deal with the exciton dynamics in the disordered lin. Sume the full dipole—dipole interactio3) for the intersite

ear chain, we adopt the Frenkel exciton Hamiltonian Withtransfer energy.

disorder. The disorder is inherently introduced by conformal TO_ Obta'F exciton wave functions a_ffect_ed bY disorder,
numerical diagonalization of the Hamiltoniafl) is per-

disorder in real polymer systems. Neglecting the interactio . . ) . .
. POy Y ~eg g the . r}ormed. Obtained time-independent exciton wave functions
with the phonon and the photon fields, the exciton Hamil- . . )
are expressed in the site representation as

tonian in the site representation is described as

N
N
H= 3 Edn)(nl+ 3 Bndm)nl. D [i)= 2, ainln), 6)
n= n#m

where a;,=(n|¢;) represents the exciton amplitude of the
ith state at theath site. The energy of the state is written as
To estimate the degree of spatial extension of the states,
participation defined as

where(n| expresses the wave function that thté site is in

the excited state and all the othBl—1 sites are in the

ground states. The on-site excitation energy and the intersitfrﬁ'

exciton transfer energy originated by the antisymmetrization €

of wave functions are expressed Bs and B,,,, respec- N -1

tively. To realize disorder, diagonal and off-diagonal disor- Pi:( Z ai4n) (7)

ders are possible. Since disorder in real polymer systems is "t

experimentally unknown, it is practical to examine themis used. The participation represents the localization length

separately. In the model material of PDHS, both types ofor the coherence length of excitons.

disorder may exist and possibly be correlated. The diagonal

disorder occurs whew-bond length is fluctuated. The off- ) )

diagonal disorder occurs mainly when the angle betweefs: EXciton dynamics

o-bonding orbitals is fluctuated. It is shown that both types We formulate the exciton dynamics in the disordered

of disorder can reproduce the absorption spectrum of PDH$near chain using the exciton wave functio(®. The fol-

in low-temperature glas$.We consider that the fluctuation lowing treatment is justified under the condition that an ex-

of the rotational angle between the second neardginds is  citon is not polaronic and that the elastic scattering by con-

the dominant disorder, because these twoonds can easily formal disorder is faster than the scattering by phonons.

rotate around ther bond between them. Thus, in this paper, There are two cases in phonon scattering. In one case, only

we adopt the off-diagonal disorder and assume the on-sitthe phase of excitons is shifted, and in the other case, exci-

excitation energy to be the uniform magnitudetoy. tons are scattered to other states which have different ener-
On the assumption that all the transition dipoles have thgjies. The former elastic scattering contributes to the homo-

equal magnitude ofi, and that their directions are distrib- geneous linewidths of exciton states which constitute the

uted around the chain direction, the intersite transfer energinhomogeneously broadened exciton band. However, the

Bmn is given by the dipole—dipole interaction as theory here only accounts for the latter inelastic scattering

because our interest is in the description of exciton relaxation

) in the inhomogeneously broadened exciton band. Homoge-

[(md+ 8) — (nd+ 8,) |3 neous linewidth is not accounted for in our theory. The com-

peting processes of phonon scattering between localized ex-

citon states and radiative decay to the ground state are

In Eq. (2), 0, and 5, represent the angle and the positionalincoherently treated.

deviations of a transition dipole from the chain axis and from  The radiative decay rate is given by the Einstein’'s A

the equilibrium positiormd, respectively. The mean intersite coefficient as

w3{cod O+ 6,,) — 3 cosby, cosh,}

mn

mamn|md_nd|_3:')’mn|m_n|_3- ©)
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4wi3Mi2 extremely smalAe less tham e ,,i,. For such small\e, ¢,
= (8  inEq.(12) is replaced by, Ae/Ae, to prevent divergence
of the ratep;; by the Planck distribution at finite temperature.
where w;=¢;/# and u; represent the transition frequency Physically, this postulation corresponds to the uniform den-
and the transition dipole moment, respectively. The transiSity of acoustic phonon modes and the linear coupling be-

-1
T -_—1
( R )I 3ﬁC3

tion dipole moment is given as tween excitons and acoustic phonons in the long-wavelength
limit.
N
i :nzl Hodin XP —iknd) © C. Numerical procedure

To generate a Hamiltoniafll) for a random chain, the
N Monte Carlo method is applied in accordance with E).
“zl Mo@in- (100 Absorption spectra, luminescence spectra, and the time re-
sponse of luminescence intensity are calculated as an average
of the N¢pain random chains. If not referredy =500 are
taken for the average in the results presented below. The
number of sites in a chaiN is assumed to be 1000.

The practical expressiol0) is derived under the long-
wavelength approximation of Eq9), wherek is the wave

number of a photon. if determine th tati f it th
To treat phonon scattering, we abandon the momentum we determine the excitation engrc‘ﬁjo or a site, the
ean intersite transfer energy, and its deviations, the

selection rule, because wavenumbers are not good quantaj'_f\ iitonians(1) for the N hai determined. Exci
disordered linear chains. Exciton states are localized by di Jami onl?ns t' or % tﬁha.‘”c ans are ede;mm(_a 'd gm—
order. Thus, we adopt the selection rule in the real space th};\?n wave functions and their energies are determined by nu-

the spatial overlap between the initial state and the final statg]erlcal diagonalization of the Hamiltonial). Absorption

determines the matrix element. The matrix element betweeﬁpeCtra are obtained by
theith state and théth state is given by the square-root of A(E)ocS 1
the sum of the products of probabilitia§, anda?, to find an (B)* e se<e <e+aen 7r0)i

exciton at theth and thejth sites, respectively, as N 2

: (13

oC

wi3 Qip
E—AE/2<g<E+AE/2 n=1

N
2 52
|M”|2:n§1 Aindjn- (11) where the summation is taken for the states of which ener-
gies are in the small range daf AE/2 aroundE. The second
This formula represents that an exciton does not change teXpression gives a spectrum in arbitrary units without deter-
site in phonon scattering. The larger overlap between th&ining uo. It is assumed that the homogeneous linewidth is
states gives the larger matrix element. Using the matrix elewithin the assumed spectral resolutidrE.

ment(11), the phonon scattering rate from tfi state to the Based on the obtained exciton wave functions, the time
ith state at the temperatuteis given by response and luminescence spectra are sequentially calcu-
lated by the small time step daft. Let co(t) andc;(t) (i
2 _ -1 e =1,2,...N) denote the occupation probabilities of the
= Cul M |2[1+{eXp(A8/kBT)711} I (E<E), ground state and thigh exciton state at time. Initial occu-
Cor| Mij|*{exp(Ae/kgT) — 1} (Ei>E)), pationsc(0) caused by the photoexcitation are assumed to be
(12 proportional to the radiative decay ra@® in the excitation

: . andwidth assumed. The time evolution of the occupation
wherec;, is the transition constant. The temperature depenp d sume © ime evolltion of the occlpatio

= probability c(t) is sequentially given by
dence of phonon occupation with the energyAe=|g;
—¢;| is given by the Planck distribution in Eq12). The c(t+At)=Dc(t). (14)
transition constant consists of the density of phonon modes
and the constant for exciton—phonon coupling. We postulate The N+ 1 dimensional matriXD which redistributes the
that these two factors are independent of energy, despite tleecupation probability after the small tint is given by

Di (711t (r1)pA -+ (Tph)n—aAt (7r7)NAt
0 D2, PoAt  pizAt e pinNAt
= I " 5
0 : Pn-1nAt
0 PrniAt Prn2At Prnn-1At Dnn
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where the diagonal elements are I T T T T
N Al
Dj,—=1—i=§)1 D;j; (16) zr
c
to conserve the probability. The prime in the summation in- ar
dicates that the term with=j is absent in the sum.rgl)i 7‘,
and p;; are given by Egs(8) and (12), respectively, if we -%_ i
determine the transition dipole momen} per site and the )
transition constant;, . The time intervalAt should be small . R J
enough to satisnyiN:l’Dij<1. The intensity of lumines- % - .
cence from theth exciton statei(#0) at timet is given by 304 ]
L= (g ici(t). (17 ° T )
To obtain energy-dependent time responses and lumines- ‘Z; 02 B ]
cence spectra, thedependent time responséky) are pro- 2 - -
jected onto the energy space as 0 i . . . a
L] 1 1 1
umi(E, 1) = > li(t). (18 e )
E—AE/2<g <E+AER
40 |- -
ANO - -
I1l. RESULTS AND DISCUSSION N\.:_' B T
=N ]
Figure Xa) displays the calculated absorption spectrum. 20 [ ]
The parameters used akg=5.81 eV, yo=—1.0 eV, and - .
0=0.065 eV, which are optimized for the PDHS film, as oL . . |
reported in Ref. 5. For determining these valugg,is pri- R J ! ' ! ]
mary estimated from the transition energy of silane- 200 (= 3
oligomers®?® The absorption bandwidth is determined by s [ i
alyy, and the peak energy is shifted by batfy, andE,. g C i
The absorption band in Fig.(d) has a peak at 3.38 eV S 100 |- _
and a width of about 60 meV. The low-energy profile is E B -
steep, but the high-energy profile has a long tail due to % B ]
disordert*3%31To understand what occurs from the disorder, - -
the density of states, the second power of the transition di- 03_5 3!3 3!4 3!5 3!6 37
pole moment calculated by Eq10), and the participation Energy (eV)

calculated by Eq(7) are shown as functions of energy in

FigS. 1b), (c), and(d), respectively. The peak of the density FIG. 1. Energy dependencg of absorptiap the densjty pf statg(sb), the
second power of the transition momeigj, and participation(d) given by

OT State_s ap_pears at the band ed_ge as a result of the_ ONfé one-dimensional Frenkel exciton Hamiltonian with disorder(cinthe

dimensionality, although the peak is broadened by the disolordinate is normalized by the second power of the transition moment per

der. The peak locates at 3.40 eV, which is 2 meV higher thamonomer unit. Parameters used #&g=5.81 eV, y,=—1.0 eV, ando

the absorption peak. =0.085 eV.

The second power of the transition dipole momarft,

practically gives the oscillator strength because the transition

frequency does not significantly vary in this energy range. Itu3/c,, are shown with solid lines. Ratigs/c,, in (a) and

has a peak at 3.36 eV, about 2 meV lower than the absorge€) are one-tenth and ten times as large as théb)inrespec-

tion peak. At energy regions lower than the peal,g, be- tively. To determine the absolute time scalgy,=1.7

comes smaller at the lower energy. This is because the lowex 1018 esu cm andc,,=6.0x 10'? s™* for (@), uo=3.0

state has a smaller participation, i.e., the lower state is mor& 10 '8 esu cm andc,=1.9x10' s for (b), and u,

strongly localized as shown in Fig(d). At energy regions =5.3x10 18 esu cm ana,, =6.0x 10'* s~ for (c), respec-

higher than the peak«,bi2 steeply decreases with increasing tively, are used. The values f@b) are the optimized values

energy. These states have approximately zero oscillat@ccording to the time response, as described below. Tem-

strength if disorder is absent. In the disordered linear chairperature is assumed to be 0 K. The dotted lin€binis the

the oscillator strength distributes to the higher states becausdsorption spectrum for comparison. The Stokes shift, i.e.,

the k=0 state and other higher states are mixed by the disthe difference in energy between absorption and lumines-

order. cence, is small and only decreases slightly with increasing

Since the exciton dynamics is assumed to be the com/;célctr in the realistic range of two orders frofa) to (c).

peting processes of phonon scattering and radiative deca@pectral widths are nearly independent,uﬁ‘/ct,, and it is

,ué/ctr determines the exciton dynamics in arbitrary timeactually impossible to fit the experimental data. The numeri-

scales. In Fig. 2, luminescence spectra for various ratiosal result has twice the width as large as the experimental
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o] s {4 5 -
134 ] «
8 5 4 2 | 1 | 1 | 1 | 1 | 1 1
- 200 4 @ 0 200 400 600 800 1000
e - 1 5 Time (ps)
© 1 £
3 ol ] ; FIG. 3. Time responses of luminescence intensity at 3.33, 3.36, 3.39, and
o 8 3.41 eV. Parameters used are the same as those used fofhyig. 2
[+1]
200 3
£ decay rates. So, the deviation at the higher energy means that
% the distribution of decay rate of states is larger at the higher
- energy.

100 Although not exactly exponential, we determined rise
times 7,5 and decay timesy.. of numerically calculated
time responses, in order to discuss the time responses quan-

0 titatively. The numerical results are least-square fit to the
35 3.3 3.4 35 phenomenological formula,

Photon Energy (eV) i Et) % — Xp( —t/ 7isg) + XD —t/ 7). (19
In this way, rise times and decay times are determined for
F_IG. 2 Luminesc_ence specttaolid I_ines) and the_ energy dependence of various parameters and shown in FigSa)z(c) with open
rise times(open circley and decay timesclosed circles of luminescence . . .
intensity atT=0. Arrows indicate the excitation energies. A dotted line in a_md closed CIrCleS'_ respectively. In any parameters, b_Oth rse
(b) shows the absorption spectruisame as Fig. 1a)] for comparison. ~ times and decay times are larger at the lower energies, but
Parameters used argo=uSPx 10" and ¢, =c{P"x 102 for (a), uo  the ratio of a rise time to a decay time is larger for the larger
=ud'=3.0x10 8 esu cm and, =cP'=1.9x102 s for (b), and pg ratio of M% tocy .
:f;;(gpt-x 104 andc,, =c2P"x 10~ 2 for (c). x°P* means the optimized value Since the time scale is arbitrarily determined by the ab-

' solute magnitude of,, and ug in the theory, the ratio of the

rise time to the decay time, rather than the absolute values of

result. Two reasons are possible causes of this deviation ithe rise and the decay times, is the important manifestation
the spectral width. One is the error in determining the paramef the exciton dynamics. Therefore, the optimized param-
eters of model Hamiltoniafil), because a spectral width of eters in Fig. 2b) are determined so that the ratio of the rise
luminescence primarily depends on the distribution of statetime to the decay time at the peak energy in the numerical
which have oscillator strength. The other possible reason igesult is the same as that in the experimental result af 21K.
the deviation of the real system from the ideal one-contrast to spectral widths and Stokes shifts, time responses
dimensionality due to the interchain interaction. In realare quite sensitive to the rati;mé/ctr . When we take;é/ctr
PDHS films, small exciton transfer to neighboring polymerone-tenth as small as that in Figb? the ratio of the rise
chains may be possible. But, the interaction should be smatime to the decay time becomes one-thirtieth, as shown in
because the interchain distance is large due to the long side). Whenu3/c,, is ten times as large as that(i), the ratio
groups in PDHS. is about one half, as shown (o). Finally, after determining

Figure 3 shows time response at 3.33, 3.36, 3.39, anthe ratio, absolute values are determined to fit the real time
3.41 eV with the parameters for Figi®. As displayed, each scale. With these optimized parameters, the distributions of
response has a rise time which is larger at lower energiesise times and decay times agree with the experimental result
Decay is faster at higher energies. The decay profiles ar@ which both times are larger at the lower energy, very well
nearly exponential, although appreciably deviate at higheif the distributions are normalized by the energy deviation
energies, as at 3.41 eV. This deviation occurs because a tinfierm the peak energy.
response at an energy is the statistical superposition of the To understand the elementary processes of the exciton
time responses of a number of states which have differerdynamics, an example of the wave functions for the lowest
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A2|
5 C1 D2 FIG. 5. (a) Energy dependence of the expectation values of the phonon
- " scattering ratéa solid line and the radiative decay rata dotted ling. Five
’ } # hundred random chains are taken for the avergigeThe distribution of
- ‘ F1 o S121'|M;;|2 for the states generated in a chain.
B1 2,
AT o . .
W i a7 structure is intuitively acceptable if we pay attention to the
- D1 number of nodes of wave functions. We note, however, that
TL the existence of the hidden structure is not mathematically
T proven. The hidden structure is interesting because it relates
0 500 1000 the microscopic description of the exciton dynamics in the
Site Index (n) continuously disordered chain to the description by the phe-

_ _ nomenological segment model. In the segment model, con-
FIG. 4. An' exam'ple of wave functlons .of thg lowest 36 exciton s.tatesformal defects are postulated as barriers which divide seg-
generated in a disordered linear chain including the long-range dipole— . .
dipole interaction(3). The amplitudes;, is plotted against the site. The ~ Ments. On the other hand, the hidden structures, which are
higher-energy state is displayed at the higher position. CharagrsH) analogs of the segments in the phenomenological segment
and numberg1)—(6) represent the hidden structures _and the quantum NuiMmodel, are generated by the interference of wave functions
bers of the states within a hidden structure, respectively. . .
reflected by continuous disorder.
Figure 5a) displays the energy dependence of the expec-
tation values of the phonon scattering rateTat0 and the
36 exciton states generated in a random chain is shown iradiative decay rate by solid and dashed lines, respectively.
Fig. 4. The wave functions are presented from the bottom ilAssumed parameters are the same as those for ffg.The
the order of energy in the site representation. Parametersdiative decay rate has a peak at 3.7 eV as predicted by the
used are the same as those used in Fig. 1. The energies todinsition dipole moment shown in Fig(cl. The phonon
these states are 3.33 to 3.44 eV, which are in the energscattering rate becomes dramatically small at the lower en-
range of the absorption band. As shown in Fi@d),la lower  ergy. This is because, at low temperature, it is possible for an
state tends to be more strongly localized. exciton to be scattered only to the lower-energy states as
Lowest states are predominantly localized in some smaldlescribed in Eq(12) and the lower-energy states have the
segments of the chain. It is possible to identify the groundsmaller number of possible final states for the phonon scat-
and excited states localized in the same segment. This localering. Moreover, due to the stronger localization at the
ized energy structure is called a hidden structir®Char-  lower energy as shown in Fig(d) and Fig. 4, matrix ele-
acters(A)—(H) and numberg1)—(6) in the figure represent ments(11) between the low-energy states are small. At 3.36
the identification of the hidden structure and the quantuneV, the rates for the phonon scattering and for the radiative
number within a hidden structure, respectively. The hidderdecay become nearly equal. This energy is smaller than the
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T the absorption spectrum for comparison. The excitation en-
ergy is assumed to be 3.5 eV and is shown by arrows. The
rise and the decay times are determined by the same proce-
dure as those for Fig. 2. All the parameters despite tempera-
ture T are the same as those used in Figs. 1 dbjl 1 Fig.

6, (a), (b), and(c) show the results for the temperatures of
zero[same as Fig. ®)], 300, and 600 K, respectively. The
absorption spectrum is independent of temperature in our
model. With increasing temperature, the peak does not shift,

600 |
400

200

o

@ S===1{0 but the high-energy tail of the band becomes slightly larger.
£ - ] This is due to the thermal distribution of excitons at high
$ 600 - ] temperature. In terms of the time response, the rise time be-
£ e comes small, and the decay time increases and becomes less
= 400 ] dependent on energy at higher temperature. The small rise
8 . time is brought by the increased phonon occupation which
8 [ ] increases the phonon scattering ret®). The distribution of

< 200 . decay times is interpreted as that, at high temperature, exci-
5 [ ] tons form a quasithermal distribution and the net rate of en-
© : . ergy relaxation is small. Thus, the contribution of the phonon
§ 0 —° scattering to the decay time is less dominant. This tempera-

ture dependence predicted by our theory qualitatively agrees
with the experimental results in the PDHS fifth.

In spite of the qualitative success in the temperature de-
pendence, we have to note the limit of our approach in which
the contribution of the homogeneous linewidth to the whole
spectra is neglected. According to our numerical results, the

600

400

Luminescence Intensity and Optical Density (a.u.)

200 total rate of inelastic phonon scattering and radiative decay is
less than K 10' s~ for the states in the energy range of

ol —o luminescence spectra, even at 600 K. Therefore, our treat-

32 33 3.4 3.5 ment is self-consistent. In reality, however, there is a possi-

Photon Energy (eV) bility that the homogeneous linewidth broadened by elastic

phonon scattering contributes significantly to the spectra. At

FIG. 6. Temperature dependence of luminescence spectra and the time r@'w temperatures, homogeneous linewidths were measured
sponse of luminescence intensity. Solid lines, open and closed circles, an

arrows show luminescence spectra, rise and decay times, and excitatid®y the spectral hole-burning technique for PDHS in glass.
energies, respectively. Assumed temperatureaf for (a), 300 K for (b), The linewidths were 0.2 meV at 2 K and 0.8 meV at 36K,

and 600 K for(c). A dotted line in(a) shows the absorption spectrisame  \yhich are small enough to justify our treatment. At higher

as Fig. 1a)] for comparison. temperature, one can expect the homogeneous linewidth to
be far broadened. Experimentally, the homogeneous line-
width has not been clarified at high temperature up to now.

luminescence peak energy in FigbPby 10 meV. This dif- We have taken the full dipole—dipole interactit8) into

ference is attributed to the large distribution of the phononyccoynt in the results presented above. On the other hand, it

scattering rate. Figure(5) shows the distribution of is found that the absorption spectrum, the luminescence
ji—-1 spectrum, and the rise and the decay times can be reproduced
> '|Mij|2 with the nearest-neighbor approximatits) as well as with

=1 the full interaction(3). In our previous papetwe reported

for the states in a chain. This sum of matrix elements to théhat it is impossible to reproduce the time response with the

lower states gives the phonon scattering 1d® at T=0. nearest-neighbor approximation, but this impossibility has

Since the distribution of the phonon scattering rate is quitdbeen found a fault due to a numerical error. Other numerical

large in the range less than 3.4 eV, the mean value is domiesults in our previous paper, for example, wave functions

nated by the states which possess large scattering rates. Hoand the participation in the nearest-neighbor approximation

ever, the contribution of these states to luminescence is smadkre correct. In the nearest-neighbor approximation, the same
because excitons are scattered from these states before theyperimental results are reproduced By=5.8 eV, yq

emit photons. =-1.2 eV, o=0.05 eV, uy=4.2x10 8 esu cm, and,,

To clarify the exciton dynamics governed by phonon=9.4x10" s 1. The reason for taking, as—1.2 eV is to
scattering, temperature dependence is important because ttiake the sum of all the excitation transfer energies
phonon scattering rate is a function of temperature. In Fig. 632, mBmn €qual to that with the full interactio(B).
the temperature dependence of luminescence spectra, rise Figure 7 shows an example of the lowest 36 states gen-
times, and decay times are shown by solid lines, open circlegrated by the Hamiltoniafil) with the nearest-neighbor ap-
and closed circles, respectively. A dotted line(@ shows  proximation(5), for comparison with those in Fig. 4 with the
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LI L shown in Figs. 4 and 7, although the assignment is not nec-
I essarily definitive. With the full interaction, the mean values
Y . . are 7x 10 2 within the same hidden structure an& 20 #
c4 wl i . between the neighboring hidden structures. In the nearest-
‘ 5 ‘Ar neighbor approximation, the mean values arx1D 2
r f within the same hidden structure anck 20~ ° between the
55 v neighboring hidden structures. Therefore, with the full inter-
) 4 " action, an exciton can be scattered to the states of neighbor-
"r ing hidden structures and causes large spatial migration
\ A E1 ' along a polymer chain. In contrast, in the nearest-neighbor
) A A approximation, an exciton cannot be scattered to the states of
b A

neighboring hidden structures within their lifetimes.

In PDHS solution at room temperature and in glassy
; BT "L¥ solution at low temperature, it is reported that luminescence
A"f s depolarization occurs in the time range of a few hundred

A K2 picosecond§-!! Considering that the transition dipole of an

exciton in PDHS is along a polymer chain, spatial migration
of excitons by phonon scattering is necessary to bring out the
luminescence depolarization. Therefore, the appropriate de-
scription of the exciton dynamics must include the long-

| ‘L range dipole—dipole interactio(8). This interaction is re-
J2 sponsible for the exciton migration and the luminescence

C1 Fi  H3 depolarization.
¥ A D2
A

IV. SUMMARY

Amplitude (ajn)
—4‘ Q
- o
—

A2 ' We have reported the theory of the exciton dynamics in
A 4 l Ki the disordered linear chains. It is assumed that exciton—
! A Y
57 E phonon coupling is weak and that the dynamics is governed
i Y| by the competing processes of phonon scattering and radia-
Al Az f tive decay. The one-dimensional Frenkel exciton Hamil-

tonian with disorder is used to provide exciton wave func-

| J1 J“ tions. The radiative decay rate is given by the Einstein’'s A
H1 M1 coefficient with the long-wavelength approximation. The
Y phonon scattering rate is given on the assumption that an
P P R TP L S SN R T exciton does not change the site in the scattering and that the
0 500 1000 exciton—phonon coupling and the density of phonon modes

Site Index (n) are independent of energy. A numerical procedure to obtain
FIG. 7. An example of wave functions of the lowest 36 exciton states@PSOrption spectra, luminescence spectra, and the time re-
generated in a disordered linear chain in the nearest-neighbor approximatigponse of luminescence intensity, as well as temperature de-
(5) The amplitudeain is plotted against the site. The higher—energy state pendence |S aISO presented Calculat|0n |S performed for the
is displayed at the higher position. Charactg$-(M) and number$l)—(4) . . .
represent the hidden structures and the quantum numbers of the states WitrﬁrPHS film and the reSUIt_repr_OduceS the luminescence time
a hidden structure, respectively. response quite well. It is discussed that the long-range
dipole—dipole interaction is responsible for the luminescence

depolarization.
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