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It has been known theoretically that localized states exist around the zigzag edges of a graphite ribbon and
of a carbon nanotube, whose energy eigenvalues are located between conduction and valence bands. We find
that in metallic, zigzag single-walled, carbon nanotubes two of the localized states become critical, and that
their localization length is sensitive to the mean curvature of a tube, and it can be controlled by the Aharonov-
Bohm flux. The curvature-induced mini gap closes by the relatively weak magnetic field. A conductance
measurement in the presence of the Aharonov-Bohm flux can give information about the curvature effect and
the critical states.
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Prior theoretical studies on zigzag carbon nanotubes clari-
fied that they can exhibit either a metallic or semiconducting
energy band, depending on their chiral vectors.1 It has been
shown theoretically2 and experimentally3 that even in “me-
tallic,” zigzag single-walled carbon nanotubessSWCNTsd a
finite curvature opens small energy gaps. Therefore, all zig-
zag SWCNTs have finite energy gaps.

On the other hand, Fujitaet al.4 theoretically showed that
localized statessedge statesd emerge at graphite zigzag
edges. The edge states are plane-wave modes along the edges
and their energy eigenvalues are between the valence band
and the conduction bandszero-energy statesd. Since a graph-
ite sheet with zigzag edges can be rolled to form a zigzag
SWCNT, the edge states are supposed to be localized at both
edges of the zigzag SWCNT and are predicted to make a
certain magnetic ordering, depending on the nanotube length
and radius.5 In this case, a zigzag nanotube has not only bulk
sextendedd states with a finite energy gap, but also zero-
energy, localized edge states. Although several properties of
the edge state have been investigated,6 the physical relation-
ship between the electrical properties of bulk states and edge
states remains to be clarified.

In this paper, to investigate this relationship, we study an
effect of the Aharonov-BohmsABd flux along the metallic,
zigzag nanotube axis. Among the Fujita’s edge states of me-
tallic, zigzag SWCNTs, we will show that there exist “criti-
cal states.” Their wave functions, and in particular their lo-
calization lengths, are sensitive to the following two
perturbations: the curvature and the AB flux. These perturba-
tions are new ingredients for cylindrical geometry and are
absent in the flat graphene sheet. Other edge states are hardly
affected by these perturbations and their wave functions re-
main strongly localized at the edge. The main purpose of this
paper is to clarify the dependence of the critical states on the
AB flux and the relationship between the wave functions at
the bulk and at the edge. This dependence can be examined
by a conductance measurement in the presence of the AB
flux. We note that such an AB flux applied along the
SWCNT axis ssee Fig. 1d has already been realized in
experiments.7,8

Because the unit cell is composed of two sublattices,A

andB, we write the wave functions asuCkl= tfcAskd ,cBskdg,
where k is a discrete wave vector around the tubule axis.
By fixing the chiral vector1 as Ch=sn,0d, we obtain
k=2pm / uChu suChu=Î3accnd wherem s=1, . . . ,nd is an integer
andacc<1.42 Å is the carbon-carbon bond length. We ana-
lyze the system using the nearest-neighbor tight-binding
Hamiltonian, H=oa=1,2,3oiPAsVp+dVadai+a

† ai +H.c. “A” sin
the summation indexd denotes anA sublattice,ai andai

† are
canonical annihilation-creation operators of the electron at
site i, and site i +a indicates the nearest-neighbor sites
sa=1,2,3d of site i. We include the curvature effect as the
bond-direction-dependent hopping integral,Vp+dVa. We ig-
nore the electron spin for simplicity.

The energy eigenequation,HuCkl=EuCkl, becomes

efA
J+1 = fB

J + gfB
J+1 sJ = 0, . . . ,N − 1d, s1d

efB
J = fA

J+1 + gfA
J sJ = 0, . . . ,N − 1d, s2d

FIG. 1. Lattice structure of a zigzag carbon nanotube. The filled
sopend circle indicates theA sBd sublattice. Both the left and right
edges are Fujita’s edges.
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efA
0 = gfB

0, efB
N = gfA

N, s3d

where we define

e ;
E

sVp + dV1d
, g ; 2

sVp + dV2d
sVp + dV1d

cos
psm − nFd

n
. s4d

Here, we write the wave function at sitesI ,Jd of the AsBd
sublattice ascsA,BdI

J skd=expsi2pIm /ndfsA,Bd
J smd ssee Fig. 1d.

We assumedV2=dV3 in the Hamiltonian because of the mir-
ror symmetry along the axis of a zigzag nanotube. The effect
of the AB flux is included ing of Eq. s4d by the replacement,
m→m−nF, wherenF;F /F0 is the number of flux quan-
tum, F0.

By solving Eqs.s1d–s3d, we obtain an analytical form of
the energy eigenfunction as

fA
J = F1

g

sinJf

sinf
+

sinsJ + 1df
sinf

GfA
0 , s5d

fB
J = FsinsJ + 1df

sinf
GfB

0 sJ = 0, . . . ,Nd, s6d

wheref satisfies

2 cosf =
e2 − g2 − 1

g
; k. s7d

The energy eigenvalue is determined by the boundary condi-
tion of Eq. s3d. Using Eqs.s5d and s6d, we get

sinsN + 1df + g sinsN + 2df
sinf

= 0. s8d

This equation corresponds to the vanishing wave function at
the fictitiousA sites ofJ=N+1, i.e., fA

N+1=0. Most of the
solutions forf in Eq. s8d are real, as we explain later. Such
real solutions represent extended states and satisfyk2ø4.

In addition, there can be localized states, wheref has an
imaginary part andk2.4. Their localization lengths are pro-
portional to the inverse of the imaginary part off. We ex-
amine if the boundary condition allows such a localized
state. The complex solutions of Eq.s8d can be written as
f= iw or f=p+ iw, wherew is a real number. The former
case, f= iw, corresponds tok.2. In this case, Eq.s8d
becomes

sinhsN + 1dw + g sinhsN + 2dw = 0. s9d

Due to usinhsN+2dwu. usinhsN+1dwu, we obtain −1,g,0.
The latter case,f=p+ iw, corresponds tok,−2 and
0,g,1. When uguù1, on the other hand, Eq.s8d does
not allow complex solutions, and therefore there is no
localized state in this region. Because the boundary condition
implies g=−e+w+Ose2Nwd for w,0s−1,g,0d and
g=e−w+Ose−2Nwd for w.0s0,g,1d, the energy eigenval-
ues for the localized states aree= ±Ose−Nuwud, exponentially
small as a function of nanotube length.

By a more elaborate analysis, for a fixedk, we can ana-
lytically show that sid for uguù sN+1d / sN+2d, all the
2sN+1d states are extended,sii d for 0,g, sN+1d / sN+2d,
there are 2N extended states and two localized states with

Ref=p, and siii d for −sN+1d / sN+2d,g,0, there are 2N
extended states and two localized states with Ref=0. For
each wave vectork satisfying ugu, sN+1d / sN+2d, the two
localized states have energies with opposite signs,
e= ±Ose−Nuwud. Each of the two states is localized near both
edges. In the leftsrightd edge, it is localized in theA sBd
sublattice. Henceforth we consider the lengthN of the nano-
tube to be large; the localized states are then allowed
for ugu,1.

The critical condition, k2=4, separates the extended
and the localized states. We plot the lines of the critical
condition in the sg,ed plane in Fig. 2sad. The shadow
regions satisfyk2.4, representing localized states. By
applying the AB flux, each state moves and makes a trajec-
tory in the sg,ed plane. Suppose one extended state, located
outside of the shaded region, comes across the boundaries
k2=4 between the empty and shaded regions. It means
that the extended state turns into a localized state. On the
verge of the transition the state becomes “critical,” when
g= ± sN+1d / sN+2d< ±1 and e= ±1/sN+2d. If we assume
dVa=0 and there is no external magnetic field, this condition
for g is satisfied only in metallic, zigzag nanotubes, namely,
when n is a multiple of 3 andm1/n= 1

3 or 2
3 fsee Eq.s4dg.

When it is satisfied, the states withg= ±1, e<0 are located
very close to the critical linek2=4, and thus they can be
easily controlled by external perturbations, as we see later.

The cylindrical geometry of nanotubes yields a
finite-mean curvature and induces a change of the
hopping integraldVa.

2,9 The scaling of the curvature gives
dVa/Vp<Osacc

2 / uChu2d. The values ofg are then driven away
from g= ±1 to

g < ± S1 +
dV2 − dV1

Vp
D + Î3

p

n
nF. s10d

From the experimental data of the minigap in metallic, zig-
zag nanotubes,3 we estimate10 dV2−dV1=p2Vp /8n2. Thus, in

FIG. 2. sad Region for localized statesk2.4 shown as
the shaded area in thesg,ed plane. Whether localized states are
allowed depends on the boundary condition. If the figure is rewrit-
ten in terms ofk and E, the empty region reproduces the well-
known band structure for the graphene sheet.sbd When we ignore
the curvature effect, there are states withg=−1 in the absence of
the AB flux. The curvature effect displaces the states onto the line
g=−f1+sdV2−dV1d /Vpg. The AB flux changes the value ofg, and
the eigenstates will make trajectories like the dashed curves in the
figure. The two extended statessfilled circlesd become localized as
they run into the shadow region. The eigenstates, except for these
two states, remain extendedsopen circlesd.
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the absence of the AB flux, these states haveugu.1 and are
not critical, but extended. However, the AB flux can make
one of g within ugu,1, which implies that two extended
states become localizedfsee Fig. 2sbdg. At the transition
ugu=1, there are two critical states with energies very close to
zero. In the thermodynamic limit these states have zero en-
ergies and infinite localization lengths; therefore, the system
becomes gapless at this magnetic-field-induced transition.
The values ofg for other extended states and zero-energy
localized states are far from ±1; therefore, other extended
slocalizedd states remain extendedslocalizedd even with this
external magnetic field.

One of the important questions is whether the AB
flux required for such a transition is experimentally
accessible or not. We calculate the magnetic field required
to close the curvature-induced minigap. From Eq.s10d,
we find n̄F=p / s8Î3nd is necessary to close the minigap
for g=−1 sfor g=1, −n̄F is necessaryd. This AB flux
corresponds to the magnetic fieldB<23105/n3 T. Thus,B
is accessible if n.20. For a zigzag nanotube with
Ch=sn,0d, the flux quantumF0 corresponds to the magnetic
field Bn=B1/n2 T sB1;8.53105 Td, and therefore the ex-
perimentally accessible magnetic flux corresponds to
unFu!1. For instance, we haveB9<104 T, which is well
beyond an accessible magnetic field<102 T, and we can
attain unFu<10−2 at most.

Here, we plot the localization length of the critical
state for metallic, zigzag nanotubes with different
diameters. We define the localization lengthL by
ufA

J u2/ ufA
0u2<exps−3accJ/2Ld, where 3acc/2 is the distance

between theJ and J+1 lines sFig. 1d. We obtain for
nF. n̄F,

L

uChu
=

1

4pnF −
p2

2Î3n

=
1

4pB

Bn
−

p2

2Î3n

. s11d

In Fig. 3, we plotL / uChu for n=30, taken as the largest di-
ameter for a SWCNT, andn=51, taken as a shell in a mul-
tiwalled carbon nanotubesMWCNTd. The curvature-induced
energy gaps areEgap=7.4 meV and 2.6 meV, respectively,
where we useVp=2.7 eV. n̄F is estimated as 7.1 T for
n=30 and 1.4 T forn=51. If we neglect the interlayer inter-
action in a MWCNT, a zigzag SWCNT in a MWCNT is the
most suitable to examine the behavior of the critical states,

because one does not need a strong magnetic field to close
the curvature-induced minigap.

The curvature effect and the modulation of the localiza-
tion length can be experimentally proven by conductance
measurements as a function of the gate voltage for various
values of the AB flux. We plot the conductance for different
nF in Fig. 4, where we assume ideal contacts and zero tem-
perature. Such measurement is attainable, as conductance of
well-contacted individual SWCNTs was measured in the bal-
listic regime by Konget al.11 In Fig. 4sad, the solid curve
represents conductance in the absence of the AB flux,
nF=0. The zero-conductance state corresponds to the
curvature-induced minigap. In Fig. 4sbd, conductance
changes according to the AB flux. Near the Fermi level, only
one channelsg<−1d contributes to the transport and gives a
unit of quantum conductanceG0. In Fig. 4scd, when
nF= n̄F, the zero-conductance state disappears and the criti-
cal states start to localize. Even when further AB flux is
applied, there remains a finite conductance at the Fermi level
due to the critical states, as is depicted in Fig. 4sdd. However,
because further AB flux quickly reduces the transmission
probability from Fig. 3, the conductance at the Fermi level
decreases.

The transition between the extended and localized states
by the AB flux can be also understood in terms of the
effective-mass theory of graphene. The effective-mass theory
of low-energy dynamics is given by two Weyl equations,12

each of which represents the dynamics around theK point
and K8 point in the momentum space. The curvature in the
nanotube induces an effective gauge field in the Weyl
equations,9 and this gauge field gives the minigap of
2sdV2−dV1d through the AB effect. When we apply the AB
flux snF, n̄Fd, the energy gap of one mode opens, while that
of the other closes; therefore, the energy gap closes as a total
system. If further magnetic fluxsnF. n̄Fd is applied, some of
the extended states become localized at the edges and their
energy becomes zero, while other extended states open the
gap again. Such zero-energy states cannot be obtained by
solving the Weyl equations with a uniform energy gap in
periodic systems. Instead, it is known that by locally modu-
lating the energy gap, there appear localized states called

FIG. 3. Localization length of the critical state forsad n=30 and
sbd n=51 zigzag nanotubes. The horizontal axis is a magnetic field,
B T, sad 7.5øBø30 andsbd 1.6øBø30.

FIG. 4. Theoretical result of conductance with a metallic zigzag
nanotube. We plot conductance as a function of gate voltage,Vg for
several values of the AB flux.
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Jackiw-RebbisJRd states.13 The edge states in the nanotube
induced by the AB flux resemble the JR states, in that they
have zero energy and are localized; meanwhile, they are dif-
ferent from ours because these edge states are induced by a
uniform AB flux and not by a local modulation. We note that
related states can appear when we introduce a local geo-
metrical deformation in the nanotube.10

Throughout this paper, we have examined zigzag nano-
tubes having two Fujita’s edges. Even for zigzag nanotubes
with open edges, one can consider other cases with one or
two edges being the Klein’s edge.14 If one of the edges is the
Klein’s edge and the other is the Fujita’s edge, there are still
localized states, whereas their properties are distinct from the
previous case for the two Fujita’s edges. Such a nanotube can
be made by attachingA sites at the right edge of the zigzag
nanotube in Fig. 1. The boundary condition for the right edge
is efA

N+1=fB
N. For the localized states we obtaine=0 and

fA
J =s−gdJfA

0, fB
J =0 sJ=0, . . . ,Nd. Thus, the localized states

have exactlye=0 for every value ofg, and they have ampli-
tude only on theA sublattice. Such states are localized near
the rightsleftd edge whenugu.1 sugu,1d. Furthermore, there
are no transitions between the localized and extended states,
even when we apply a magnetic field. Meanwhile, wheng
passesg= ±1, the localized state withe=0 comes on the
critical boundary ofk2=4 in Fig. 2sad, and the corresponding
localized state will move from the right edge to the left or
vice versa and can be detected experimentally. On the other
hand, when both edges are Klein’s edges, the situation is
somewhat similar to the case with two Fujita’s edges. For
this case, the localized states are realized whenugu.1 in-
stead ofugu,1, and the AB flux induces a transition from the
localized to the extended states.

Similar phenomena are expected also in nanotubes with
other chiral structures, except for armchair nanotubes. Na-
kadaet al. showed numerically that localized states appear
not only in the zigzag edges, but also in edges with other
shapes.6 We expect that such localized states will undergo a
transition with extended states in the presence of the AB flux.

Finally let us mention the Coulomb charging energy for
the localized states. A typical energy scale of the charging
energy for an edge state isEc<e2/Ledge, whereLedge is the

typical length for the edge states. This energy should be com-
pared with that of the extended states evaluated as
Ec<e2/Lsys, where Lsys is the system size. Since
Lsys@Ledge, the Coulomb energyEc for the edge states is
much bigger than that of the extended states, and it may
hinder localization. To lower this Coulomb charging energy,
the spins of the localized states at each edge will align
ferromagnetically.4

In addition to the edge states, the bulk states can also have
interesting phenomena due to the AB flux in the SWCNTs.
Namely, the AB flux induces a persistent current around the
tube axis and gives an orbital magnetic moment.15 The per-
sistent current is caused by a splitting of the van Hove sin-
gularities by the AB flux.16 Quite recently, the splitting was
observed in semiconducting nanotubes as the splitting of the
first subband magnetoabsorption peak7 and also in small-
band-gapsnot curvature relatedd nanotubes as a temperature
dependence of conductance.8 These experiments were in-
tended to observe that the AB flux can make an asymmetry
between two energy bands composed of the extendedsbulkd
wave functions near the Fermi level. By means of doping in
addition to the AB flux, an interference between many en-
ergy bands17 takes place. This interference affects the mag-
netic and transport properties of the system, and it is helpful
to get insight into the bulk electronic states.

In summary, the Aharonov-Bohm effect of carbon nano-
tubes is suited to examining not only the bulk electrical prop-
erties, but also the properties, of the edge states. We point out
that there are two critical states in metallic, zigzag nano-
tubes. Although the critical states become extended due to
the curvature effect in the absence of magnetic field, the
Aharonov-Bohm flux can make a transition from the ex-
tended states into the localized edge states. This transition
can be seen as a characteristic feature of conductance.
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