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It has been known theoretically that localized states exist around the zigzag edges of a graphite ribbon and
of a carbon nanotube, whose energy eigenvalues are located between conduction and valence bands. We find
that in metallic, zigzag single-walled, carbon nanotubes two of the localized states become critical, and that
their localization length is sensitive to the mean curvature of a tube, and it can be controlled by the Aharonov-
Bohm flux. The curvature-induced mini gap closes by the relatively weak magnetic field. A conductance
measurement in the presence of the Aharonov-Bohm flux can give information about the curvature effect and
the critical states.
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Prior theoretical studies on zigzag carbon nanotubes clarandB, we write the wave functions d¥,)=" (k) , ¥(K)],
fied that they can exhibit either a metallic or semiconductingvherek is a discrete wave vector around the tubule axis.
energy band, depending on their chiral vectolshas been By fixing the chiral vectot as C,=(n,0), we obtain
shown t_heoretiqalfi/and experimentalf/that even in “me- k=2mu/|Cy| (|Chl=V3acn) wherew (=1, ... n) is an integer
tallic,” zigzag single-walled carbon nanotubéBWCNTS & anqa ~1.42 A is the carbon-carbon bond length. We ana-
finite curvature opens small energy gaps. Therefore, all Z'gryze the system using the nearest-neighbor tight-binding

zag SWCNTs have finite energy gaps. Hamiltonian, H=3,_; » 5 . a(V+ é\/a)a|T+aai+H-C- A" (in

On the other hand, Fujitat al# theoretically showed that th tion indaxdenot i sublatti dat
localized states(edge statesemerge at graphite zigzag € summation in 6) enotes amm sublatlice,; anda; are
ggonical annihilation-creation operators of the electron at

edges. The edge states are plane-wave modes along the edg . S ; .
and their energy eigenvalues are between the valence ban€ 1, and sitei+a indicates the nearest-neighbor sites

and the conduction bardero-energy statgsSince a graph- (a=1,2,3 of sitei. We include the curvature effect as the
ite sheet with zigzag edges can be rolled to form a zigzadond-direction-dependent hopping integhd),+ 6V,. We ig-
SWCNT, the edge states are supposed to be localized at bofiere the electron spin for simplicity.

edges of the zigzag SWCNT and are predicted to make a The energy eigenequatiof(|¥,)=E|¥,), becomes
certain magnetic ordering, depending on the nanotube length

and radiug.In this case, a zigzag nanotube has not only bulk 1 31

(extendedl states with a finite energy gap, but also zero- epp =dptgdy (J=0,...N-1), 1
energy, localized edge states. Although several properties of
the edge state have been investig&téuk physical relation-
ship between the electrical properties of bulk states and edge
states remains to be clarified.

In this paper, to investigate this relationship, we study an
effect of the Aharonov-BohnfAB) flux along the metallic,
zigzag nanotube axis. Among the Fujita’s edge states of me-
tallic, zigzag SWCNTSs, we will show that there exist “criti-
cal states.” Their wave functions, and in particular their lo-
calization lengths, are sensitive to the following two
perturbations: the curvature and the AB flux. These perturba-
tions are new ingredients for cylindrical geometry and are
absent in the flat graphene sheet. Other edge states are hardly
affected by these perturbations and their wave functions re-
main strongly localized at the edge. The main purpose of this
paper is to clarify the dependence of the critical states on the
AB flux and the relationship between the wave functions at ~  ———=fpes=nammmmemmmmcimcceeaae ®
the bulk and at the edge. This dependence can be examined
by a conductance measurement in the presence of the AB Left edge Right edge
flux. We note that such an AB flux applied along the
SWCNT axis (see Fig. 1 has already been realized in  FIG. 1. Lattice structure of a zigzag carbon nanotube. The filled
experimentg:® (open circle indicates theA (B) sublattice. Both the left and right

Because the unit cell is composed of two sublattides, edges are Fujita's edges.

(2)

Left edge
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0 _ 40 N_ 4N b
€Pp=0dg, €Pg=0dPa, (3 (b) g2 (1+ avz‘;"av,)
where we define
(V,+ 6Vy) (= Ng)

€

- (4)

V,+ov) 97w, ov) S

Here, we write the wave function at sité,J) of the A(B)
sublattice asya g, (K)=expi2ml u/n) ¢l g (1) (see Fig. 1
We assumeV,=6V; in the Hamiltonian because of the mir-
ror symmetry along the axis of a zigzag nanotube. The effect
of the AB flux is included ing of Eq. (4) by the replacement,
Hu— p—nNg, Whereng=d/dy is the number of flux quan-
tum, @

By solving Egs.(1)—(3), we obtain an analytical form of
the energy eigenfunction as

j_|1sindg sind+1)¢| ,
A_{g sin¢+ sin ¢ }d)’*' ©

FIG. 2. (a) Region for localized states®>>4 shown as
the shaded area in th@,e) plane. Whether localized states are
allowed depends on the boundary condition. If the figure is rewrit-
ten in terms ofk and E, the empty region reproduces the well-
known band structure for the graphene shé&@tWhen we ignore
the curvature effect, there are states wgth—-1 in the absence of
the AB flux. The curvature effect displaces the states onto the line
g=-[1+(8V,-6V;)/V,]. The AB flux changes the value gf and
the eigenstates will make trajectories like the dashed curves in the
figure. The two extended statédled circles become localized as
(6) they run into the shadow region. The eigenstates, except for these
two states, remain extendédpen circles

S [sin(J +1)é
B7| sing

}ﬁg J=0,...N),

where ¢ satisfies Re ¢=, and (i) for -(N+1)/(N+2)<g<0, there are B

e-g°-1 extended states and two localized states withpR®. For
- each wave vectok satisfying|g|<(N+1)/(N+2), the two

g localized states have energies with opposite signs,
The energy eigenvalue is determined by the boundary condie= +©O(e™N¢l). Each of the two states is localized near both

2 cosg = K. (7)

tion of Eq. (3). Using Egs.(5) and (6), we get
Sin(N+1)¢p+gsin(N+2)¢ 0
sin ¢ N

8

edges. In the leftright) edge, it is localized in thé (B)
sublattice. Henceforth we consider the lenbtlof the nano-
tube to be large; the localized states are then allowed
for |g| < 1.

This equation corresponds to the vanishing wave function at The critical condition, k=4, separates the extended
the fictitious A sites of J=N+1, i.e., ¢ '=0. Most of the and the localized states. We plot the lines of the critical
solutions for¢ in Eq. (8) are real, as we explain later. Such condition in the (g,e) plane in Fig. 2a). The shadow
real solutions represent extended states and saifsfy4. regions satisfy x*>4, representing localized states. By

In addition, there can be localized states, whéreas an ~ applying the AB flux, each state moves and makes a trajec-
imaginary part and?> 4. Their localization lengths are pro- tory in the(g, €) plane. Suppose one extended state, located
portional to the inverse of the imaginary part ¢f We ex-  outside of the shaded region, comes across the boundaries
amine if the boundary condition allows such a localized«?=4 between the empty and shaded regions. It means
state. The complex solutions of E¢B) can be written as that the extended state turns into a localized state. On the
d=ip or p=m+ip, whereo is a real number. The former verge of the transition the state becomes “critical,” when

case, ¢=ig, corresponds tox>2. In this case, Eq(8)
becomes

sinh(N+ 1) +gsinhN+ 2)¢=0. (9)

Due to|sinh(N+2)¢| > |sinh(N+1)¢|, we obtain -k g<0.
The latter case,p=w+i¢p, corresponds tox<-2 and
0<g<1. When|g|=1, on the other hand, Eq8) does

not allow complex solutions, and therefore there is no The cylindrical

g=+(N+1)/(N+2)=+1 and e=+1/(N+2). If we assume
6V,=0 and there is no external magnetic field, this condition
for g is satisfied only in metallic, zigzag nanotubes, namely,
whenn is a multiple of 3 and/ul/n:% or % [see Eq.(4)].
When it is satisfied, the states witjr £1, e=0 are located
very close to the critical line<?=4, and thus they can be
easily controlled by external perturbations, as we see later.
geometry of nanotubes vyields a

localized state in this region. Because the boundary conditiofinite-mean  curvature and induces a change of the

implies g=-€"*+0(e?N¥) for @<0(-1<g<0) and

hopping integraléV,.2° The scaling of the curvature gives

g=e¢+0(e %) for ¢>0(0<g<1), the energy eigenval- Na/V,~0(a5/|Cy%). The values of are then driven away

ues for the localized states are +(O(e™N¢l), exponentially

small as a function of nanotube length.

By a more elaborate analysis, for a fixkdwe can ana-

lytically show that (i) for |g|=(N+1)/(N+2), all the
2(N+1) states are extendedj) for 0<g<<(N+1)/(N+2),

fromg=+1 to
8V, = V.
g~ i<1+zv—l) +\f§%n¢. (10)

From the experimental data of the minigap in metallic, zig-

there are Rl extended states and two localized states witizag nanotube$we estimat&® 6V,- 8V,=72V,./8n? Thus, in
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FIG. 3. Localization length of the critical state f@ n=30 and
(b) n=51 zigzag nanotubes. The horizontal axis is a magnetic field, v v
BT, (a) 7.5<B<30 and(b) 1.6<B<=30. s 8 8

the absence of the AB flux, these states haye 1 and are critical states

not critical, but extended. However, the AB flux can make g|G, 4. Theoretical result of conductance with a metallic zigzag
one of g within |g|<1, which implies that two extended nanotube. We plot conductance as a function of gate voltggiar
states become localizeldee Fig. Zo)]. At the transition several values of the AB flux.
|g|=1, there are two critical states with energies very close to
zero. In the thermodynamic limit these states have zero erbecause one does not need a strong magnetic field to close
ergies and infinite localization lengths; therefore, the systenthe curvature-induced minigap.
becomes gapless at this magnetic-field-induced transition. The curvature effect and the modulation of the localiza-
The values ofg for other extended states and zero-energytion length can be experimentally proven by conductance
localized states are far from +1; therefore, other extendeéneasurements as a function of the gate voltage for various
(localized states remain extenddtbcalized even with this  values of the AB flux. We plot the conductance for different
external magnetic field. ng in Fig. 4, where we assume ideal contacts and zero tem-
One of the important questions is whether the ABperature. Such measurement is attainable, as conductance of
flux required for such a transition is experimentally well-contacted individual SWCNTs was measured in the bal-
accessible or not. We calculate the magnetic field requiretistic regime by Konget al!! In Fig. 4a), the solid curve
to close the curvature-induced minigap. From E§0), represents conductance in the absence of the AB flux,
we find ﬁq,:w/(gﬁn) is necessary to close the minigap No=0. The zero-conductance state corresponds to the
for g=-1 (for g=1, -ng is necessady This AB flux  curvature-induced minigap. In Fig. (8, conductance
corresponds to the magnetic fidb=2x 10°/n® T. Thus,B changes according to the AB flux. Near the Fermi level, only
is accessible ifn>20. For a zigzag nanotube with One channeig~-1) contributes to the transport and gives a
Cn=(n,0), the flux quantumb, corresponds to the magnetic unit_of quantum conductancé,. In Fig. 4(c), when
field B,=B,/n?> T (B;=8.5xX10° T), and therefore the ex- Ne=Ng, the zero-conductance state disappears and the criti-
perimentally accessible magnetic flux corresponds t$al states start to localize. Even when further AB flux is
Ing| <1. For instance, we havBy=~10* T, which is well applied, there remains a finite conductance at the Fermi level

beyond an accessible magnetic fietdl0? T, and we can due to the critical states, as is depicted in Figl)AHowever,
attain |ng| = 1072 at most. because further AB flux quickly reduces the transmission
Here, we plot the localization length of the critical Probability from Fig. 3, the conductance at the Fermi level
state for metallic, zigzag nanotubes with differentdecreases. _
diameters. We define the localization length by The transition between the extended and localized states
|32/ | 402~ exp(—3agd/2L), where /2 is the distance by the AB flux can be also understood in terms of the
between theJ and J+1 lines (Fig. 1). We obtain for effective-mass theory_ofgraphene. The effecuve—mas; theory
N> Neps of low-energy dynamics is given by two Weyl equatidfs,
each of which represents the dynamics aroundkhgoint
L 1 1 andK’ point in the momentum space. The curvature in the
— = = . (11)  nanotube induces an effective gauge field in the Weyl
Cil A — ﬂf 4B _ m equations, and this gauge field gives the minigap of
@ 2V3n B, 2\s’§n 2(6V,—-6V,) through the AB effect. When we apply the AB
flux (ngy <ng), the energy gap of one mode opens, while that
In Fig. 3, we plotL/|C;| for n=30, taken as the largest di- of the other closes; therefore, the energy gap closes as a total
ameter for a SWCNT, and=51, taken as a shell in a mul- system. If further magnetic flugng >ng) is applied, some of
tiwalled carbon nanotub@WCNT). The curvature-induced the extended states become localized at the edges and their
energy gaps ar&g,,=7.4 meV and 2.6 meV, respectively, energy becomes zero, while other extended states open the
where we useV,=2.7 eV.ng is estimated as 7.1 T for gap again. Such zero-energy states cannot be obtained by
n=30 and 1.4 T fon=51. If we neglect the interlayer inter- solving the Weyl equations with a uniform energy gap in
action in a MWCNT, a zigzag SWCNT in a MWCNT is the periodic systems. Instead, it is known that by locally modu-
most suitable to examine the behavior of the critical statesating the energy gap, there appear localized states called
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Jackiw-Rebbi(JR) states'® The edge states in the nanotube typical length for the edge states. This energy should be com-
induced by the AB flux resemble the JR states, in that thepared with that of the extended states evaluated as
have zero energy and are localized; meanwhile, they are diEczeZ/LSyS where Lg is the system size. Since
ferent from ours because these edge states are induced by > Leqge the Coulomb energy, for the edge states is
uniform AB flux and not by a local modulation. We note that much bigger than that of the extended states, and it may
related states can appear when we introduce a local getinder localization. To lower this Coulomb charging energy,
metrical deformation in the nanotub®. the spins of the localized states at each edge will align
Throughout this paper, we have examined zigzag nanderromagnetically.

tubes having two Fujita’s edges_ Even for Zigzag nanotube.s In ad.dltlon to the edge StateS, the bulk Sta..tes can also have
with open edges, one can consider other cases with one §Heresting phenomena due to the AB flux in the SWCNTSs.
two edges being the Klein's edgélf one of the edges is the NamelyZ the AB_qux mduce_s a persistent current around the
Klein's edge and the other is the Fujita’s edge, there are stifub€ axis and gives an orbital magnetic momiérithe per-
localized states, whereas their properties are distinct from the/Stent current is Causi% by a splitting of the van Hove sin-
previous case for the two Fujita’s edges. Such a nanotube ¢ larities by the AB flu .'Qune recently, thi spht;[_mg Wafs h
be made by attaching sites at the right edge of the zigzag observed in semiconducting nanotubes as the splitting of the

g o, : first subband magnetoabsorption peakd also in small-
panom?g mNFlg. 1. The boundary condition for the right edgeoand—gap(not curvature relatgchanotubes as a temperature
iS e, =¢g. For the localized states we obtaé+0 and

. dependence of conductarft&@hese experiments were in-
J_(_~\J 40 J_ —
$p=(-0)"¢n, ¢5=0(J=0,... N). Thus, the localized states tended to observe that the AB flux can make an asymmetry

have exactlye=0 for every value ofj, and they have' ampli-  patween two energy bands composed of the extefioleit)

tude only on theA sublattice. Such states are localized near, 5\ e functions near the Fermi level. By means of doping in
the right(left) edge wherlg| > 1 (|g| <1). Furthermore, there o ition to the AB flux, an interference between many en-
are no transitions between the localized and extended statesygy band¥ takes place. This interference affects the mag-
even when we apply a magnetic field. Meanwhile, wigen netic and transport properties of the system, and it is helpful
passesg=+1, the Iozcallz_ed state witle=0 comes on the {5 get insight into the bulk electronic states.

critical boundary of«®=4 in Fig. 2a), and the corresponding | symmary, the Aharonov-Bohm effect of carbon nano-
localized state will move from the right edge to the left or ypes is suited to examining not only the bulk electrical prop-
vice versa and can be detected experimentally. On the othgjties, but also the properties, of the edge states. We point out
hand, when both edges are Klein's edges, the situation igyat there are two critical states in metallic, zigzag nano-
somewhat similar to the case with two Fujita’s edges. FOfpes. Although the critical states become extended due to
this case, the localized states are realized wigem 1 in- e cyrvature effect in the absence of magnetic field, the
steaq ofig| <1, and the AB flux induces a transition from the Aharonov-Bohm flux can make a transition from the ex-
localized to the extended states. tended states into the localized edge states. This transition

Similar phenomena are expected also in nanotubes Withan pe seen as a characteristic feature of conductance.
other chiral structures, except for armchair nanotubes. Na-

kadaet al. showed numerically that localized states appear K. S. acknowledges support from the 21st Century COE
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