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We have developed the electron-phonon matrix element in single-wall carbon nanotubes by using the
extended tight-binding model based on density functional theory. We calculate this matrix element to study the
electron-phonon coupling for the radial breathing mode (RBM) and the G-band A symmetry modes of single-
wall carbon nanotubes. Three well-defined family patterns are found in the RBM, longitudinal optical (LO)
mode and transverse optical (TO) mode. We find that among the RBM, LO, and TO modes, the LO mode has
the largest electron-phonon interaction. To study the electron-phonon coupling in the transport properties of
metallic nanotubes, we calculate the relaxation time and mean free path in armchair tubes. We find that the LO
mode, A mode, and one of the E| modes give rise to the dominant contributions to the electron inelastic
backscattering by phonons. Especially, the off-site deformation potential gives zero matrix elements for E|
modes while the on-site deformation potential gives rise to nonzero matrix elements for the two E| modes,
indicating that the on-site deformation potential plays an important role in explaining the experimentally

observed Raman mode around 2450 cm™! in carbon.
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I. INTRODUCTION

The physical properties of a single-wall carbon nanotube
(SWNT) are given by their cylindrical geometry denoted by
(n,m)." Single-wall metallic carbon nanotubes are known to
be conductors with mean free paths usually larger than one
micron.>? The use of semiconducting nanotubes as ballistic
field effect transistors, provides innovative devices competi-
tive in performance with silicon-based MOSFETs.*?

Ballistic transport is restricted to low bias regimes, where
the main origin of the resistivity is believed to be from in-
elastic scattering by acoustic phonons.>®-8 The scattering is
weak, resulting in a long mean free path at room tempera-
ture. At high bias, the mobility is dramatically reduced by
optical phonon emission, leading to interesting saturation
behaviors.’

From the measured I-V curves, the scattering length is
estimated to be €¢~10-18 nm for optical phonon
backscattering.”® The theoretical {,p varies within the range
10 to 200 nm.>%10-12

Transport experiments probe electron-phonon (el-ph)
scattering near the Fermi level. Fast optics experiments, on
the other hand, can probe the carrier lifetime far from the
Fermi level.'>!> Fast optics experiments on graphite found
that the carrier lifetime is shorter than 1 ps,14 which is con-
sistent with theoretical calculations.'® Curvature effects en-
hance the el-ph coupling and thus the experimentally ob-
served intraband lifetime in SWNTs is shorter than
0.1 ps.!31

Photoluminescence (PL) experiments'” provide another
tool to probe optically excited carrier relaxation processes in

1098-0121/2005/72(23)/235408(11)/$23.00

235408-1

PACS number(s): 78.67.—n, 78.40.—q, 78.30.—j

semiconducting nanotubes.!”-2° The PL intensity depends on
the nanotube diameter and chiral angle.'”?° Also, for type I
[mod(2n+m,3)=1] and type I [mod(2n+m,3)=2] semi-
conducting tubes, the PL intensity shows a different diameter
and chiral angle dependence,?® which is argued to be caused
by different phonon-assisted relaxation rates.?!-??

Raman spectroscopy has provided an alternative method
for studying vibrational properties of SWNTs.?>2* The opti-
cal I' and K point phonons are the phonons responsible for
the Raman G and G’ peaks in carbons, respectively.?* The
intensities of the Raman modes are determined by the el-ph
matrix elements.”>2 Recently, a very well pronounced quali-
tative effect has been observed in the Raman intensity from
the radial breathing mode (RBM) of carbon nanotubes.?’-?
The RBM Raman intensity shows a well-defined dependence
on tube type, diameter and chiral angle. This qualitative phe-
nomenon has been explained by numerical studies.?6-%2

The el-ph interaction plays an important role in transport
properties, fast optical spectroscopy, PL intensity, and Ra-
man spectroscopy in SWNTs. So far, we have developed the
el-ph interaction in SWNTs based on the tight-binding (TB)
approximation.'®18.2630 Compared with simple TB, the ex-
tended TB (ETB) model?3332 can describe well the curva-
ture effect, especially for small diameter nanotubes.’! The
ETB model utilizes the TB transfer and overlap integrals as
functions of the C-C interatomic distance calculated within a
density-functional theory (DFT) framework.?® The curvature
effect is included by extending the basis set to the atomic s,
Py Py, and p, orbitals that form the o and 7 molecular or-
bitals.

The el-ph matrix elements for I" point phonons can be
obtained from the shift of the electronic energy bands under
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deformation of the atomic structure corresponding to the
phonon pattern.>* Using the ETB,3?> Popov et al. calculated
the el-ph matrix elements for the RBM by this method.?*3
In this paper, we further develop the el-ph matrix elements
based on the ETB, which includes curvature and long-range
interactions. We use first-order perturbation theory, and the
el-ph matrix element is assumed to be the potential variation
due to a lattice vibration,'®!82630 by which the el-ph cou-
pling for a general q point phonon mode can be calculated.
We then apply the method to calculate the RBM, LO, and TO
mode matrix elements. Regular family patterns are found for
these three modes.

We also calculate the matrix elements near the Fermi level
of an armchair tube. We study the el-ph coupling for each
mode in detail and find that among the 61" and 6K phonon
modes, the LO, A|, and E| modes dominate el-ph coupling.
The el-ph interaction for LO and A| modes comes from the
off-site deformation potential, while that for E| modes comes
from the on-site deformation potential. The electron back-
scattering is mainly caused by the LO, A{, and one of the E|
modes. Because the on-site deformation potential gives rise
to nonzero el-ph coupling for E| modes, it should be consid-
ered in order to explain the experimentally observed Raman
peak around 2450 cm™! in graphite.3”-38

In Sec. II, we develop the el-ph matrix element expression
based on the ETB. In Sec. III, we show the off-site and
on-site deformation potential vectors. In Secs. IV and V, we
study the family patterns in the el-ph matrix elements in the
RBM and G band A symmetry modes, respectively. In Sec.
VI, the relaxation time and mean free path in armchair tubes
are calculated. Discussions and summary are given in Sec.
VII.

II. ELECTRON-PHONON MATRIX ELEMENT BASED ON
THE ETB

The Bloch wave function corresponding to the band index
a and wave vector k can be written in the form

W, (1) = FEcm(ak)Ee"“‘wﬁ”(r R,,), (1)

NIV, 5.0

where N, is the number of graphite unit cells, s=A and B,
and R, denotes the equilibrium atom position. ¢; , are the
atomic wave functions for the orbitals o=2s, 2p,, 2py, and
2p., respectively. The three orthogonal 2p orbitals 2p,, 2p,,
and 2p, for a carbon at site R, ; are chosen to be tangential to
the tube sidewall, along the tube axis, and along the radial
direction, respectively. The atomic wave functions are se-
lected as real functions. For SWNTs, k=uK,+kK, with u
=1,2,...,N and —7/T<k<w/T. Here K, and K, are, re-
spectively, the reciprocal lattice vectors along the circumfer-
ential and axial directions, 7" and N are, respectively, the 1D
translational vector and the number of hexagons in the 1D
nanotube unit cell.! Hereafter, we define = (u,s) for conve-
nience.
The Hamiltonian for a SWNT can be written as
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ﬁZ
H=-—V*+V, (2)
2m
with
V=2 v(r-R), 3)
Rr

where the first and second terms in Eq. (2) are, respectively,
the kinetic and potential energies and v in Eq. (3) is the
Kohn-Sham potential of a neutral pseudoatom.*

The matrix element for the potential energy between two

states V;=W,, and V=W, s is

1 «
- E 2 Csr‘()/(a”k’)cs,o(a7k)

1o
L{SOA()

X 2 2 K Rk Rudin (1 o' 1,0),

u

<\Ira 'k’ (l‘) | V| \Pa,k(r» =

’
u

(4)

with the atomic matrix element given by

"

f by (xR, )(Ev(r—R,">>¢s,a<r—Rf)dr. (5)

t

As usual, one can neglect several contributions to the
atomic matrix element m.3* By keeping only two-center
atomic matrix elements (Ry=R,, or Ry=R,, or R,=R,/),
Eq. (5) becomes

m=m,+m,, (6)

with off-site and on-site matrix elements m, and m,,

me= j d’s’,o’(r - R,r){U(l' - Rt') +u(r- R,)}

X ¢s,o(r - R,)dl‘,

M=k v, J ¢.gr,,,f<r—Rﬂ>< S v(r—R,n)>
R #R,

X ¢byr o(r—R,)dr. (7

A periodic displacement of atoms around the equilibrium
sites gives rise to the el-ph interaction. The potential varia-
tion due to a lattice vibration is given by

V= v[r- R,-S(R)]-v(r-R,)
Rt

x—z Vu(r-R)-S(R), (8)

R,

where S(R,) is the site position deviation from the equilib-
rium site R, caused by a vibration. Under first-order pertur-
bation theory, the el-ph matrix element is defined as'6:18:26:30
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Ma,k—»a',k' = <"Pa’,k’(r)| 5V|\I,a,k(r)>

1 .
== > 2C,(a' K)C, (a.k)

’ ’
ugl o' 5,0

% 2 ei(_k,'Ru’,s""k'Ru,x)ﬁm(["0”1"0)’ (9)

’
u'u

where om(t’,0',t,0) is the atomic deformation potential.
Similar to Eq. (6), dm can also be separated into two parts,

om= 6m,+ omy, (10)

with the off-site and on-site deformation potential dm, and
om, given, respectively, by

o= [ e ROTole R ) SR,)

+Vou(r- R)- S(Rt)}(vbs,o(r -R))dr,

5]’}’1)\ = 5R,,Rtr f ¢s’,o'(r - Rt’)

><( > VU(I'—RW)'S(Rf"))¢s',a(l'—Rr')dl'-
R

t/r#Rt/
(11)

In the Slater-Koster scheme to construct the tight-binding
Hamiltonian matrix elements between two carbon atoms,>?
the carbon 2p orbitals are chosen to be along or perpendicu-
lar to the bond connecting the two atoms. The four funda-
mental hopping and overlap integrals are (ss), (so), (o0),
and (7). We follow the same way to construct the defor-
mation potential matrix elements {$|Vv|p). We introduce the
matrix elements,

a,(7) = f $u(r) Vu(r) p,(r - dr = a,(Dl(a,),

Ny(7) = f Bu(r) Vu(r = e, (r)dr =\,(DI(N,), (12)

where i(ap) and i()\,,) are unit vectors describing the direc-
tion of the off-site and on-site deformation potential vectors
a, and N, respectively,®® and p=puv. The 2p orbital ¢,(¢b,)
is along or perpendicular to the bond connecting the two
atoms and 7 is the distance between the two atoms. From the
matrix element &p, we can deduce another matrix element,

B,(7) = f $u(r) Vu(r = 1) (r — Ddr

=f $,(r) Vo(r) ¢, (r + D)dr = B,(DI(B,). (13)

By projecting the 2p,, 2p,, and 2p_ orbitals on R, and R,/
sites along or perpendicular to the direction connecting these
two sites and using the matrix elements defined in Eqgs. (12)
and (13), the atomic deformation potential in Eq. (11) can be
written as
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= (2 oo (IR, - Rﬂ|>) ‘S(R,)

p

¥ (E X B[R, - RA)) 'SR,

p

oy =S m, > (2 XMl [Ro =Ry ]) - S(R),

Ry#Ry p
(14)

where X"O 1, 18 the coefficient to project the orbitals o’ and o
onto the orbitals used in the Slater-Koster scheme to con-
struct the deformation potential matrix elements Egs. (12)
and (13). The vibration S(R,) for the phonon mode (v,q) is

S(R) = A, (@), (q)e"(R,) e, (15)

Here = is for phonon emission (+) and absorption (—), re-
spectively, and A, 77, e, and w are the phonon amplitude,
number, eigenvector, and frequency, respectively.

At equilibrium, the phonon number in Eq. (15) is deter-
mined by the Bose-Einstein distribution function #,

1
nv(q) = eﬁw/kBT_ 1 (16)

Here T is the lattice temperature and kp is the Boltzmann
constant. For phonon emission, the phonon number is 7=n
+1 and for phonon absorption, it is 7=n.

The amplitude of the phonon vibration is

h
A(q) = \/m, (17)

u

and the phonon eigenvector e”(R,) is given by
e"(R,,) = e RusU(g)eg(s). (18)

Here U is the rotation from an s atom in a graphite unit cell
to an atom at a R, site, and e(s) is the phonon eigenvector
calculated by diagonalizing the N 6 X 6 dynamical matrices
for a SWNT.!18

In Eq. (9) we have not written out the phase factor
ellela’ K-l \yith €(q,k) and e(a’ ,k’) the initial and final
state energies. This phase factor when combined with the
phase factor for phonon vibration in Eq. (15) gives energy
conservation in an electron-phonon scattering process.

Substituting Eq. (15) into Eq. (14), the el-ph matrix ele-
ment from the (a,k) to (a’,Kk’) electronic state coupled by
the vth phonon is given by,

1 =
My i == TV D800 (19)
VN,
Here
» ﬁ 12 ,
Sak—a'k =\ ) Dyyar s (20)
14

with the matrix element D given by
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D’ (ak—a' k)= Ec;AaszxamE(E 2,

u,s \ p

[’(|Ru,s - rS’D) . e;’—k(Ru,x)e_i(k kry

!
s',s

+ (E )dj'uéquu,s - rs’|)> ' e]’:’_k(Ru,s)i| P
P

and

DZ,k—?(l',kl = E D:_ﬂ)l(a’k - a,’k,)7 (22)

’
[

where r =R ;s is the equilibrium position for atom s’ in a
graphite unit cell and R, # /. In the derivation of Eq. (21),
the summation over u’,

1 _—
L) )

!
Llu

gives momentum conservation q=k’ —k.
The matrix elements are given by an inner product of the

atomic deformation potential vectors (@, B, and ¥) and the
phonon eigenvectors. An important thing to note is that we
need to take a summation over R, ;, which is a neighbor site
of an A or B atom in the graphite unit cell. From the followed
Sec. III, we will see that the atomic deformation potential [
a(r), B(r), and ¥(r)] can extend to several A. Thus, in the
calculation, we need to consider up to several nearest neigh-
bors.

III. DEFORMATION POTENTIAL VECTORS

There are nine nonzero deformation potential vectors a,
which are shown in Fig. 1. Among them, the vectors in Figs.
1(1)—(5) are along the bond connecting the two orbitals. The
other four vectors in Fig. 1(6)—(9) are the deformation poten-
tial matrix elements with a 7 orbital and have a direction
along the 7 orbital.

The corresponding nonzero potential vectors ,é,, are
shown in Fig. 2. From Fig. 1 and Fig. 2, it is easy to find the

(1)\ Oss (6)\ s Q
T - A& O
(2 Aso ) Olrs
AN N :O: A4
(ON Olo @) Olox O
@ Occ .

\/\r/

el

FIG. 1. The nine nonzero off-site deformation potential vectors
@,. The dashed curves represent the atomic potential.

ATy
5

+ 2 C:’,o’(al’k,)cs,o(a’k)z eik‘(R“_rS,)e_i(k,_k).rs,[(E Xﬁ'o&l’?qRu,s - rS'|)> ' e;’—k(rs’)
u P

21
|
following relationships between B,, and c?,,:
Bu== Gy Buo= s
Bos=Gsos Bog== oo
Brr==Grm Bin=d
Brs= Gy Byn=— e
Bro== Gy (24)

For on-site deformation potential vectors )tp, there are six
nonzero matrix elements, which are shown in Fig. 3. The
four vectors in Fig. 3(1)-(4) are along the bond direction
while the two vectors in Fig. 3(5)—(6) are perpendicular to
the bond and along the 7 orbital direction.

The RBM vibration is perpendicular to the nanotube side-
wall. Thus, the el-ph matrix element D,_,,, of the RBM by
the potential vectors in Fig. 1(6)—(9) and Fig. 3(5)-(6),
which are perpendicular to the bond, should be large.

The values of the matrix elements @, and \,, depend only
on interatomic distances. To make a self-consistent calcula-
tion of the deformation potential matrix elements, we use the
same atomic wave functions and Kohn-Sham potential as
those used in Ref. 33, which are calculated by density func-
tional theory.3® In Figs. 4 and 5, we show the matrix ele-
ments «, and N\, versus the two carbon-carbon interatomic
separation. Figures 4(a) and 5(a) are the matrix elements
with the corresponding vectors along the bond direction. Fig-

S Bes ®) Box

BSO’ ns
@ 5 g 83\1

® Bos ® Box -
@ B . © O 51“,'0' )

Q.
O O

FIG. 2. The nine nonzero off-site deformation potential vectors.

B, The dashed curves represent the atomic potential.
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FIG. 3. The six nonzero on-site deformation potential vectors
By The dashed curves represent the atomic potential. For Ay, Ay

N - two same orbitals are illustrated by shifting them with respect
to each other.

ures 4(b) and 5(b) show the matrix elements with the corre-
sponding vectors perpendicular to the bond direction. At r
=142 A, the bond length between a carbon and one of its
nearest neighbors, a,,~3.2eV/A and |\,,|=7.8eV/A.
The present a,, has a very similar value as that calculated
by using the 7 orbital wave function and the atomic potential
of a free carbon.'®!® However, the present |\,,| value has
been enhanced by about 1.1 eV/A from that by previous
methods.'®!3 It follows that in the framework of the ETB the
on-site deformation potential will play a more important role
in the el-ph coupling.

At r=142 A, |a,,| in Fig. 4(b) is about 24.9 eV/A,
which is approximately 7.8 times larger than «,, in Fig.
4(a). Thus, the o orbital will give a significant contribution
to the matrix element D,_,,, of the RBM.

0—0

IV. FAMILY PATTERNS OF ELECTRON-PHONON
MATRIX ELEMENTS IN THE RBM

We use the ETB model to calculate the electron wave
functions, when the curvature effect, long-rang interactions

1.0 T

)
sl \ @ 1 \ (b)
0.6 _ oSt s

\i1.42A

b, < AY
0.4 I\ ss _\Sn
02k

o<l
> -+
8 0.0 F T \\¥, ‘_ 07:?\
2 -02 -\\ /h’_-:
I NS ] /
041 oo T+ o
-0.6 L / OC 1 /
L ) ] /
-08 / T+ /
_1.0 I / 1 1 1 / I I

25 05 1 15 2 25 3
Interatomic distance (R)

0.5 1 15 2

FIG. 4. The dependence of the nine off-site deformation poten-
tial matrix elements a;, on interatomic distance. (a) The matrix el-
ements with the corresponding deformation potential vectors &p
along the bond of the two atoms. (b) The matrix elements with the
corresponding deformation potential vectors &p perpendicular to the
bond of the two atoms. The nearest-neighbor distance between two

carbon atoms is a._.=1.42 A.
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1.0 .
0.8 | (@ I (b)
06 1.42A T 1.42'&

— 04| 1

< 0.2

§ sn

Q oot - "‘g———————

x n

— _0.2 i 1

< oG

_1 B L .SS/ 1 1 1 n 1 1 1 n 1 1 1 1
1 15 2 25 05 1 15 2 25 3

Interatomic distance (A)

FIG. 5. The six on-site deformation potential matrix elements X,
as a function of interatomic distance. (a) The matrix elements with
the corresponding deformation potential vectors }:p along the bond
of the two atoms. (b) The matrix elements with the corresponding
deformation potential vectors ):p perpendicular to the bond of the
two atoms. The nearest-neighbor distance between two carbon at-
oms is a,_,=1.42 A

of o and 7 orbitals and the geometrical structure optimiza-
tion are all considered.>! We further use the carbon orbital
basis functions and the carbon Kohn-Sham potential by
DFT? to construct the deformation potential matrix ele-
ments. It is known that the ETB can well describe the family
behavior of the optical transition energy in SWNTSs of small
diameter.3! Here by using the el-ph matrix elements in the
ETB framework, we calculate the el-ph coupling for the
RBM and G band phonon modes. We find that regular family
patterns also exist in the matrix elements for the RBM, LO,
and TO modes.

For phonon modes appearing in first order Raman pro-
cesses, =0, the el-ph matrix element g defined in Eq. (20)
can be expressed as g=g.x .ck—&uk_vk With g.x .. and
8ux—vx the matrix elements for the conduction and valence
7 bands, respectively. We calculate the matrix elements for
the E;; transitions for nanotubes with diameters in the range
of 0.6 nm<d,<2.0 nm. Figures 6 and 7 show the matrix
element for the RBM for semiconducting tubes at E3, tran-
sitions. Here we show |g|, the magnitude of the matrix ele-
ment. We classify semiconducting nanotubes into two kinds,
i.e., the mod(2n+m,3)=1 type I (SI) and mod(2n+m,3)
=2 type II (SII) semiconducting nanotubes.?®3!40 Within a
specific type, we connect SWNTs with the same (n—m)
value (same family). Figures 6(a) and 7(a) are for SI tubes
while Figs. 6(b) and 7(b) are for SII tubes. Regular family
patterns are seen in both the |g| vs inverse of diameter (d,)
and |g| vs chiral angle (6) figures. Figures 8 and 9 show the
matrix elements for metallic tubes at £}/ transitions. For me-
tallic nanotubes, the trigonal warping effect in the energy
dispersion relation splits each van Hove singularity (vHS)
Ef‘f peak in the joint density of states into two peaks (E?{’L and
E?;IH, denoting the lower and higher energy peaks).*! Figures
8(a) and 9(a) are for Ef'l/’L transitions and Figs. 8(b) and 9(b)
are for E, transitions. The family patterns are also observed
in Figs. 8 and 9.

235408-5



JIANG et al.

0.3

(@) 2 o

02 b 14 g0 5

Igl [eV]
=
Y

o
01 BF o &

0
0.5 1 1.5

FIG. 6. Family patterns in the el-ph matrix element vs inverse of
diameter at Egz transitions for the RBM, (a) SI and (b) SII tubes.
The family numbers for n—m are shown in the figures.

We should mention that in the present approximation, the
contribution from a,,, to 8p—p, (gl’ﬁl’x) and 8p,—p, (gpﬁpy)
is found to be overestimated, by comparing the contribution
from a,, to 8p.—p.: To get comparable values to those ob-
tained by ab initio method for several nanotubes,?’ in the
calculations of the data shown in Figs. 6-9, this contribution
has been multipled by a factor 0.8.

V. FAMILY PATTERNS OF ELECTRON-PHONON MATRIX
ELEMENTS IN G BAND A SYMMETRY MODES

The matrix elements |g| for the LO mode for semicon-
ducting tubes at E3, transitions are shown in Fig. 10, which
shows different family patterns than the RBM. For the RBM,
|g| decreases with d, for both SI and SII tubes. For the LO
mode |g| decreases and increases with d, for SI and SII tubes.
Also, g| decreases and increases with 6 for SI and SII tubes.
We note that the values of |g| in Fig. 10 are distributed in a

0.3
s (@) (b)
\\\@8
s 11 N 95
~ \® \
02 ’\:\@ NS T 10‘\\
— N B N
> le @ hq\ N b e, S
2, Poa e g ] S Q:‘ ’\eo\\\s N7
—_ s\)\qe\c‘ Wk % 3 ey ]
S 20 ° Opas SR Sper
= oo O O 19 TesRy R
01 r 147 "o Q T 16%%h >3
5 ¢ < 5
a2 13 D%é T
M@ Q=
4%%
0 1 1 1 1
0 10 20 0 10 20 30
0 [degree] 0 [degree]

FIG. 7. Family patterns in the el-ph matrix element vs chiral
angle at Egz transitions for the RBM, (a) SI and (b) SII tubes. The
family numbers for n—m are shown in the figures.
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FIG. 8. Family patterns in the el-ph matrix element vs inverse of
diameter at EII'/II transitions for the RBM of metallic tubes, (a) Eﬁ I
and (b) E . The family numbers for n—m are shown in the figures.

narrow range around a nonzero value, while |g| in the RBM
are distributed from zero (or close to zero) to a nonzero
value, indicating that the matrix element for the LO mode
has less d, and @ dependence than that for the RBM mode.
The reason is that the matrix element for the LO mode is
related to that for the G band of graphite in the limit of
1/d,=0. For the LO mode, g has an opposite sign for vHSs
on the two sides of the BZ.?6 Figure 10(b) shows that |g|
tends to be the same for two VHSs on the two different side
of the BZ around a K point. For an armchair tube, there are
two VHSs on the two sides of the BZ for a Ej; transition. The
el-ph matrix elements for these two vHSs have opposite val-
ues. It follows that the Raman intensity contributions from
these two VHSs cancel each other perfectly and the Raman
intensity for the LO mode becomes zero.

Figures 11 and 12 show the matrix element |g| for the TO
mode for the E3, transition. For the RBM and LO modes, g
has an opposite sign for vHSs on the two sides of the BZ
(Ref. 26) and thus we show |g| rather than g. For the TO
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FIG. 9. Family patterns in the el-ph matrix element vs chiral
angle at E}} transitions for the RBM of metallic tubes, (a) E}!, and
(b) EM,,. The family numbers for n—m are shown in the figures.
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FIG. 10. The family patterns in the el-ph matrix element at E§2
transitions for the LO mode, (a) the matrix element vs inverse of
diameter and (b) the matrix element vs chiral angle. The family
numbers for n—m are shown in the figures.

mode, g has the same sign for vHSs on the two sides of the
BZ.2° Thus in Figs. 11 and 12 we show g. Unlike the RBM
and LO modes, where the matrix elements show different
family patterns for SI and SII tubes, g for the TO mode has
very similar family patterns for SI and SII tubes.

In the first order Raman excitation profiles, both the peak
intensity and linewidth are proportional to |g|>. The family
patterns in the el-ph matrix elements thus bring similar fam-
ily patterns in the Raman intensity and linewidth. By consid-
ering that the measured Raman intensity is also dependent on
the (n,m) sample population, the family patterns in the Ra-
man intensity can be used to characterize the sample popu-
lation. By measuring the fully resonant Raman intensity for
each specific nanotube in the sample, and correcting for the
calculated (n,m) dependent Raman cross section,”® the
amount of each specie in the sample is obtained.*> The line-
width does not depend on the sample population but is sen-
sitive to the environment. However, for suspended nanotubes
in the ideal case, the linewidth should become intrinsic.

0.2

() (b) 4

gleV]

2

FIG. 11. The family patterns in the el-ph matrix element vs
inverse of diameter at E3, transitions for the TO mode, (a) SI and
(b) SII tubes. The family numbers for n—m are shown in the figures.
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FIG. 12. The family patterns in the el-ph matrix element vs
chiral angle at E§2 transitions for the TO mode, (a) SI and (b) SII
tubes. The family numbers for n—m are shown in the figures.

Therefore, the family patterns in the linewidth of the sus-
pended nanotubes can directly be used to characterize (n,m)
species.

From Figs. 6-12, it is seen that the matrix elements for
the LO mode are generally larger than those for the RBM
and TO modes. The result that the LO mode has larger ma-
trix elements than the RBM and TO modes can explain the
experimental observations that generally the Raman intensity
for the LO mode is larger than that for the RBM and TO
modes. For suspended tube samples, the Raman intensity of
the RBM can exceed that of the LO mode. The reasons are as
follows. For a usual SWNT sample, e.g., a sodium dodecyl
sulfate wrapped SWNT sample, the intensity linewidth has
similar values for the RBM and LO modes due to an envi-
ronmental effect. The LO mode has a larger el-ph matrix
element and thus a larger Raman intensity. For a suspended
sample, the linewidth should become intrinsic and is propor-
tional to |g|>. The RBM has a smaller |g| value and thus a
smaller linewidth. Therefore, even though the RBM has a
smaller el-ph matrix element, it can have a larger intensity
due to its smaller linewidth.

We note that the d, and 6 dependences of the el-ph matrix
element shown in Figs. 612 are generally consistent with
those obtained by the simple TB model.?® However, the de-
tailed family patterns by these two methods are different to
some extent. Moreover, it is worth to point out that in Fig. 7,
g for family n—m=1 has an opposite sign than g for other
families, indicating the existence of a node around the tubes
with family numbers 1 and 4, which is consistent with the
prediction by the simple TB model. The existence of a node
in SIT tubes at the E5, transition has been confirmed by
experiment.*3

VI. RELAXATION TIME AND MEAN FREE PATH IN
ARMCHAIR TUBES

Equation (21) indicates that the el-ph matrix element is
sensitive to the phonon eigenvector. In the literature there are
several sets of phonon dispersion theories for graphite and
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FIG. 13. The electron-phonon scattering processes near the
Fermi level (the K and K’ points) of an armchair tube. The pro-
cesses 1 and 2 are the intravalley forward and backward scattering,
respectively, and the corresponding phonons are around the I" point.
The processes 3 and 4 are the intervalley forward and backward
scattering, respectively, and the corresponding phonons are around
the K point.

the phonon dispersion obtained from these theories are dif-
ferent from one another.** The phonon theories for SWNTs,
which are generally based on the phonon theory for graphite
by including the curvature effect, are thus also different from
each other. As a result, for a general q point in the 2D BZ of
graphite, the phonon eigenvectors obtained by these theories
are different from each other. For high symmetry q points,
the phonon eigenvectors are determined only by symmetry,
which is independent of which phonon dispersion theory is
used. Therefore, for these high symmetry q points, we can
study the el-ph interaction, which is independent of the pho-
non dispersion theory that is used.

PHYSICAL REVIEW B 72, 235408 (2005)

The optical phonons at the I" and K points are the phonons
responsible for the Raman G and G’ peaks in carbon. In
graphite, there are six I" phonons, i.e., the out-of-plane trans-
verse acoustic (0TA), longitudinal acoustic (LA), in-plane
transverse acoustic (iTA), out-of-plane transverse optical
(0TO), in-plane TO (iTO), and longitudinal optical (LO)
modes listed in order of increasing phonon frequency.! There
are also 6K point phonons, i.e., a twofold degenerate Eé, a
Aj, a twofold degenerate E|, and a A| mode, again listed in
order of increasing phonon frequency.*

When we turn to SWNTs, the cutting line*® for metallic
bands of an armchair tube passes through the edge KK’ of
the 2D BZ shown in Fig. 13. Near the Fermi level there are
four kinds of electron-phonon scattering processes. The pho-
non modes for intravalley forward and backward scattering
(processes 1 and 2 in Fig. 13) are those around the I' point
modes. The phonon modes for intervalley forward and back-
ward scattering (processes 3 and 4 in Fig. 13) are those
around the K point modes. Therefore, for electron-phonon
scattering near the Fermi level, we have six I" point modes,
i.e., LA, twisting (TW), RBM, oTO, TO, and LO, and six K
point modes, i.e., 2E;, A}, 2E], and A|. For armchair tubes
the two degenerate £’ modes are split in frequency due to the
curvature effect. Here we still use E’ to label these two
modes for convenience. These 12 phonon modes are around
the I" or K point and are on the high symmetry line I'K. It
follows that the eigenvectors for these modes are not sensi-
tive to the phonon dispersion theories. Moreover, the el-ph
coupling near the Fermi level is not sensitive to the initial
state since the electrons near the Fermi level have approxi-
mately the same wave functions.

In Table I we list the el-ph coupling strength (|D|), relax-
ation time (7) and mean free path (€) of a (10,10) tube for
each mode for electrons with an initial state energy 0.25 eV
above the Fermi level. The phonon frequencies for the modes
near the I' and K points are also listed. From Eq. (20), we
know that g and D are the matrix elements normalized and

TABLE 1. The el-ph coupling strength |D|, relaxation time 7, and mean free path € for each mode near the Fermi level of a (10,10) tube.
The wavevector ¢ used to express |D| for the TW mode is in units of A~

Forward Backward

Mode Freq. (cm™) |D| (eV/A) 7 (ps) £ (nm) |D| (eV/A) 7 (ps) £ (nm)
LA 0 0 0 0 0

™ 0 0 0 2.462q 2.14 1812.2
RBM 187.10 1.53 0.56 469.9 0 0

oTO 889.85 0 0 9.94 1.25 8354.1
iTO 1591.51 7.17 0.56 470.1 0 0

LO 1595.51 0 0 6.66 0.65 546.8
Ej(1) 527.69 1.91 1.57 1320.0 0 0
E(2) 545.47 0 0 0.95 8.72 7326.6
A 088.82 0.48 39.6 33267.3 0 0
E|(1) 1231.76 11.22 0.18 154.6 0 0
E|(2) 1249.52 0 0 10.82 0.20 165.6
A| 1368.88 0 0 9.94 0.27 228.2
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not normalized with the phonon energy, respectivelty. To
show the el-ph coupling strength that is independent on the
phonon dispersion, in this section we show the magnitude of
the matrix element |D| rather than |g|. For a given energy,
there are two initial states around a K point with one on the
line I'K and the other on the line KM. The el-ph matrix
elements around a K point are sensitive to the electron
wavevector. The matrix element on the I'K line may have a
quite different value than that on the KM line, as we have
seen from the RBM el-ph matrix elements for SI and SII
tubes shown in Figs. 6-9. In Table I |D| is the averaged value
for the two points on the 'K and KM lines, i.e., D|
=(|D|rgx+|D|gp)/2. The matrix element |D| have similar val-
ues for emission and absorption processes. In Table I we only
show |D| for emission processes.

We calculate the relaxation time by the Fermi Golden
rule, 1618

27
1/r=—n|M|p, (25)
h
where p is the density of states for the final states. For back
scattering,

p=NS/md v, (26)

with S the area of a 2D graphite unit cell'®!3

electron velocity near the Fermi level.

Table I indicates that for acoustic phonon modes, the
el-ph coupling for back scattering mainly comes from the
TW mode, which is consistent in the result by Ref. 7. The
resulting mean free path can be longer than 1 um, which
agrees with the transport measurements on SWNTs with low
bias voltage.??

For the TW mode, with ¢ — 0, both the matrix element D
and the phonon energy % wry tend to be linear functions of ¢,
i.e., D=7q and Aiwrw=crwqg. The phonon number can be
approximated by’

and vy the

n+1=n=kTlhwpy. (27)

Substituting Egs. (26) and (27) into Eq. (25), we obtain an
expression for the relaxation time of the TW mode,

1/7=4S pkTImv pcryd,. (28)

Here 7 is a constant (=2.462) describing the el-ph coupling
(|D|=nq) for the TW mode. The mean free path can be ob-
tained from 7 by [=vp7. By neglecting the weak diameter
dependence of 7 and ctw, we get a simple expression for the
scattering length for metallic tubes in the low bias range,

Crw =400.46 X 10°d,/T, (29)

where €1y is in units of nm. A similar expression is given in
Ref. 7 with an approximated coefficient 565.49 X 10° larger
than 400.46 X 10 shown here.

For high energy phonon modes, the el-ph coupling of
back scattering is dominated by the LO, A| and one of the E|
modes. The resulting mean free path for a (10,10) tube is
about 76.6 nm, which agrees with that reported by other
calculations.>®!%!1 The values of the el-ph matrix elements
ID| for the LO and A] modes are about 6.66 eV/A and

PHYSICAL REVIEW B 72, 235408 (2005)

9.94 eV/A, respectively, which agrees well with those ob-
tained by recent ab initio calculations, which give
6.75 eV/A and 9.58 eV/A.!%47 Moreover, we find that one
of the E| modes can have a large backscattering el-ph cou-
pling, which has not been reported before. This el-ph cou-
pling comes from the on-site deformation potential.

For high energy phonon modes, the phonon number at
thermal equilibrium for absorption and emission processes is
approximately zero and 1, respectively. Thus, the relaxation
time and mean free path are independent of the temperature.
The relaxation time for optical phonon modes at thermal
equilibrium is given by

2
1/7=—|M|p, (30)

h
and for back scattering p is expressed by Eq. (26). By ne-
glecting the weak diameter dependence of the el-ph matrix
elements |D| for the high-energy phonon modes, we get an
expression for the scattering length for metallic tubes in the
high bias range,

€,,=56.4d,, (31)

where €, is in units of nm. A similar expression is given in
Ref. 10 but with a coefficient 65 larger than 56.4 shown here.
The transport measurements on metallic tubes with high bias
voltage show a smaller value (18—20 nm) than that given in
Eq. (31).2° It was argued that during high-bias electron trans-
port, the phonons are not in thermal equilbrium and a non-
equilibrium phonon occupation is formed, i.e., the phonon
number is 7> 1, and this large value reduces the mean free
path.'0

Among the 12 modes, the LO, A} and E| modes have the
largest el-ph coupling. The el-ph coupling for the LO and A]
mode comes from the off-site deformation potential, while
that for the E| modes comes from the on-site deformation
potential. As we have mentioned, K point phonons are re-
sponsible for the Raman G’ peaks. The G’ feature observed
around 2700 cm™! in graphite and SWNT is well known. The
G’ feature has two peaks for 3D graphite, but both are
around 2700 cm™!. The A{ mode, which has the highest fre-
quency among the six K phonon modes is expected to con-
tribute to the Raman peak around 2700 cm™!. Around the
G'-band region of graphite and carbon nanotubes, in addition
to the prominent band around 2700 cm™!, a weak band
around 2450 cm™' has also been found.3”-*® This band was
assigned as a combination of two modes in Ref. 38. How-
ever, in Ref. 37, it was argued that the weak band comes
from the same branch responsible for the G’ phonon around
K. In both assignments, at least one E] mode around K point
is involved. Thus, the on-site deformation potential, which
introduces nonzero el-ph coupling for E| modes, should be
important in explaining the experimentally observed
2450 cm™' Raman peak.

VII. DISCUSSIONS AND SUMMARY

In the present paper, we have developed the el-ph matrix
element by considering s, o, and 7 orbitals. We find that the
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o orbital mainly affects the el-ph coupling for the RBM and
the out-of-plane TO mode, where the vibrations are perpen-
dicular to the tube surface and the curvature effect becomes
important. For other phonon modes, the el-ph matrix element
based on the Hamiltonian considering only the 7 orbital pro-
vides a good approximation for the el-ph coupling. For this
case, the el-ph coupling Eq. (22) is dramatically simplified,

D’ = (E C'a' K)Cy(ak)

ak—a’ k'

X E )\(|Rus —Iy |)e£’_k(Ru,S)

u,s

X2 C,(a' k)C(a.k) + > al|R,  ~1y))

’
s'.s u

X{eﬂ’—k(Ru,.Y)e_i(kLk)mj, - eE’—k(S,)})

Ru,s — Iy

S — 32
|Ru,s_ Iy ( )

where N and « are the matrix elements for (), and R,
# rgr.

The RBM is a special mode in SWNTs with regard to the
curvature effect. The electronic wavefunction of the 7 band
has a dominant component for the 7 orbital and has only a
small component for the o orbital. However, as we have

mentioned above, a,, and ):m are both along the bond di-
rection and thus they have only a small component perpen-
dicular to the tube sidewall. a,,,, on the other hand, is per-
pendicular to the bond direction and |a,,| has a larger value
than a,, (or |\,.|) at r=1.42 A. Thus, a,, can have a large
component perpendicular to the tube surface. The contribu-
tion to the el-ph matrix element g,_,,» of the RBM from the
o orbital by the deformation potential «.,, is then expected
to be sufficiently large. However, it is interesting to find that
the contribution to g, _,, from a,, is canceled to some ex-
tent by the contribution to 8p . (gpﬁpx) and g, ., (gl’ﬁpv)
from a,,. Fig. 14 shows |g| as a function of 6 by considering
only the 7 orbital. Comparing Fig. 14 with Fig. 7, it is seen
that 7r orbital model can approximately describe the family
patterns in RBM. The reason is that the curvature effect is
partial canceled by the two different contributions mentioned
above. However, the o orbital effect can also be seen. For
example, the o orbital enhances the |g| value for both SI and
SII tubes and it also modifies the family patterns, especially
for SII tubes.
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FIG. 14. The el-ph matrix element for the Egz transition for the
RBM by considering only the 7r orbital for (a) ST and (b) SII tubes.
The family numbers for n—m are shown in the figures.

In summary, we have calculated the el-ph coupling for
SWNTs in the framework of the ETB. The el-ph matrix ele-
ments for the RBM and G band modes show nice family
patterns. The backscattering mean free path obtained for
armchair tubes agrees with the transport measurements on
metallic tubes in the low and high bias voltage ranges and is
also consistent with other theoretical calculations.” In par-
ticular, we find that the on-site deformation potential, which
is usually not considered in the literature for optical phonons,
gives rise to a large el-ph coupling for two E| modes, with
one mode for forward scattering and another mode for back-
scattering. It follows that the on-site deformation potential is
important in describing both the transport properties of
SWNTs and the G’ Raman spectra in carbon.
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