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The electronic structure of coaxial, graphene double-layer tubules is predicted for various 
combinations of metallic and insulating constituent inner and outer monolayers, depending on 
the diameter and chirality of the tubule. For the examples chosen, some of the energy bands of 
the inner and outer tubules are coupled to each other by commensurate interlayer interactions. 
Nevertheless, because of symmetry, the energy bands of metallic monolayer tubules remain 
metallic even after interlayer interactions are considered. The possible implications of these 
results on molecular metal-insulator devices are discussed. 

I. INTRODUCTION II. MONOLAYER TUBULES 

It has recently been postulated’ and observed2*3 that 
graphene tubules can be formed with diameters compara- 
ble to those of fullerenes, some tublules being a single 
monolayer in thickness. The electronic structure calcula- 
tions of graphene monolayer tubules have predicted that 
both metallic and insulating monolayer tubules are possi- 
ble, depending on the tubule diameter and its chirality.“’ 
However transmission electron microscope experiments do 
not usually show monolayer graphene tubules but rather 
multilayer (e.g., two, five, and seven) coaxial tubules in a 
fiber structure like the annual rings of a tree.2 For these 
concentric tubules, some interlayer interactions may affect 
the energy bands near the Fermi level which are expected 
to have exotic electronic properties (e.g., ballistic transport 
and superconductivity), as are also observed in graphite 
intercalation compounds (GICs) .I0 Though a coaxial 
multitubule structure is generally expected to be lattice 
mismatched for most inner and outer tubules, some inter- 
layer correlations are expected. A general understanding of 
the electronic structure of multilayer tubules can be 
achieved by considering some simple cases. In this article 
we will present some calculated results for the electronic 
structure of graphene double-layer tubules, consisting of 
metal-metal, metal-insulator, and insulator-metal constit- 
uents. We conclude that almost all multilayer tubules are 
metallic if there is at least one metallic constituent mono- 
layer tubule. 

First let us summarize the major results for monolayer 
graphene tubules.s-’ The chirality and the radius of a 
monolayer graphene tubule are uniquely specified by the 
chiral vector ch=nlal+n2al- (n1,n2), where n1,n2 are in- 
tegers and a1,a2 are the unit cell basis vectors of graphite. 
The chiral vector ch is a circumferential lattice vector de- 
6ned on a tubule surface, and ch is perpendicular to the 
fiber axis. The fiber radius r is defined by r= 1 chl/27? 
=a Jmz/2rr where a = 1.42 >(fi A is the lattice 
constant for graphite and the angle between a, and a2 is 
60”. The chiral angle of a tubule, Ol==arctan{ -v%z2/(2nl 
+n2)}, is defined by the angle between ch and al. Since 
there are six definable angles for a tubule because of the 
hexagonal local structure, we select I81<30” or 
-4<~,<~,, (n,>O). 

The one-dimensional ( 1D) energy bands of a mono- 
layer graphene tubule are obtained from the two- 
dimensional (2D) energy dispersion relations for the r 
bands of graphite by eliminating one of the two compo- 
nents of the wave vector k according to the periodic bound- 
ary condition in the circumferential direction, 

In Sec. II we summarize the results of monolayer tu- 
bules. In Sec. III the electronic structure for some simple 
examples of metallic-metallic and metallic-insulating dou- 
ble layers are shown. In Sec. IV we discuss the stability of 
the Fermi surface for metallic, chiral tubules with respect 
to the interlayer interaction and discuss the implication of 
this work on electronic devices. 

Ch’k = h-m, (1) 

where m is an integer.5 If the k value at the energy degen- 
erate points of the 2D graphite rr bands satisfies this bound- 
ary condition for an m value, the corresponding 1D energy 
band is degenerate at the Fermi level and the. fiber is me- 
tallic with a finite density of states at E= Ep The condition 
for a monolayer graphene tubule to be metallic is expressed 
byC8 

2n1++=3q, 

where q in an integer. 

Ill. DOUBLE-LAYER TUBULES 
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Using these results for the graphene monolayer tu- 
bules, we design some graphene double layers in which we 
simply select two chiral vectors, (p,q) and (r,s), for the 
inner and outer tubules, respectively. Strictly speaking we 
should define some phase parameter which specifies the 
relative positions of the two chiral vectors. For simplicity, 
we do not consider this general situation, but instead we 

(2) 
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FIG. 1. Unit cells of double-layer tubules (shaded area) for (a) (5,5)- 
(10,lO) and (b) (9,0)-( 18,O) tubule pairs, respectively. The inner-tubule 
lattice structure (dotted line) is projected on the outer one (solid line). 

adjust the relative orientation of the tubules so as to match 
the carbon site locations on the inner and outer tubules as 
best we can for each pair of coaxial tubules. The differences 
in the radii of the two tubules are selected to be close to the 
layer-layer separation of turbostatic graphite, co= 3.44 
iLlI 

A. Commensurate metallic-metallic double-layer 
tubules 

We first consider the two best-matched, double-layer 
tubules, and these consist of two tubule pairs, (5,5)- 
( 10,lO) and (9,0)-( 18,0). All four monolayer constituent 
tubules are known to be metallic from Eq. (2). The inner 
monolayer tubules, (5,5) and (9,0), are both considered to 
be minimum diameter graphene tubules, since they can be 
generated from a hemisphere of Cbo whose radius (3.42 A) 
is close to co, the c-axis lattice constant of graphite.’ Thus 
the differences in radii between these monolayer tubules 
and their double-size tubules in both cases are close to co, 
too. Actually the differences in radius, as defined above, are 
3.39 and 3.52 A for the (5,5)-(10,lO) and (9,0)-(18,O) 
fibers pairs, respectively. It should be noted that there is a 
significant difference in the layer separation co between sin- 
gle crystal graphite with correlated layers (3.35 A) and 
turbostratic graphite with uncorrelated layers (3.44 A). 

In Fig. 1 we show unit cells (shaded area) for the 
double-layer tubules defined by (a) (5,5)-( lO,lO> and (b) 
(9,O) - ( 18,0), respectively. In order to see the relative po- 
sitions of atoms for the inner and outer tubules, the inner- 
tubule lattice structure (dashed lines) is projected on the 
outer one (solid lines) through enlargement by a factor of 
2 in the circumferential direction (x) while not enlarging 
the structure along the fiber axis direction (v). As seen in 
the figure, one of two carbon atoms in an inner graphene 
tubule can interact with one of four carbon atoms in the 
outer tubule. This stacking is similar to AB stacking in 
graphite. to We adopt the interlayer interaction of three- 

dimensional (3D) graphite denoted by y1 (Ref. 10) for 
carbon atoms on adjacent tubules, and do not consider any 
other interactions for simplicity. Actually we would expect 
the interlayer interaction to be less for the tubules in com- 
parison to graphite, since the interlayer separation is 
greater for the tubules and some hybridization due to the 
curvature occurs. 

The energy bands are here calculated by a simple tight 
binding model for rr bands in which we consider only 
nearest-neighbor interactions within a graphene layer, and 
use the same values for the intralayer and interlayer inter- 
actions as for 3D graphite, yo=3.13 and y,=O.35 eV, re- 
spectively. We solve the 2D energy band calculation for 
twelve carbon atoms in each unit cell by substituting the 
discrete k, values for the periodic boundary conditions for 
each tubule to obtain 1D energy bands. Even for such a 
simple model, we can predict the energy bands near the 
Fermi energy quite well, as is also the case for GICS.‘~~‘~ 
Since the energy dispersion relations have electron-hole 
symmetry, we always have -E eigenvalues whenever we 
have +E eigenvalues. Thus we show in the figures of this 
article explicitly only E > 0 (antibonding energy bands) for 
simplicity. Since the Fermi energy for these bands is lo- 
cated at E=O, the energy gap is defined as twice the min- 
imum energy for energy bands having a minimum for E > 0 
and the system is metallic if the minimum energy is at 
E=O. 

In Fig. 2 we show the energy dispersion relations of 
pairs of tubules for (5,5)-( lO,lO> [for (a) and (b)] and 
(9,0) -( 18,O) [for (c) and (d)]. The interlayer interaction 
y1 as described above is introduced in Figs. 2(a) and 2(c). 
Also shown in Figs. 2(b) and 2(d) for comparison are the 
corresponding energy bands when y1 is set equal to zero. 
When the interlayer interaction between the double layers 
is not considered, the E(k) relations are just the overlay of 
the energy dispersion relations of the unperturbed inner 
and -outer. tubules as expected. For example, the energy 
dispersion, E ‘m (N,N) (k) for (N,N) armchair fibers can be 
expressed as5 

timN*N’(k) = fy .[ (y).cos if) 1*4 cos 

l/2 
+4cos2 .$ , i )I 

for 

(-$<k<i) ,- (m=O ,..., N-l), (3) 

where there are four different branches given by this equa: 
tion. Setting Ni, = 5 and Nout= 10 for inner and outer con- 
stituents of the (5,5)-( 10,lO) fiber, we can see thirty 
(eleven inequivalent) energy dispersion relations for E > 0 
as shown in Fig. 2(b) in which the m values for outer 
bout7-. ] and inner (min,... ) tubules and the * signs cor- 
respond, respectively, to the folded and unfolded energy 
bands appearing in {l f . ..} of Eq. (3). The folded and 
unfolded energy bands have different symmetries and 
therefore can cross without interacting. In the case of 
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FIG. 2. Energy dispersion relation for the tubule pairs (53)~( 10,lO) [(a) and (b)] and (9,0)-( 18,0) [(c) and (d)] in which the interlayer interaction 
y, is introduced in (a) and (c) and not in (b) and (d) for comparison. The numbers with [...I and (...) retlect m  values for E,(k) for the outer and 
inner tubules, respectively, and the =I= signs correspond to the folded and unfolded energy bands. 

yl=O, the integers mi, and mout are good quantum num- 
bers for specifying energy bands. The degeneracies in the 
dispersion relations come from two sources: ( 1) the m=p 
and m=(N-p) (p= 1 ,...,N-1) energy bands are degen- 
erate for each of the tubules, and (2) the energy bands 
with mi,,=p and mout=2p are degenerate for any p(p 
=O,.-.JVi,- 1) for the (iV,N)-(2N,2N) tubules. 

when y1 =0 [Fig. 2 (b)]. These levels are generally split 
into three levels: E=yO, yOYof r,/fl as shown in Fig. 2(a), 
when y1 is introduced. More precisely, the determinant of 
the 12x 12 Hamiltonian matrix (which does not ~depend 
on min) at the X point for a (5,5)-( 10,lO) tubule pair, can 
be factored as follows: 

When the interlayer interaction y1 is switched on, 
some energy dispersion relations are split by the interlayer 
interaction. Since the interlayer interaction for the (5,5)- 
( 10,lO) tubules has the full point group symmetry of the 
group DSd (and A Ig symmetry for the inner tubule) as 
shown in Fig. 1 (a), Min is a good quantum number for the 
twelve carbon atoms in the unit cell. We then solve the 
12x 12 Hamiltonian for min=0,...,4 to obtain sixty energy 
bands (thirty for E > 0). The energy bands with different 
mi,, can cross each other. The degeneracy of energy bands 
for all k points, which is 2 or 4 when y1 =0, becomes 1 or 
2 because of the DSd symmetry, though this is difficult to 
resolve from Fig. 2 (a) except for certain energy bands with 
stronger interactions. 

det(Z-EI) = (k- 1)3(e+ l)3(e3-e2-e-~e+l) 

X (e3-te2--e-de-l) =b, (4) 

in which e= E/y,-, and ,gl = y/y,,. Solving Fq. (4) assuming 
that g1 is small, we get the eigenvalues e= f 1 which are 
each triply degenerate for each .min, and e- * ( 1 --d/4), 
+ ( 1 +gl/v7!). Since gl =O. 11 in the present case, the d/4 
term can be neglected compared with 1 and thus we will 
obtain approximately the two branches E= fyo and the 
four branches E= f (y. f y,/VT) . 

For the (5,5)-( 10,lO) tubules, the energy bands at the 
X points (k&n-/a) are degenerate at E=O for any mi,, 

For general k points, the splitting of the energy bands 
for the (5,5 )-( 10,lO) tubules is significant only for energy 
bands with m=O while the splitting is seen for all energy 
bands near the X points as shown in Fig. 2(a). This can be 
explained by the symmetry of the interlayer interaction 
and that of the unperturbed wave function of the inner and 

496 J. Appl. Phys., Vol. 73, No. 2, 15 January 1993 Saito, Dresselhaus, and Dresselhaus 496 

Downloaded 17 Oct 2008 to 130.34.135.158. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



outer tubules when we assume the interlayer interaction to 
be a perturbation between the degenerate energy bands. 
The matrix elements of the interlayer interaction between 
energy bands of the inner and outer tubule becomes large 
when min=m,,, for any combination of the signs, as shown 
in Appendix A. Using the fact that the energy bands with 
mi,,=p and mout=2p are degenerate, we conclude that only 
m =0 energy bands of tubule pairs interact with each other 
within first order perturbation theory. The remaining split- 
tings of the energy bands predicted by group theory are a 
higher order perturbation between nondegenerate energy 
bands and the splitting is generally small. 

It is important to note that the (5,5)-( 10,lO) concen- 
tric armchair tubules are metallic even when the interlayer 
interaction is considered. This is simply because the wave 
functions of the valence and conduction bands which are 
degenerate at E-O, have the same components of carbon 
atoms on the inner (or outer) tubules with different sym- 
metries. Thus the coupling for the interlayer interaction 
vanishes at E=O. Thus the degenerate bands at E=O are 
not split by the interlayer interaction, though the energy 
bands with m =0 are split. This result is similar to the fact 
that energy bands for the second stage GIGS have a zero 
energy gap though the r band in general is split by the 
interlayer interaction.12 

For the (9,0)-( 18,0) concentric zigzag tubules, the sit- 
uation is similar to the case of’the (5,5)-( 10,lO) armchair 
tubules. The energy dispersion relations for the (iV,O) tu- 
bules without any interlayer interaction are also specified5 
by a quantum number m as 

E’NPo’(k)=fyO 1*4cos m [ (F) cos(y) 

( )I 
l/2 

+4cos2 y , 

for 

(m=O,...,N- I), (5) 

where there are four branches. In Fig. 2 (d) we list the m 
values and i sign for the folded and unfolded energy 
bands appearing in [l h...]..for the (9,0)-( 18,O) tubules 
without any interlayer interactions. When the interlayer 
interaction is turned on, the degenerate energy bands with 
%,,%,t - , -0 6 are split, for the same reason as that in the 
case of the (5,5)-( 10,lO) tubule pair. Similarly we can see 
in Fig. 2(c) anticrossings of the energy bands at some k 
points for the degenerate energy bands of the inner and 
outer tubules with min=m,,,. For general k points all four 
degenerate energy bands split up into a degeneracy of 2 by 
the interlayer interaction, since the interlayer interaction 
has the full point group symmetry of the group D9& 

Referring to Fig. 2(c), at the Fermi level, a zero- 
energy gap appears near the I’ point for the interacting 
(9,0)-( l&O) tubule pair. Thus the two cases shown in Fig. 
2 for double tubules consisting of two-metallic graphene 
tubules are predicted to be metallic. 

(a) 

k k 

HG. 3. Energy dispersion relations for (a) (9,0)-( 17.0) (metallic- 
insulating) and (b) (lO,O)-(18,O) ( insulating-metallic) tubules. 

B. Incommensurate metallic-insulating double tubules 

Next we consider double tubules whose diameter ratio 
for outer to inner tubules is not an integer. Usually the 
word “incommensurate” is used when the ratio of two 
different lattice constants is irrational. Since the number m 
for the periodicity in the circumferential direction is finite, 
the lattice structure is always commensurate by this defi- 
nition. Here “incommensurate” means that Ni” and Nout 
have no large common factor. For most large diameter 
tubules two adjacent tubules are generally expected to be 
incommensurate. Of special interest are the cases of 
semiconductor-metallic or metallic-semiconductor tubules, 
since we can consider them as a molecular conductive wire 
covered by an insulator or as a molecular capacitor in a 
memory device, respectively. 

Here we consider the tubule pairs (?,O)-( l-7,0) and 
(NW( 18,O) as examples of metal-insulator and 
insulator-metal graphene tubules referring to Eq. ( 1) . For 
both tubule pairs the differences inradii are 3.132 A (8.6% 
smaller than co). Though the lattice structure is not corre- 
lated because of the large difference in radius, we consider 
a local lattice matching between the inner and outer tu- 
bules to occur, just as we considered for the case of the 
(9,0)-( l&O) [see Fig. l(b)], where the carbon atoms of 
the inner and outer tubules have the same y coordinates in 
the direction of the iiber axis (y axis). The inter-layer in- 
teraction is considered only for atoms with the same y 
coordinate whose difference in atom positions in the cir- 
cumferential direction (x axis), Ax, is smaller than a/3, 
when the lattice of the inner tubule is projected onto that of 
the outer tubule. Though the minimum distance for two 
carbon atoms for different y coordinates a/2vT is’less than 
a/3, the inter-layer interactions between these atoms are not 
considered, consistent with our treatment in the previous 
section [Fig. 1 (b)]. The magnitude of the interlayer inter- 
action is taken as y1 exp( - 1 Ax 1 /a). The choice of the 
damping factor a in the exponential decay is motivated by 
the situation in graphite where the interlayer interacti0.n 
for carbon atoms separated by two layers quickly decreases 
with increasing distance, thereby justifying this choice of 
the damping factor. 

In Figs. 3 (a) and 3 (b), the energy dispersion relations 
are shown for (9,0)-( 17,0) and (lO,O)-(18,0) tubules 
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FIG. 4. Density of states of a (9,0)-( 18,O) tubule pair. 

pairs, respectively. Since there ‘is no common rotational 
symmetry operation between these double-layer tubules, all 
energy bands are nondegenerate when yi#O. The anti- 
crossing of the energy bands and the splitting of the energy 
bands for the inner and outer tubules can be seen in the 
figure. These effects are similar to those of commensurate 
tubules. In Fig. 3 (a) and 3(b) the energy bands have no 
energy gap at the Fermi energy. The energy bands near the 
Fermi energy originate from the metallic tubules (9,0) and 
(18,0), associated with the (9,0)-( 17,0) and the (lO,O)- 
( 18,O) tubule pairs, respectively. Since these energy bands 
are not degenerate with those from the other tubules which 
are insulating, the interlayer interaction does not act to 
open the energy gap, Thus it is concluded that the combi- 
nation of metallic and insulating graphene tubules retain 
the basic electronic properties of each constituent graphene 
monolayer tubule, even though the detailed energy disper- 
sion relations are affected by the interlayer interaction. 

Finally we show the density of states for the (9,0)- 
(18,0) metal-metal tubule pair in Fig. 4. The density of 
states of double layers is very singular, reflecting 1D van 
Hove singularities at the many anticrossings of energy 
bands, as shown in Fig. 2(c) due to the interlayer interac- 
tion. The broadened density of states of a double-layer 
tubule may perhaps be observed by scanning tunneling 
spectroscopy (STS) which is widely used for observing the 
local electronic structure of semiconductor surfaces. In 
STS experiments we can distinguish whether or not the 
observed fiber is metallic by measuring X/J V without ap- 
plying bias voltage V. By further changing V, we will get 
information on the density of states of the tubule, though 
the electric current is a function of the position of the tip. 
If we can measure the energies where singularities in the 
density of states occur with sufficient accuracy, we can 
then estimate the chiral vectors that we use for specifying 
the outermost tubules. Though getting similar information 
for the inner tubules will be more difficult, we can estimate 
the radius and chirality by observing the difference of the 
radii between the inner and outer tubules. 

When an alkali-metal atom dopant is introduced into 
these fibers and charge transfer from an alkali-metal atom 
to graphite occurs, a high density of states at the Fermi 
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level could be expected. In comparison to the case of 2D 
graphite for which a logarithmic singularity in the density 
of states appears at about 3 eV (E= yo) above the Fermi 
energy, the ID van Hove singularities appear at a much 
lower energy region near the Fermi level. Thus in the re- 
gion where the Fermi energy can be changed by alkali- 
metal doping, we can adjust the Fermi energy to coincide 
with a singular energy point in the density of states. 
Though it is difficult to change the charge transfer value of 
an alkali-metal atom, the singular energy position of the 
density of states can be changed by changing the fiber di- 
ameter and the chirality. Thus a more exotic behavior of 
the transport properties (e.g., ballistic transport) in such 
graphene tubules would be expected than is seen in GICs. 
Further the high density of states at the Fermi level for 
doped tubules might be favorable for the occurrence of 
superconductivity as is, for example, observed in the first 
stage GIC CsK.” 

IV. DlSCUSSlON 

Based on some of the simple examples shown in the 
previous section, we now discuss the case of multilayer 
tubules consisting of at least one metallic tubule. We 
showed in the previous section that the metallic energy 
bands are generally stable under the interlayer interaction 
between two graphene tubules. 

For a general fullerene-based fiber, a chiral structure is 
generally expected, especially for large diameter fibers, be- 
cause of the large number of chiral vectors that are possible 
with increasing ch. In a general two-layered chiral fiber, the 
two graphene tubules are expected to be incommensurate 
and they have only 2a rotational symmetry along the chi- 
ral vectors which are both perpendicular to the fiber axis. 
Thus the energy bands of the inner tubule are not degen- 
erate with those of the outer tubule. When we consider a 
metallic graphene tubule, the energy bands of the bonding 
and antibonding rr bands are degenerate at E=O and their 
symmetries are different from each other. To open an en- 
ergy gap at the degenerate points by the interlayer inter- 
action, it is necessary to have nonvanishing matrix ele- 
ments between the two energy bands. Since the interlayer 
interaction couples the energy bands for inner and outer 
tubules, the matrix elements should contain terms in at 
least second order in the perturbation, d. Therefore the 
lifting of the degeneracy is generally small even if there are 
nonvanishing matrix elements between the two degenerate 
energy bands. 

Further when we expand the incommensurate, inter- 
layer interaction in the direction of the chiral vector in a 
Fourier series, the matrix element, calculated using Bloch 
functions for the inner and-outer tubules, becomes small in 
almost all cases through a cancellation of the phase factors 
arising from the Bloch functions and the interaction 
Hamiltonian. Thus in general cases it is concluded that no 
energy gap will open for a metallic tubule in a general 
incommensurate chiral graphene tubule pair. For the same 
reason, insulator-insulator tubules do not become metallic 
by introducing only interlayer interaction. If the energy 
level position of carbon 2p, is different for inner and outer 
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EIG. 5. Energy gap of (N,O) zigzag tubules as a function of N. 

tubules, a semimetallic nature of the Fermi surface will be 
expected. In the case of the higher stage GICs, an inho- 
mogeneous c axis charge distribution of the carriers do- 
nated from alkali-metal layers causes a different potential 
energy for carbon 2 pz orbitals in inequivalent layers.” 
However in this case all layers are still metallic since there 
are no hole bands for the occupied TT bands. 

Metal-insulator-semiconductor devices can in principle 
be designed based on these carbon tubules. Since the me- 
tallic and insulating nature of the constituent monolayer 
tubules is expected to be preserved for triple layer graphene 
tubules, we can select a set of chiral graphene tubules 
whose differences in radii are close to cc. From the inner to 
outer tubules, there are two interesting possibilities for the 
molecular design of devices: metal-insulator- 
semiconductor and semiconductor-insulator-metal tu- 
bules. For the first case, if we can put alkali-metal atoms 
along the axis of the tubules, we can make a metallic tubule 
covered by an insulating one, and in the outermost tubules 
we can prepare narrow gap semiconductors since the en- 
ergy gap Egap decreases as -l/N with increasing N for 
(N,O) tubules. The dependence of Egap on N is obtained 
analytically from Eq. (5) by putting k=O and by selecting 
the m values corresponding to the minimum energy bands 
for E> 0 to yield, 

4..=24 1-2 COS( (N+;‘3T)] , 

where the symbol [Q] represent the Gauss’ symbol, that is, 
the maximum integer which is not larger than Q. If N is 
not a multiple of 3, the energy gap for a given N has a finite 
value. Values for Egap monotonically decrease with increas- 
ing N as shown in Fig. 5. For the semiconductor- 
insulator-metal case, some doping should be done to in- 
crease the conductivity of the innermost semiconductor 
tubule. Because of the cylindrical geometry of these struc- 
tures, the electric field for controlling the device will be 
larger than for planar devices and thus a shorter switching 
time would be expected. 

Since the electronic structure has uniaxial symmetry, it 
will be of interest to consider the magnetic response of the 
transport properties for magnetic fields in the direction of 
the fiber axis. Furthermore even for double-layer tubules, 

there is the possibility of changing the electronic structure 
by changing the relative positions of the inner and outer 
tubules, which control the amount of lattice matching. 

For the thickening of fullerene tubules, experimental 
results for vapor grown carbon fibers show that crystal 
growth of fullerene fibers takes place by accumulating car- 
bon species at pentagonal sites within the nucleating cap.r4 
In this sense we can make a super-tubule structure like a 
semiconductor superlattice structure, if we simply specify 
an innermost tubule which is grown by a nucleation cap. If 
the thickness, diameter, and chirality of such carbon fibers 
can be controlled during the growth process, new carbon 
physics will result and perhaps lead to the application of 
these structures to electronic devices. 

In summary we calculated the electronic structure of 
some double-layer graphene tubules and we show that be- 
cause of symmetry reasons, the interlayer interaction be- 
tween the layers does not affect the metallic nature of the 
constituent. The application of double- and triple-layer tu- 
bules for devices is discussed. 
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APPENDIX: THE MATRIX ELEMENT OF THE 
INTERLAYER INTERACTION 

Here we consider matrix elements for (N,N) -( 2N,2N) 
and (N,O)-(2N,O) tubule pairs. A 1D Bloch function, 
Yy (k,~), for a 2p, orbital, ~j, u= l,..., 12) in the unit cell 
of the tubule geometry (see Fig. 1) can be expressed by 

y jYkY) = f C eikY 3 eim+%$j(q2-q.2,,y- y), 
Y I=1 

(m=O,...,Nx- 1), (AlI 

where N, is the number denoting the periodicity in the 
circumferential direction and ql= 21rl/N, is an angle in the 
cylindrical coordinate system, and I is an integer between 1 
and NX Then a matrix element of the interlayer interac- 
tion, Xint, which couples the Bloch function of an inner 
tubule with that of an outer tubule, is obtained by 

=k ,C, e--i(k’Y’--ltY) lF: *$ ,i(-mout~p+min~/) 

In the best matched lattice structure as shown in Fig. 1, we 
need to consider the matrix element of atomic orbitals for 
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some combination of the j and j’th carbon atoms which 
satisfy CQ~ =qr and Y’ = Y. For such a set of j and j’, the 
matrix elements become 

=f 7 e--iW--k)Y 2 ei(-mm,ut+min)qq,l 
I=1 

=Sk,k’Sm,,t,minY1* (A3) 

Thus when mout=min, (mi,=O,...,N’,“-1) the matrix ele- 
ment between Bloch orbitals of carbon atoms for inner and 
outer tubules is large for any k. 
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