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Gauge dependence and matching procedure of a nonrelativistic QED-QCD
bound state formalism
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Department of Physics, Tohoku University, Sendai, 980-8578 Japan

~Received 25 October 1999; published 4 April 2000!

A nonrelativistic bound state formalism used in contemporary calculations is investigated. It is known that
the effective Hamiltonian of the bound state system depends on the choice of gauge. We obtain the transfor-
mation chargeQ of the Hamiltonian for an arbitrary infinitesimal change of gauge, by which gauge indepen-
dence of the mass spectrum and gauge dependences of the bound state wave functions are dictated. We give
formal arguments based on the BRST symmetry supplemented by power countings of Coulomb singularities of
diagrams. For illustration,~1! we calculateQ up to O(1/c) and ~2! we examine the gauge dependences of

diagrams for a decay of aqq̄ bound state up toO(1/c) and show that cumbersome gauge cancellations can be
circumvented by directly calculatingQ. As an application we point out that the present calculations of the top

quark momentum distribution in thet t̄ threshold region are gauge dependent. We also show the possibilities
for incorrect calculations of physical quantities of bound states when the on-shell matching procedure is
employed. We give a proof of a justification for the use of the equation of motion to simplify the form of a
local NRQCD Lagrangian. The formalism developed in this work will provide useful cross-checks in compu-
tations involving NRQED or NRQCD bound states.

PACS number~s!: 11.10.St, 12.20.Ds, 12.38.Aw
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I. INTRODUCTION

Recently there has been much progress in our theore
understanding of nonrelativistic QED and QCD~NRQED
and NRQCD! bound states such as positronium,Y, and rem-
nant of toponium bound states. Following the idea of non
ativistic effective field theory proposed by Caswell and L
page@1#, the formalisms necessary for precise description
these bound states have been developed significantly@2–11#.
At the same time there appeared many new calculation
higher order corrections to physical quantities of both
NRQED @12–14# and NRQCD bound states@15–24# ~bound
state mass, decay width, production and decay cross sect
etc.!. Despite these developments, a completely system
formulation necessary for computations of these phys
quantities in perturbative expansions has not been es
lished yet. Among the current technologies, the asympt
expansion of Feynman diagrams@8# seems to be the mos
suited for calculations of the physical quantities, in particu
for fixed-order calculations. In addition, effective field the
ries are powerful tools in order to sum up various large lo
rithms originating from the widely separated scales inher
in the problems. Efficiencies and correctness of various
fective theories are, however, still under debate.~See Refs.
@8,10# for discussions on the current status of the form
isms.!

A notable characteristic in these new developments is
the conventional Bethe-Salpeter equation is no longer be
used to calculate the spectrum and wave functions of bou
states. Instead, one starts from the nonrelativistic Sc¨-
dinger equation~of quantum mechanics! with the Coulomb
potential. Then one adds to the nonrelativistic Hamilton
relativistic corrections and radiative corrections as pertur
tions to obtain an effective Hamiltonian~quantum mechani-
cal operator! valid up to a necessary order of perturbati
expansion. Effective Hamiltonians used in these new form
0556-2821/2000/61~10!/105001~18!/$15.00 61 1050
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isms are known to be dependent on the choice of gauge
The purpose of this paper is to investigate gauge dep

dence of a nonrelativistic bound state formalism used in c
temporary calculations@3,14,16–20,23#, which is also
closely tied to the potential-NRQCD formalism@7#. Our mo-
tivations for the study are as follows.~I! In the present fron-
tier calculations of higher order corrections to physical qu
tities of bound states, often the Feynman gauge is use
calculate typically ultraviolet radiative corrections where
the Coulomb gauge is used to calculate corrections origi
ing typically from infrared regions. Although much care h
been taken to calculate consistently in each gauge separ
gauge independent subsets of the corrections, it is desir
to clarify gauge dependences of the formalisms actually u
in these calculations.~II ! We would like to find transforma-
tions of bound state wave functions when we change
gauge-fixing condition. We may apply these transformatio
to study various amplitudes involving bound states. Sinc
physical amplitude is gauge independent, once we know h
the wave function transforms, we know how other parts
the amplitude should transform to cancel gauge depende
as a whole. This would provide a useful cross check
identifying all the contributions that have to be taken in
account at a given order of perturbative expansion.

Already some time ago, gauge independence of the m
spectrum of the NRQED bound states was shown and s
ied in detail based on the Bethe-Salpeter formalism@25–27#:
Ref. @25# gave a brief discussion; Ref.@26# examined a Feyn-
man gauge calculation of the bound state spectrum at n
to-leading order very closely and showed that an infin
number of two-particle irreducible diagrams contribute
this gauge, which in the end all cancel due to fairly comp
cated gauge cancellations~This feature is much more com
plicated in comparison to the calculation in Coulom
gauge.!; Refs.@27# gave formal arguments as well as pertu
©2000 The American Physical Society01-1
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K. HASEBE AND Y. SUMINO PHYSICAL REVIEW D61 105001
bative analyses which apply to all orders of perturbation
ries.

In comparison to these earlier works, new achieveme
of the present work are the following.

We use the Becchi-Rouet-Stora-Tyutin~BRST! symmetry
to formulate our arguments, which allows us to treat both
NRQED and NRQCD bound states on an equal footing
particular we are able to discuss gauge dependence o
NRQCD bound state formalism rigorously using this sy
metry.

Presently, there exist several different definitions of
effective Hamiltonian beyond leading order. We introdu
an effective Hamiltonian defined naturally in the context
time-ordered~or ‘‘old-fashioned’’! perturbation theory of
QED-QCD. Then we obtain a transformation chargeQ
~quantum mechanical operator! such that the effective
Hamiltonian and the bound state wave function change a

dHeff~P0!5@Heff~P0!2P0# iQ~P0!2 iQ†~P0!

3@Heff~P0!2P0#,

dw52 i Q•w

when the gauge-fixing condition is varied infinitesimally1

Also, gauge independence of the spectrum is shown u
the transformation. We define the chargeQ of the effective
Hamiltonian directly in terms of the BRST charge and t
field operators in the QED-QCD Lagrangian.

For illustration: ~1! we calculate the transformatio
chargeQ at next-to-leading order;~2! we demonstrate gaug
cancellations among diagrams by examining an infinitesi
gauge transformation of the amplitude for aqq̄ bound state
decaying intoq8q̄9W1W2. From the latter example, one ca
deduce that the present calculations of the top momen
distribution in the t t̄ threshold region at next-to-next-to
leading order are gauge dependent.

Another subject of this paper is to study the problems i
determination of the effective Hamiltonian from the on-sh
scattering amplitude of a fermion and an antifermion. G
erally a fermion and an antifermion inside a bound state
off-shell so that use of a Hamiltonian determined in the o
shell matching procedure may lead to incorrect calculati
of the physical quantities of the bound state. We clarify t
point.

The same problems do not occur if we use a lo
NRQED-NRQCD Lagrangian and determine~Wilson! coef-
ficients in the Lagrangian by matching onto the full theo
i.e. by matching on-shell amplitudes of all relevant physi
processes to those of perturbative QED-QCD in nonrela

1One may conjecture that gauge dependence can be describ
unitary transformation, since effective Hamiltonians are hermite~if
we neglect decay widths of bound states! and the bound state spec
trum is invariant under this transformation. For our effective Ham
tonians, however, the transformation is not unitary~the charge is
not hermite!, since the Hamiltonians are dependent on the c
energyP0 of the system.
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istic regions. In this case one should calculate amplitudes
a number of processes to determine all the coefficients.
problems are also related to the use of the equation of mo
to simplify the Lagrangian since the on-shell condition is t
equation of motion for an asymptotic field. For comprehe
siveness we prove in an appendix that it is justified to use
equation of motion to simplify the local NRQED-NRQCD
Lagrangian and also to simplify local current operators;
the best of our knowledge such a proof has never been
vided explicitly, although similar proofs for other effectiv
field theories have been given@28,29# and the claim itself is
widely accepted already.

Below we will use the language of QCD consistent
nevertheless all of our arguments hold also for the Q
boundstates. Throughout the paper we neglect nonpertu
tive effects~those effects which are typically parametrize
by LQCD) and restrict ourselves to arguments which can
understood from a summation of perturbation series inaS to
all orders.

The organization of this paper is as follow. After review
ing general aspects of gauge dependence of the convent
relativistic qq̄ bound state formalism~Sec. II!, we summa-
rize characteristic properties of the nonrelativistic bou
states from the viewpoint of the leading Coulomb singula
ties: their gauge independence and some nontrivial feat
are explained~Sec. III!. Then we define the effective Hamil
tonianHeff for a qq̄ system and investigate its gauge depe
dence as well as gauge dependences of the spectrum
wave functions of the bound states using the BRST sym
try, within the framework of perturbative expansions in 1/c;
in particular we define the transformation chargeQ of the
effective Hamiltonian~Sec. IV, App. C!. We clarify possible
problems in the determination ofHeff if one uses the on-shel
matching procedure~Sec. V!. For illustration, we present a
calculation of the chargeQ at O(1/c), corresponding to an
infinitesimal gauge transformation from the Coulomb gau
we also examine gauge cancellations in the decay ampli
of a qq̄ bound state intoq8q̄9W1W2 at the same order~Sec.
VI !. Conclusion and discussion are given in Sec. VII.
Appendix A we give a proof to justify the use of the equati
of motion to simplify a local NRQCD Lagrangian. Som
detailed discussions are given in Appendixes B and C.

II. GAUGE DEPENDENCE OF THE RELATIVISTIC
BOUND STATE FORMALISM: GENERAL ASPECTS

We consider the BRST invariant QCD Lagrangian

L52
1

2
tr@GmnGmn#1(

f
c̄ f@ iD” ~A!2mf # c f1LGF1FP,

~1!

where generally the sum of gauge-fixing and ghost terms
be written in a BRST exact form as

LGF1FP5$ iQB ,tr@ c̄F#% ~2!

by

-

.
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with the BRST chargeQB and an arbitrary gauge-fixing
function F5F(A,c,c̄,c,c̄,B) @30#.2

Define a four-point function~Fig. 1! as

G~x1 ,x2 ,x3 ,x4!5^0uT c~x1!c̄~x2!c̄~x3!c~x4!u0& ~3!

5E d4p

~2p!4

d4q

~2p!4

d4P

~2p!4
G~p qP!

3expF2 i
P

2
•~x11x22x32x4!

2 ip•~x12x2!1 iq•~x32x4!G . ~4!

Here and hereafter we restrict our discussions to a qu
antiquark of some specific flavor and omit the flavor indexf.
The field operators and states are those of the Heisen
picture. A quark-antiquark boundstate contributes a pole
the Green functionG(p qP). In the vicinity of a pole corre-
sponding to a bound stateun;PW & ~with quantum numbern,
massM n and momentumPW ), the Green function takes
form @31#

G~p qP!5
i

2vn,PW

xn,PW ~p!x̄n,PW ~q!

P02vn,PW 1 i e
1~regular asP0→vn,PW !,

~5!

where

^0uT c~x1!c̄~x2!un;PW &

5e2 i (vn,PW X02PW •XW )E d4p

~2p!4
e2 ip•x xn,PW ~p!, ~6!

x̄n,PW ~p!5xn,PW ~p!†~g0
^ g0!, ~7!

2In our convention, the BRST transformation is defined

$ iQB ,c%5dBc5 ig cc, dBc̄5 igc̄c, dBAm5Dmc, dBc5 ig c2,

dBc̄5 iB, anddBB50, whereB is the Nakanishi-Laudrup auxiliary
field.

FIG. 1. The four-point functionG(pqP). P/26q denotes the
four-momentum of incoming quark-antiquark;P/26p denotes the
four-momentum of outgoing quark-antiquark.
10500
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X5
1

2
~x11x2!, x5x12x2 ,

vn,PW 5APW 21M n
2 . ~8!

In this paper we assume that the decay width of a bound s
is infinitesimally small except where it is stated otherwise

An infinitesimal deformation of the gauge-fixing function
F→F1dF, induces a change of the Lagrangian

E d4x dL5$ iQB ,dO%, dO[E d4x tr@ c̄ dF#. ~9!

Accordingly the Green function changes as

dG~x1 ,x2 ,x3 ,x4!

52^0uT $QB ,dO% c~x1!c̄~x2!c̄~x3!c~x4!u0& ~10!

52^0uT dO @QB ,c~x1!c̄~x2!c̄~x3!c~x4!#u0&. ~11!

Suppose we are interested in the bound states which
be created from the vacuum via gauge invariant operat
e.g.c̄(x)c(x), c̄(x)D” c(x), c̄(x)gmc(x), etc. For example,
in the above Green function we may setx15x2[x, x35x4
[y and contract color indices to make color singlet ope
tors c̄(x)c(x), c̄(y)c(y). It then follows from @QB ,c̄c#
50 that

dG~x,x,y,y!ucolor singlet50. ~12!

Comparing this with Eq.~5!, one sees that both the mass a
the residue of any bound state which couples to the oper
c̄c are invariant:

dM n50 ~13!

and

d^0u c̄~x!c~x!un;PW &50,

i.e.

dE d4p

~2p!4
xn,PW ~p!U

color singlet

50. ~14!

Since bothu0& andc̄(x)c(x) are BRST invariant, it implies
that the bound state satisfies the physical state condition

QBun;PW &50. ~15!

Note, however, that generally the bound state wave func
xn,PW (p) depends on the gauge-fixing condition:

s

1-3
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K. HASEBE AND Y. SUMINO PHYSICAL REVIEW D61 105001
dxn,PW ~p!52 F.T.^0uT dO @QB ,c~x!c̄~y!#un;PW &

52 F.T.^0uT gdO @c~x!c~x!c̄~y!

1c~x!c̄~y!c~y!#un;PW &, ~16!

where F.T. stands for an appropriate Fourier transform.
Any physical amplitudê f ;out i ; in& which involves the

quark-antiquark bound state contributions includes the ab
Green functionG(pqP) as a part of it. Since the initial an
final states satisfy the physical state conditionsQBu i ; in&
5QBu f ; in&50 and the theory is BRST invariant, the amp
tude is gauge independent. Hence, the bound state pole
cluded in the amplitude are also gauge independent. An
teresting question is whether the Green functionG(pqP)
includes any unphysical pole, which does not contribute
the physical amplitude, close to or degenerate with one of
physical bound state poles.3 As for nonrelativistic quark-
antiquark bound states the answer is no, as will be show
Sec. IV and in Appendix C.

III. NONRELATIVISTIC BOUND STATES:
LEADING COULOMB SINGULARITIES

It is well known that, in describing a system of a nonre
ativistic color-singlet quark-antiquark (qq̄) pair, naive per-
turbation theory breaks down due to formation of bou
states@32,33#. Intuitively, this is because the slowq and q̄
are trapped by the attractive force mediated by exchang
gluons and multiple exchange of gluons between the
becomes significant. We review this property in a product
process of aqq̄ pair.

Consider the amplitude of a virtual photon decaying in
q and q̄, g* →qq̄, just above the threshold. As we will se
below, the ladder diagram for this process withn gluon ex-
changes has a behavior;(aS /b)n, see Fig. 2. Here,b is the
velocity of q or q̄ in the c.m. frame,

b5A12
4m2

s
. ~17!

3A typical example is theRj-gauge for electroweak interactio
where an unphysical pole (k22jMW

2 1 i e)21 is included in the
gauge boson propagator.

FIG. 2. The ladder diagrams for the processg* →qq̄. The dia-
gram wheren uncrossed gluons are exchanged has a beha
;(aS /b)n near threshold.
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Hence, the contribution of thenth ladder diagram will not be
small even for a largen if b&aS . That is, higher order terms
in aS remain unsuppressed in the threshold region. Th
singularities inb which appear in this specific kinematica
configuration is known as the ‘‘Coulomb singularities’’ o
‘‘threshold singularities.’’ The singularities arise because,
a particular assignment of the loop momenta, all the inter
particles can simultaneously become almost on-shell ab
→0.

The appearance of the factor (aS /b)n may be seen as
follows. First, consider the one-loop diagram. Itsimaginary
part can be estimated using the Cutkosky rule~cut-diagram
method!, see Fig. 3. Namely, the imaginary part is given
the phase space integration of the product of tree diagra
The intermediateqq̄ phase space is proportional tob as

dF2~qq̄!5
b

16p
d cosu, ~18!

whereu is the angle between the momenta of the interme
ate and final quarks in the c.m. frame. Theqq̄ scattering
diagram with at-channel gluon exchange contributes a fac
;aS /b2 since the gluon propagator is proportional to 1/b2;
the propagator denominator is given by

k252ukW u252
sb2

2
~12cosu!, ~19!

wherek denotes the gluon momentum. Thus, we see that
imaginary part of the one-loop diagram has the behav
;b•aS /b25aS /b. Analyticity implies that the real part o
the one-loop diagram has the same structure;aS /b. By
repeatedly using the cut-diagram method, one can show
induction that the imaginary part of the ladder diagram w
n uncrossed gluons behaves as;(aS /b)n, see Fig. 4.

Alternatively this fact can be shown by a power counti
method@8#. The relevant loop momenta in the loop integra
are in the nonrelativistic regime:

p02m, p̄02m;O~b2!, pW 52 p̄W ;O~b!, ~20!

or

FIG. 3. The Cutkosky rule for evaluating the imaginary part
the 1-loop diagram. The factors inaS andb are shown explicitly.

FIG. 4. The cut-diagram method for evaluating the singularit
of the higher order ladder diagrams. The factors inaS and b are
shown explicitly.
1-4
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k0;O~b2!, kW;O~b!.

Here,p, p̄ andk represent the internal momenta ofq, q̄ and
the gluon, respectively, in the c.m. frame. For such confi
rations,q(q̄) and gluon propagators are counted as;1/b2,
and the measure for each loop integration4 d4k/(2p)4 as
;b5.

Thus, the ladder diagrams contain the leading singulari
;(aS /b)n. Other diagrams~in particular crossed gluon dia
grams! do not possess the leading singularities but only n
leading singularities;aS

n1 l /bn ( l>1).
As the higher order terms inaS cannot be neglected nea

threshold, we are led to sum up the leading Coulomb sin
larities. Let us first discuss gauge dependence of the am
tude when this summation is performed, in particular b
cause only the ladder diagrams are included. The e
amplitude for the processe1e2→qq̄ near threshold can b
expanded in terms ofaS andb as

M ( f ull )~aS ,b!5 (
n50

`

cn~aS /b!n 1~nonleading terms!.

~21!

The full amplitudeM ( f ull ) is gauge independent, so must
the each coefficientcn . Because only the ladder diagram
possess this type of singularities,the most singular partof
the ladder diagrams has to be gauge independent.

To see this explicitly, we examine gauge dependence
the gluon propagator. In a general covariant gauge, theqq̄

→qq̄ scattering amplitude in the threshold region is given

ūfg
mui

2 i

k21 i e
Fgmn2~12j!

kmkn

k2 G v̄ ig
nv f

5ūfg
0ui

2 i

2kW21 i e
v̄ ig

0v f3@11O~b!#, ~22!

where the subscriptsi and f stand for the initial and fina
state, respectively. We have used the fact that the space
ponents of the currents,ūfg

mui and v̄ ig
nv f , are orderb in

the c.m. frame.5 Note that the leading part of the gluo
propagator is identical with the Coulomb propagator in

4In counting the powers ofb of a loop integral, the singularity o
the integrand will increase if one assigns a large power ofb to the
momentum in the propagators, but the integration measure is m
suppressed. The optimal assignment of the order inb to each inter-
nal momentum must be sought to identify the most singular par
the integral. This procedure leads to Eq.~20!.

5Dirac representation of theg-matrices is most useful in powe
countings, whereg0 is diagonal andg i ’s are off-diagonal. The
quark spinor wave function has the upper two components ofO(1)
and the lower two components suppressed byb, vice versafor the
antiquark.
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Coulomb gauge. Equation~22! also holds for the momenta
~20! if we note that the off-shellq and q̄ wave functions are
given by

p”1m5m~11g0!1O~b!, ~23!

2p”̄1m5m~12g0!1O~b!. ~24!

Thus, gauge independence ofcn’s is ensured by gauge inde
pendence of the leading part;1/b2 of the gluon propagator
in Eq. ~22!.

Let us denote byGm the sum of the leading singularitie
of the vertexg* →qq̄. It satisfies a self-consistent equatio
as depicted in Fig. 5. Retaining only the leading p
;(aS /b)n on both sides of the equation, one obtains t
vertexGm as

Gm52S 11g0

2
gm

12g0

2 D ~E2pW 2/m! G̃~pW ;E!, ~25!

whereE5As22m is the energy measured from the thres
old. G̃(pW ;E) is the Green function of the nonrelativisti
Schrödinger equation with the Coulomb potential:

F S 2
¹2

m
2 CF

aS

r D2~E1 i e!GG~rW;E!5d3~rW !, ~26!

G̃~pW ;E!5E d3rW e2 ipW •rW G~rW;E!, ~27!

whereCF54/3 is the color factor. The analytic expression
G(rW;E) is given in terms of the hypergeometric function a
includes the boundstate spectrum below threshold,E,0. Al-
ternatively, we may write

G̃~pW ;E!52X n

fn~pW !cn* ~0W !

E2En1 i e
, ~28!

wherefn(pW ) andcn(rW) are the Coulomb wave functions i
momentum space and coordinate space, respectively. Hen
includes the bound states withEn52(CFaS)2m/4n2 and the
continuum states withEn.0.6

At this stage, we see a nontrivial consequence of the s
mation to all orders inaS . At any order of the perturbative
expansion inaS , the amplitude forg* →qq̄ is zero below

re

f

6To see that (E2pW 2/m)G̃(pW ;E) is a function of aS /b, one

should identifyE→mb2 and upW u→mb at leading order.

FIG. 5. The self-consistent equation satisfied by the leading

gularities of theqq̄g vertexGm. One should take only the leadin
part ;(aS /b)n on both sides of the equation.
1-5
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K. HASEBE AND Y. SUMINO PHYSICAL REVIEW D61 105001
threshold,E,0. For example, the absorptive part of a qua
loop contribution to the vacuum polarization function

~P2gmn2PmPn!Im Pq~P2!

5E d4x eiP•(x2y)Im ^0uT c̄~x!gmc~x!c̄~y!gnc~y!u0&

~29!

vanishes below threshold. After summation of the lead
singularities, however, it is given in terms of the Green fun
tion at the origin@32#

Im Pq~s!5
Nc

2m2
Im G~rW50; E5As22m!

5
pNc

2m2X nucn~0W !u2 d~E2En!, ~30!

which in fact diverges at the positions of bound statesE
5En,0. This discrepancy before and after the summat
can be traced back to the fact that the limite→0 in the
propagator denominators does not commute with the sum
tion to infinite orders inaS . Namely, if we pursue the per
turbative calculations with a finitee.0, the absorptive par
Im Pq(s) remains nonzero below threshold at each ord
After the summation, constructive interference effects re
in a drastic magnification of the amplitude;1/e at E5En .

In order to reach below the threshold for the proce
e1e2→qq̄, we need to include a subsequent decay proc
e.g.q and q̄ decaying into lighter quarks, orqq̄ annihilating
into multiple gluons, etc. Then the corresponding amplitu
is nonzero and gauge independent both above and below
threshold. Summation of the leading singularities can be p
formed in the same way as above and leads to the s
vertexGm, except that in this case the quark momentumupW u
needs not equalAs/42m2 ~as required for an on-shell quark!
as long as it is in the nonrelativistic region.7

Below we discuss gauge dependences of the spectrum
the wave functions of the nonrelativisticqq̄ bound states
within the framework of their calculations in perturbativ
expansions. An appropriate expansion parameter of
problem is 1/c, inverse of the speed of light, whenc is re-
stored as a dimensionful parameter@5#. In this case both
aS5g2/4p\c andb5v/c areO(1/c) quantities.8 Therefore
the sum of the leading singularities (aS /b)n is counted as
O(1). Perturbative corrections to the bound state wave fu
tion are given as a double expansion inaS and b, e.g.

7The nonzero decay width of the bound stateGn renders the
d-function in Eq.~30! to the Breit-Wigner distribution

pd~E2En!→
Gn/2

~E2En!21Gn
2/4

.

8Here,b symbolizes bothupW u/mc andAE/mc2 for a nonrelativis-
tic off-shell quark-antiquark.
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O(1/c) corrections include aS
n11/bn5aS(aS /b)n

5b(aS /b)n11. Note that the parameterb is guaranteed to
be small if aS is small, since we are interested in the su
mation of the leading singularities only in the kinematic
region where naive perturbation theory breaks downb
&aS). The bound state mass is given as a power series inaS
since they are independent ofb.9 Throughout this paper we
set c51 in our formulas in order to maintain simplicity o
expressions; one may easily count the power of 1/c by count-
ing the powers ofaS andb.

IV. THE EFFECTIVE HAMILTONIAN

FOR A qq̄ SYSTEM

In this section we discuss gauge dependences of the s
trum and the wave functions of the nonrelativistic bou
states in a general framework.

Let us introduce an effective Hamiltonian for a colo
singletqq̄ system as follows. First we define a Green fun
tion for a qq̄ pair in the c.m. frame as

G~pW ,qW ;l,l̄,l8,l̄8;P0!

5^pW ,2pW ,l,l̄u
1

P02H1 i e
uqW ,2qW ,l8,l̄8&,

~31!

whereH denotes the full QCD Hamiltonian~including the
gauge-fixing and ghost terms!; upW ,2pW ,l,l̄& is an eigenstate
of the freeHamiltonianH05HuaS→0 and represents a color
singlet two-body state composed of a free quark-antiqu
pair:

upW ,2pW ,l,l̄&5apW ,l
†

b
2pW ,l̄
† u0& freeucolor singlet, H0u0& free50.

~32!

Here,a† (b†) denotes the creation operator of a free qua
~antiquark!; pW (2pW ) andl (l̄) denote the three momentum
and the spin index ofq (q̄) in the c.m. frame, respectively
P0 represents symbolically the c.m. energy of theqq̄ system,

but we take the three energies,P0, 2ApW 21m2 and

2AqW 21m2, not necessarily equal to one another. Note t
the above two-body state is not a physical state,QBupW ,
2pW ,l,l̄&Þ0, which stems from the fact thatH0 is not
BRST invariant. Then we define an effective Hamiltoni
which operates only on the subspace spanned by the
body states such that it generates the same Green funct

9In addition to powers ofaS andb, there appear also powers o
log aS and logb in these perturbation series.
1-6
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G~pW ,qW ;l,l̄,l8,l̄8;P0!

5^pW ,2pW ,l,l̄u
1

P02Heff~P0!1 i e
uqW ,2qW ,l8,l̄8&.

~33!

Namely, the effective Hamiltonian~a quantum mechanica
operator! is defined by

Heff~P0!5P02G 21~P0!, ~34!

where G 21(pW ,qW ;l,l̄,l8,l̄8;P0)5^pW ,2pW ,l,l̄uG 21(P0)uqW ,
2qW ,l8,l̄8& is the inverse of the Green function restricted
the two-body subspace @take the inverse of
G(pW ,qW ;l,l̄,l8,l̄8;P0) considering it to be a matrix with in
dices (pW ,l,l̄) and (qW ,l8,l̄8)]. For analyzing the nonrelativ
istic qq̄ bound states, one first calculates the effective Ham
tonian in a series expansion in 1/c, then uses ordinary
perturbation theory in quantum mechanics for calculating
spectrum and the wave functions of the bound states in

FIG. 6. A time-ordered diagram which contributes toG. The
dashed line represents the instantaneous Coulomb gluon; the
line represents the transverse gluon.
10500
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turbative expansions in 1/c. As we have seen in the previou
section, the leading order Hamiltonian is given by10

Heff
(LO)52m1

pW 2

m
2CF

aS

r
. ~35!

Let us briefly explain the background for why we intro
duced the Green function, Eq.~31!. Suppose we conside
contributions from aqq̄ boundstate to some physical pro
cess. In a calculation of the corresponding amplitude us
time-ordered~or ‘‘old-fashioned’’! perturbation theory, the
above Green function always appears as a part of that ca
lation. This is parallel to the fact that the four-point functio
Eq. ~4! appears as a part of the calculation of the same
plitude using the~Lorentz covariant! Feynman rules. Time-
ordered perturbation theory is often more suited for calcu
tions of nonrelativistic processes because additional qu
antiquark pair productions are suppressed by powers ofc.

The rules for time-ordered perturbation theory are@34#:
draw time-ordered diagrams~e.g. time flows from right to
left!, assign a matrix element^ i uVau j & at the time of each
vertex, and assign a propagator 1/(P02Ei1 i e) to an inter-
val between two adjacent vertices. Here,Va is an interaction
term, H5H01(aVa ; P0 is the total energy of the system
u i & and Ei denote the eigenstate and the eigenvalue of
free Hamiltonian, respectively,H0u i &5Ei u i &. Then we sum
over all the intermediate states, where in general the ene
is not conserved,EiÞP0.

Although there are many ways to derive the rules~see
Appendix B!, simple correspondences to the ordinary Fey
man rules may be seen by integrating over the time com
nents of loop momenta and over the time components
external particles’ momenta of a Feynman diagram for
unamputated Green function. In Coulomb gauge, decomp
ing the quark and transverse gluon propagators as

vy
ating the
Fig. 6,
i ~p”1m!

p22m21 i e
5

i

p02vpW1 i e
L1~pW !g01

i

p01vpW2 i e
L2~pW !g0, ~36!

vpW5ApW 21m2, L6~pW !5
vpW6~m2pW •gW !g0

2vpW
, ~37!

i

k21 i e
S d i j 2

kikj

ukW u2D 5
i

2ukW u
S d i j 2

kikj

ukW u2
D S 1

k02ukW u1 i e
2

1

k01ukW u2 i e
D , ~38!

and using the Cauchy theorem, every wave function becomes on-shell@e.g.(lu(pW ,l)u†(pW ,l)5L1(pW )] whereas the energy
conservation is violated. The ghost propagator can be handled similarly to the transverse gluon propagator. Integr
Coulomb propagator is trivial because it is independent of the energy of the gluon. By way of example, the diagram in
which contributes to the Green functionG, is given by

10Presently the QCD effective Hamiltonian is known up toO(1/c2) in Coulomb gauge, see e.g.@16,17#.
1-7
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~CF•4paS!2

~P022vpW1 i e!~P022vqW1 i e!
E d3kW

~2p!3
ū~pW ,l! g i L1~kW2pW ! g0 u~qW ,l8!

3 v̄~2qW ,l̄8! g j L2~qW 1kW ! g0 v~2pW ,l̄ !
1

2ukW u
S d i j 2

kikj

ukW u2
D 21

uqW 1kW2pW u2

3
1

~P02vqW2vkW2pW2vpW2vqW 1kW1 i e!~P02vqW2vqW 1kW2ukW u1 i e!
. ~39!

We return to the discussion of the Green functionG and the effective HamiltonianHeff . If we vary the gauge-fixing
function, the QCD Hamiltonian changes as11

H→H2$ iQB ,dO%, dO5E d3xW tr@ c̄dF#, ~40!

and the corresponding change of the Green function is given by

dG~pW ,qW ;l,l̄,l8,l̄8;P0!52^pW ,2pW ,l,l̄u
1

P02H1 i e
$ iQB ,dO%

1

P02H1 i e
uqW ,2qW ,l8,l̄8& ~41!

52^pW ,2pW ,l,l̄u iQB

1

P02H1 i e
dO

1

P02H1 i e
uqW ,2qW ,l8,l̄8&

2^pW ,2pW ,l,l̄u
1

P02H1 i e
dO

1

P02H1 i e
iQB uqW ,2qW ,l8,l̄8&. ~42!
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Since QBupW ,2pW ,l,l̄&Þ0, generallydGÞ0, so the corre-
sponding effective Hamiltonian also changes,dHeffÞ0. As
we use the effective Hamiltonian to calculate systematic
the bound state spectrum and the wave functions in pe
bative expansions in 1/c, we would like to see how they
depend on our choice of gauge.

The massM n of a bound state is given as the position
a pole of the Green functionG. Equivalently, it is calculated
from Heff(P0) by solving

@M n2Heff~M n!# un;eff&50. ~43!

In the discussion to follow, we consider only those bou
states which appear already at leading order forun;eff&.12

From the definition ofM n above, one may evaluate its d
viation when the effective Hamiltonian is varied infinites
mally:

11Here, we assume thatdF is independent of]0Am , ]0c, etc.;
otherwise the change of the Hamiltonian takes a different form.
Sec. VI for a more general case.

12Note that at leading order all bound states in the spectrum
the Coulomb bound states which are physical states.~In particular,
all these states can be created from the vacuum via gauge inva
operators.! It already suggests that to all orders of 1/c there are no
unphysical bound states in the spectrum ofHeff which are degener-
ate with these physical bound states.
10500
y
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dM n5
^n;effu dHeff~M n! un;eff&

^n;effu 12Heff8 ~M n! un;eff&
. ~44!

In the numerator, the variation of the Hamiltonian can
written as

dHeff~P0!52 dG 21~P0!

5@P02Heff~P0!# dG~P0! @P02Heff~P0!# ~45!

according to Eq.~34!. Equations~44! and~45! imply thatdG
should contain a double pole (P02M n1 i e)22 in order to
generate a nonzero shift of the massdM nÞ0 @27#. dG con-
tains, however, only a single pole (P02M n1 i e)21, since
the state

dO
1

P02H1 i e
iQB upW ,2pW ,l,l̄& ~46!

in Eq. ~42! does not include the bound state pole. This f
lows from the physical state condition Eq.~15!. Also one can
see explicitly by power countings of diagrams that at a
order of 1/c expansion the above state does not contain
bound state pole; a proof is given in Appendix C. Thus,
bound state mass is gauge independent in spite of the
that the effective Hamiltonian is gauge dependent.

In addition, the proof in Appendix C also shows that the
is no unphysical state which contributes a pole to the Gr

e

re

ant
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functionG that is degenerate with or close to one of the po
of the physical bound states of our interest. Stated more
plicitly, there is no unphysical bound state with a bindi
energy;aS

2m.
Now let us define a quantum mechanical operatorQ(P0)

~which operates only on the subspace of two-body states! by

^pW ,2pW ,l,l̄uQ~P0!uqW ,2qW ,l8,l̄8&

5E d3qW 8

~2p!3 (
l9,l̄9

^pW ,2pW ,l,l̄uQB

1

P02H1 i e

3dO
1

P02H1 i e
uqW 8,2qW 8,l9,l̄9&

3G 21~qW 8,qW ;l9,l̄9,l8,l̄8;P0!. ~47!

Then Q(P0) does not include the bound state poles (P0

2M n1 i e)21. Q can be interpreted as the generator of
transformation of gauge-fixing condition as seen from
relations

dG52 iQ G1 iG Q†, ~48!

and

dHeff5@Heff~P0!2P0# iQ~P0!2 iQ†~P0! @Heff~P0!2P0#.
~49!

The last equation concisely represents the transformatio
the effective Hamiltonian in a form which clearly shows t
spectral invariance; cf. Eq.~44!. One may easily see that th
chargeQ has following properties: in generalQ is not Her-
mite, thus the transformation is nonunitary;Q vanishes at
leading order of the 1/c expansion; beyond leading orde
even at some specific order of 1/c the chargeQ contains all
orders ofaS due to the form of Eq.~47!. We will confirm
these properties by explicit calculations in Sec. VI.

Another method to verify gauge independence of
bound state spectrum is as follows. The on-shellqq̄ scatter-
ing amplitude can be calculated using the reduction form
of time-ordered perturbation theory,

Mqq̄→qq̄5 lim
vpW ,vqW→P0/2

~P022vpW !

3~P022vqW ! G~pW ,qW ;l,l̄,l8,l̄8;P0!. ~50!

~See Appendix B.! If this amplitude is analytically continued
to an unphysical region, it exhibits a pole at the position
the boundstate,P052vpW52vqW→M n . If we expand the am-
plitude as a Laurent series at the pole

Mqq̄→qq̄5
Rn

P02M n1 i e
1~regular asP0→M n!, ~51!

and calculate the massM n in a perturbative series in 1/c, M n

should be gauge independent at each order of 1/c, since
Mqq̄→qq̄ is gauge independent at any order of perturbat
series inaS .
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Next we turn to the bound state wave function, which
defined from a Laurent expansion of the Green function
P05M n as13

G~pW ,qW ;l,l̄,l8,l̄8;P0!5
wn~pW ,l,l̄ ! wn* ~qW ,l8,l̄8!

P02M n1 i e

1~regular asP0→M n!, ~52!

or equivalently,

wn~pW ,l,l̄ !5^pW ,2pW ,l,l̄un;eff& ~53!

with a normalization condition

^n;effu 12Heff8 ~M n! un;eff&51. ~54!

Alternatively, from the original definition ofG, Eq. ~31!, one
may express

wn~pW ,l,l̄ !5^pW ,2pW ,l,l̄un;PW 50&, ~55!

where un;PW 50& is the eigenstate of the full QCD Hamil
tonian H; see Sec. II. Then from Eqs.~42! and ~48! the
variation of the wave function is given by

dwn~pW ,l,l̄ !52^pW ,2pW ,l,l̄u iQB

1

M n2H1 i e
dOun;PW 50&

~56!

and

dwn~pW ,l,l̄ !52 i @Q~M n!•wn#~pW ,l,l̄ !

[2 i E d3qW

~2p!3

3 (
l8,l̄8

^pW ,2pW ,l,l̄uQ~M n!uqW ,2qW ,l8,l̄8&

3wn~qW ,l8,l̄8! ~57!

when the gauge-fixing condition is varied. The last equat
shows once again thatQ can be interpreted as the transfo
mation charge.

Looking at Eq.~56! one might think that it is possible to
mix different gauges in calculations of decay amplitudes
the bound state. Namely, one might take the wave func
wn(pW ,l,l̄) calculated in one gauge~e.g., Coulomb gauge! as
the initial state wave function and calculate the rest of
decay amplitude in another gauge~e.g., Feynman gauge!.

13At leading order of 1/c expansion,n5(n,s,s̄) and

wn
(LO)~pW ,l,l̄ !5fn~pW ! js~l! j s̄~ l̄ !, M n

(LO)52m2
~CFaS!2m

4n2
,

where js(l)5^ls& is a two-component spin wave function. Ex
pressions ofwn andM n up to O(1/c2) for the bound states can b
found in @16,19#.
1-9
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Generally final states satisfy the physical state condit
QBu f &50, so the above equation may suggest that suc
calculation gives the correct result~the result of a consisten
calculation in one specific gauge!. This expectation, how-
ever, is wrong since the two-body statesupW ,2pW ,l,l̄& do not
span the complete Fock space. This fact will be verified
plicitly in the second example in Sec. VI.

V. PROBLEMS WITH THE ON-SHELL MATCHING
PROCEDURE

In the definition of the effective Hamiltonian in terms o
the full QCD Hamiltonian@Eqs. ~31! and ~34!# we kept the
energies of the initial and finalqq̄ states different fromP0.
~It corresponds to off-shell initial and final states in the la
guage of a Lorentz covariant formulation.! Accordingly the
form of Heff depends on our choice of gauge. In some lite
tures, however, the on-shell scattering amplitude Eq.~50! is
used instead of the off-shell Green functionG in order to
determine a similar effective Hamiltonian. This leaves,
general, more freedom to the form of the effective Ham
tonian than what is due to gauge dependences. The di
ence is irrelevant when the Hamiltonian is applied to d
scribe an on-shellqq̄ system, whereas the quark an
antiquark inside a bound state are generally off-shell. In
section we examine how the spectrum and the wave fu
tions of the bound states are affected when we employ
on-shell matching procedure to determine the effect
Hamiltonian.

First we consider a variation of the bound state mass
we vary the effective Hamiltonian under the constraint tha
gives the same on-shell scattering amplitude. As we h
seen in Eq.~45!, dG should include a double pole (P0

2M n1 i e)22 in order to generate a nonzero mass shift. W
may try a simplest example:

dG~pW ,qW ;l,l̄,l8,l̄8;P0!5
DM n

~P02M n1 i e!2
~2p!3

3d (3)~pW 2qW ! dll8dl̄l̄8 , ~58!

i.e.

dHeff~P0!5
DM n

~P02M n1 i e!2
@P02Heff~P0!#2. ~59!

Evidently it does not modify the on-shell amplitude~50!,
while it does generate a mass shiftM n→M n1DM n . In the
calculation of the bound state mass in a perturbative exp
sion in 1/c, if we add the abovedHeff to the effective Hamil-
tonian retaining terms up to some chosen order in 1/c, the
mass is shifted up to the corresponding order. In fact
may find a variety of examples which can affect the bou
state mass while keeping the on-shell amplitude unchan
Nevertheless we consider that it will not create a seri
problem in practice, since we do not see any good rea
why dHeff which has explicit pole structure~s! should mix in
the determination ofHeff .
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Next we consider the bound state wave functions. Gen
ally the wave functionwn changes whendG includes a single
pole (P02M n1 i e)21. For example, if we take

dG5X G1G X, ~60!

i.e.

dHeff5@P02Heff~P0!# X1X @P02Heff~P0!#, ~61!

the on-shell amplitude is not affected, whereX is nondiago-
nal in momentum space and does not include the free par
poles (P022vpW )

21, (P022vqW)
21. On the other hand, the

wave function varies as

dwn5X•wn . ~62!

In this case the variation is serious, since different calcu
tions of a decay amplitude of a bound state do not lead
unique result if one uses differentwn’s connected by the
above transformation as the intial state wave functions.

One may think that the ambiguity related to the on-sh
matching procedure to determineHeff can be eliminated by
directly matching all the relevant on-shell amplitudes to t
perturbative expansion of the same amplitudes inaS . This
works at lower orders of 1/c expansions~in Coulomb gauge!,
but from the order 1/c3 there appear contributions from th
‘‘ultrasoft gluons’’ which include all orders ofaS @24# such
that one should really consider the off-shell matching pro
dure seriously.

We conclude, therefore, that the determination of the
fective HamiltonianHeff from the off-shell Green functionG
is favorable, and that the on-shell matching procedure ca
general lead to incorrect calculations of the bound st
masses and the physical amplitudes involving bound sta

VI. EXAMPLES

In this section we apply our formalism to two example
where we study an infinitesimal gauge transformation fr
the Coulomb gauge. First example is a calculation of
transformation chargeQ; in the second example we stud
gauge dependences of diagrams for a decay amplitude
bound state.

Let us consider a class of gauge-fixing functions wh
interpolates the Coulomb gauge and the Feynman gauge.
gauge-fixing function is chosen as

F522i S 1

2
B1]mAm1

1

jm2
h ¹W •AW D , ~63!

from which one obtains

LGF1FP52trF S ]mAm1
1

jm2
h ¹W •AW D 2G

12i trF c̄S ]mDm1
1

jm2
h ¹W •DW D cG ~64!
1-10
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after integrating out the auxiliary fieldB. Here,j.0 is the
gauge parameter:j→0 and j→` correspond to the Cou
lomb gauge and the Feynman gauge, respectively. The g
propagatoriD mn(k) is given by

iD 005
2 i

k21 i e
S 12

1

a2D 1
i

ukW u2a2
, ~65!

iD i05
i

k21 i e

kik0

ukW u2a2

jm2

ukW u2
, ~66!

iD i j 5
i

k21 i e
S d i j 2

kikj

ukW u2a2
@112jm2/ukW u2# D , ~67!

wherea511jm2/ukW u2. Our formal arguments in the prev
ous sections do not apply directly to this gauge-fixing co
dition sincedF includes]0AW . Nevertheless we may obtai
necessary rules for time-ordered perturbation theory ea
via relations similar to Eqs.~36!–~38!.14 For an infinitesimal
change of the parameterj→j1dj,

dO5E d3xW
2idj

j2m2
tr@ c̄ h¹W •AW #. ~68!

A. The chargeQ at O„1Õc…

First we calculate the transformation chargeQ which gen-
erates an infinitesimal gauge transformation from the C
lomb gauge (j50) at O(1/c). For perturbative calculation
it is convenient to rewrite Eq.~47! as

Q~P0!5P QB

1

P02H1 i e
dO

1

12 P̄
1

P02H01 i e
V

P,

~69!
10500
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whereH5H01V. P denotes the projection operator to th

subspace spanned by the two-body statesupW ,2pW ,l,l̄&, and

P̄512P. Time-ordered diagrams are obtained by expand
the above equation in terms ofV and inserting the complete
ness relation in terms of the eigenstates ofH0. We may

discard diagrams without cross talks betweenqq̄ and ghost
sectors, i.e. those diagrams which contain vacuum bubble15

The on-shell renormalization scheme is assumed for
value ofj, so we may neglect quark self-energy diagrams
O(1/c). The BRST charge reads

QB5E d3xW g c†~x!c~x!c~x!1•••, ~70!

where only the term which contributes up toO(1/c) is
shown.

Simplest diagrams generated by Eq.~69! are the tree dia-
grams shown in Fig. 7. The two diagrams give equal con
butions, the sum of which is given by

FIG. 7. The tree diagrams which contribute to the chargeQ for
an infinitesimal transformation from the Coulomb gauge. The d
ted line represents the ghost. The wavy line represents the g
propagatoriD i0; it is reduced effectively to an instantaneous prop
gator since the pole (k21 i e)21 is cancelled byk2 included indO.
e

f a double
e-fixing
^pW ,2pW ,l,l̄uQ~P0!uqW ,2qW ,l8,l̄8&uO(aS)5 i CF 4paS

dj m2

upW 2qW u4
1

P02upW 2qW u2vpW2vqW1 i e
. ~71!

Examining variations of the bound state wave functions generated by this charge@Eq. ~57!#, we see that two regions of th
gluon-ghost momentum,

soft: upW 2qW u;O~b!,

14A more natural choice of gauge-fixing function that interpolates the Coulomb gauge and the Feynman gauge would be

F522iS12B1]mAm1
1

j
¹W •AW D. ~72!

In this case, canonical quantization can be performed straightforwardly following the standard procedure@30# and all of our formal
arguments apply directly. On the other hand, practical calculations are tediously complicated in this gauge due to the existence o
pole (k21 i e)22 in the gluon propagator. For simplicity of practical calculations, we present the examples according to the gaug
condition Eq.~63!. Another class of gauge-fixing conditions which interpolates these two gauges was introduced, for QED, in@35#, which
corresponds to a class of nonlocal gauge-fixing functions.

15This corresponds to renormalizing the perturbative vacuumu0& free appropriately in each gauge.
1-11
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ultra-soft: upW 2qW u;O~b2!,

are relevant atO(1/c).16 Existence of the ultrasoft region indicates that the diagrams with multiple Coulomb-gluon exc
in ladder contribute also atO(1/c). Indeed one may check that all the diagrams shown in Fig. 8 contribute todwn at this order;
the contributions come from the ultrasoft region of the gluon-ghost momentum,ukW u;O(b2). This is also consistent with the
result of Love@26#. Hence, we find

^pW ,2pW ,l,l̄uQ~P0!uqW ,2qW ,l8,l̄8&uO(1/c)5 i CF 4paS E d3kW

~2p!3

dj m2

ukW u4
G (LO)S pW 2

kW

2
,qW 1

kW

2
;l,l̄,l8,l̄8;P02ukW u2

ukW u2

4m
D ,

~73!

where

G (LO)~pW ,qW ;l,l̄,l8,l̄8;P0!5^pW ,2pW ,l,l̄u
1

P02Heff
(LO)1 i e

uqW ,2qW ,l8,l̄8& ~74!

includes summation of the Coulomb ladders to all orders ofaS . The chargeQ(P0) turns out to be anti-hermite atO(1/c). We
note that the above charge does not include any bound state pole because of the integration overkW .

Alternatively it is possible to calculate the chargeQuO(1/c) by first evaluatingdHeff and then extractingQ via the relation Eq.
~49!. This procedure becomes cumbersome at higher orders ofaS because the number of gauge cancellations among diag
increases. These gauge cancellations are automatically incorporated in the direct calculation ofQ above by the BRST invari-
ance of the full QCD Hamiltonian,@QB ,H#50.

B. A decay amplitude of aqq̄ bound state atO„1Õc…

Next we analyze infinitesimal gauge transformations of the diagrams for the decay process of the bound state wheq and
q̄ decay into lighter quarks via electroweak interaction. We analyze the infinitesimal transformation from the Coulomb
up to O(1/c) as in the above example and see how the variation of the initial-state wave function Eq.~57! gets cancelled in
the total amplitude. The diagrams which contribute to this process up toO(1/c) in Coulomb gauge are shown in Fig. 9@36#.17

When we vary the gauge-fixing function, additional diagrams which contribute to theO(1/c) decay amplitude are shown i
Fig. 10. Here, the double-wavy lines representi dDmn , where

i dD0052 i S 1

k21 i e
1

1

ukW u2
D 2dj m2

ukW u2
, ~75!

etc. Diagrams~a! and~b! can be regarded as transformations of the initial-state wave function of the leading-order diagr~i!.
Conversely, the diagrams~c!–~e! cannot be regarded as such, since they do not contain aqq̄ two-body state as an intermedia
state.

Using diagrammatic analysis, one may verify that the sum of all diagrams~a!–~e! vanishes so that the total amplitude
indeed gauge independent. In fact, from diagrammatic manipulations as shown in Fig. 11 and also from similar manip
corresponding to the diagram~b!, one can show that the sum of diagrams in~a! and~b! can be regarded as the leading ord
diagram Fig. 9~i! with the initial state bound state wave functionwn replaced by its infinitesimal transformation Eq.~57!.
Rearrangement of diagrams may be performed, for instance, using the relation

1

P022vpW1 i e
S 1

ukW u

1

P02ukW u2vpW2vpW 1kW1 i e
1

1

ukW u2D 2dj m2

ukW u2

1

P022vpW 1kW1 i e

5
1

ukW u2~P02ukW u2vpW2vpW 1kW1 i e!

dj m2

ukW u2
S 1

P022vpW1 i e
1

1

P022vpW 1kW1 i e
D ~76!

16In power counting we considerdj m2/upW 2qW u2;O(1).
17It is understood that the bound state wave functionwn includesO(1/c) corrections. For simplicity, we neglectO(aS) corrections to the

qq8W andq̄q̄9W vertices, which constitute gauge independent subsets by themselves and do not mix with the gauge transformatiown .
105001-12
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for manipulating the propagator Eq.~75!. On the other hand
from Fig. 12 we see that the sum of the diagrams in~c!–~e!
exactly cancels the sum of~a! and ~b!. For details of the
diagrammatic analyses, see Refs.@26,27#.

According to the formal arguments in Sec. IV we kno
how the initial-state wave function transforms and theref
we know the sum of the other diagrams~c!–~e! in order to
ensure gauge independence of the total amplitude. This
ample demonstrates that the diagrammatic analyses
rather cumbersome since infinitely many diagrams contrib
even at the lowest nontrivial order of the 1/c expansion.

FIG. 8. The diagrams which contribute to the chargeQ at
O(1/c) for an infinitesimal transformation from the Coulom
gauge. The dashed line represents the Coulomb gluon of the
lomb gauge. Other notations are same as in Fig. 7.

FIG. 9. The diagrams which contribute to the amplitude fo

nonrelativistic bound state decaying intoq8q̄9W1W2 up toO(1/c).
We suppressed diagrams forO(aS) corrections to theqq8W and

q̄q̄9W vertices.
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VII. CONCLUSION AND DISCUSSION

In this paper we analyzed gauge dependence of an e
tive Hamiltonian formalism that describes the nonrelativis
quark-antiquark bound states and discussed problems o
on-shell matching procedure within this formalism. The s
nificance of our present work may be put as follows.

We used the BRST symmetry, which is known to be
powerful tool to study QCD Green functions, to analyze t
NRQCD bound states. The arguments were supplemente
power countings of singularities of relevant diagrams
make them more explicit and detailed. Gauge dependenc
the NRQCD bound state formalism is more complex th
that of usual~naive! perturbation theory since we have
deal with an infinite number of diagrams at each order of
1/c expansion.@e.g., an infinite number of diagrams contrib
ute to Heff at O(1/c) in gauges other than the Coulom
gauge@26#.# We definedHeff naturally in the context of time-
ordered perturbation theory. Then we obtained the trans
mation chargeQ of Heff , from which we could easily see
gauge independence of the spectrum and obtain transfo
tion of the bound state wave functions. For an infinitesim
transformation from the Coulomb gauge, we calculatedQ
directly up toO(1/c). Also we saw that, without resort to th
BRST symmetry, cumbersome gauge cancellations am
diagrams are necessary to show gauge independence
decay amplitude of the bound state. At higher orders of 1c,
diagrammatic analyses such as what we presented in the
ond example or those in Refs.@26,27# become quite intricate
so that the arguments based on the BRST symmetry wo
become more important.

Furthermore, we showed possibilities for incorrect calc

u-

FIG. 10. The diagrams which are generated by the infinitesi
variation of the gauge-fixing condition from the Coulomb gaug
The double-wavy line represents the variation of the gluon pro
gator i dDmn .
1-13
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K. HASEBE AND Y. SUMINO PHYSICAL REVIEW D61 105001
lations of amplitudes involving bound states if one uses o
the on-shell qq̄ scattering amplitude to determineHeff .
These problems do not occur if we determineHeff from the
off-shell Green functionG, or, if we use a local NRQCD
Lagrangian consistently and determine its coefficients
proper matching procedure, e.g. as in lattice calculati
@37,38#. The latter procedure has a disadvantage that
should calculate a number of amplitudes to determine all
coefficients.

Presently we still do not have at our disposal a comple
systematic way to identify all the necessary contributions
computations of physical quantities of the NRQED-NRQC
bound states at a given order of 1/c expansion. We believe
that the formalism developed in this paper will provide us
ful cross checks in these computations. Now we know ho
bound state wave function or the Green functionG contained
in an amplitude transforms. The transformation chargeQ is
process independent and depends only on the gauge-fi
condition, and it can be calculated directly in a perturbat
expansion in 1/c.

A possible application is to use the formalism to stu
gauge dependences of the diagrams involved in the calc
tion of the top quark momentum distribution in thet t̄ thresh-
old region atO(1/c2). It is known that at leading order th
top momentum distribution is proportional to the absolu
square of the wave functions of~would-be! toponium bound
states in momentum space@39#. As we saw in this paper
wave functions of bound states are gauge dependent be
leading order. In the second example of Sec. VI, we verifi
that this gauge dependence is cancelled by that of the fi
state interaction diagrams~ii !–~v! at O(1/c). In other words,
a bound state wave function mixes with the final-state in
action diagrams by gauge transformation. This shows
the present calculations of the top momentum distribut

FIG. 11. A diagrammatic method to show that the sum of d
grams in Fig. 10~a! can be regarded as the leading order diagr
Fig. 9~i! with the initial state bound state wave functionwn replaced
by a half of its infinitesimal transformation2 iQ•wn/2.
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@23# are gauge dependent, i.e. they vary if we transform
gauge infinitesimally from the Coulomb gauge, since they
not include the final-state interaction diagrams. Also the
ample suggests how gauge cancellations should take pla
the complete amplitude atO(1/c2) which has not been ob
tained yet.
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APPENDIX A: USE OF THE EQUATION OF MOTION IN
A LOCAL NRQCD LAGRANGIAN

In writing down a local NRQCD Lagrangian in terms o
the nonrelativistic quark (cq), nonrelativistic antiquark (c q̄),
gluon (Am), ghost~c! and antighost (c̄) fields, in principle
one writes down all possible local interactions consist
with the rotational and BRST symmetries. In addition, o
may simplify the Lagrangian using the equation of motio
and it is often convenient to eliminate all terms includingD0

n

(n>2), whereDm5]m2 igAm(x) is the covariant deriva-
tive. After such a simplification, the Lagrangian takes a st
dard form

-

FIG. 12. Examples of the diagrammatic method to show that
sum of diagrams in Fig. 10~c!–10~e! exactly cancels the sum of~a!
and ~b!.
L5cq
†~x!F iD 01c2

DW 2

2m
1c4

DW 4

8m3
1cF

g

2m
BW •sW 1cD

g

8m2
~DW •EW 2EW •DW !1cS

g

8m2
isW •~DW 3EW 2EW 3DW !1•••Gcq~x!

1~cq→c q̄!1c4-Fermi

g2

m2
cq

†~x!c q̄
†
~x!cq~x!c q̄~x!1•••2

1

2
tr@GmnGmn#. ~A1!
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FIG. 13. The diagrammatic
representation of Eq.~A7!. ^

shows the position of the local op
eratorN. The pole position is not
changed, while the Z factor
changes.
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We suppressed the gauge-fixing and ghost terms. One sh
determine the~Wilson! coefficients of local operatorsc2 , c4 ,
cF , etc. by matching various on-shell amplitudes to those
full QCD. Furthermore, in practical applications of th
NRQCD formalism, we often evaluate the correlators invo
ing the current operators composed of the nonrelativi
quark and/or antiquark fields. The equation of motion is a
used to eliminateD0

n from the current operators, and th
coefficients of local operators constituting the current ope
tors are determined by matching the on-shell amplitude
those of full QCD.

In this appendix we prove that we may use the equation
motion appropriately in order to simplify the form of th
Lagrangian. We also prove that in the evaluation of on-sh
amplitudes involving current operators, the change of
Lagrangian can be compensated by local redefinitions of
current operators and that one can use the equation of mo
to rewrite the current operators. It is understood that
regularize ultraviolet and infrared divergences using the
mensional regularization.

Let us start from a general local Lagrangia
L(cq ,c q̄ ,Am ,c,c̄) and add a local operator which vanish
by the equation of motion:

L→L1cq
†$N,M %cq . ~A2!

Here, the equation of motion forcq is denoted by

dS

dcq
†~x!

5~Mcq!~x!, S5E dDx L, ~A3!

and N denotes a local operator withN5N†, e.g. N cq

5 iD 0cq , DW 2cq , B•s cq , etc. N may include the gluon
field but not the quark or antiquark field. For simplicity w
do not change the antiquark sector of the Lagrangian in
argument. According to Eq.~A2!, the two-point and four-
point functions change as

d^0uT cq~x! cq
†~y!u0&5^0uT cq~x! cq

†~y!F i E dDz cq
†~z!

3~$N,M %cq!~z!G u0&, ~A4!

d^0uT cq~x! cq
†~y! c q̄~x8! c q̄

†
~y8!u0&

5^0uT cq~x! cq
†~y! c q̄~x8! c q̄

†
~y8!F i E dDz cq

†~z!

3~$N,M %cq!~z!G u0&. ~A5!
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In order to rewrite the right-hand-side of Eq.~A4! one may
use the Schwinger-Dyson equation18

^0uT H 1

2
cq~x! @~Ncq!~y!#†1

1

2
~Ncq!~x! cq

†~y!

1cq~x! cq
†~y!F i E dDz N~z,z!G1cq~x! cq

†~y!

3F i E dDz cq
†~z!~$N,M %cq!~z!G J u0&50. ~A6!

The third term of this equation vanishes within the dime
sional regularization, sinceN(z,z) containsdD(0) and/or
@]z

ndD(z)#z→0 which give scaleless integrals~tadpoles!.
Hence, we have

d^0uT cq~x! cq
†~y!u0&52^0uT H 1

2
cq~x! @~Ncq!~y!#†

1
1

2
~Ncq!~x! cq

†~y!J u0&. ~A7!

This equation shows that the change of the Lagrangian d
not affect the pole mass of the quark propagator, whereas
Z-factor ~wave function renormalization constant! varies; see
Fig. 13.

Following similar steps, one can show that the variati
of the four-point function is given by

d^0uT cq~x! cq
†~y! c q̄~x8! c q̄

†
~y8!u0&

52^0uT H 1

2
cq~x! @~Ncq!~y!#†1

1

2
~Ncq!~x!

3 cq
†~y!J c q̄~x8! c q̄

†
~y8!u0&. ~A8!

Thus, if we redefine theZ-factor according to Eq.~A7!, the
on-shell amplitude of the quark-antiquark scattering rema
the same; see Fig. 14. Similarly the amplitudes where m
tiple gluons are attached to the quark-antiquark scatte
can be shown to be invariant under the variation of the
grangian Eq.~A2!.

Equations~A7! and~A8! also show that, when evaluatin
correlators involving current operators, the change of the

18In the path-integral formulation, this follows readily from

E Dcq
†

d

dcq
†~z!

cq~x! cq
†~y! @~Ncq!~z!#† eiS50

and a similar term withc↔c†.
1-15
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K. HASEBE AND Y. SUMINO PHYSICAL REVIEW D61 105001
grangian can be compensated by local redefinitions of
current operators. By way of example, for a current opera
which creates and annihilates a quark-antiquark pair,

Ji~x!5cq
†~x!Fc1

vs i1c2
vs i

DJ 2

12m2
1•••Gc q̄

†
~x!1H.c.,

~A9!

the on-shell amplitude calculated from the correla
^0uT Ji(x) cq(y)c q̄(z)u0& remains unchanged if we redefin
the current as

Ji~x!→Ji~x!1dJi~x!, ~A10!

dJi~x!5@~Ncq!~x!#†Fc1
vs i1c2

vs i
DJ 2

12m2
1•••Gc q̄

†
~x!1H.c.

~A11!

Finally we show that we may use the equation of mot
in order to rewrite the current operators. One may derive
Schwinger-Dyson equation19

^0uT $@~G iMcq!~x!#†c q̄
†
~x!cq~y! c q̄~z!

1 iG i†~x,y! c q̄
†
~x! c q̄~z!%u0&50, ~A12!

whereG i is a local operator and may include the gluon fie
but not the quark or antiquark field, e.g.G i(x,y)5s idD(x
2y), Di(x,y), etc. The second term does not contain
quark pole, hence it does not contribute to the on-shell a
plitude. Thus, adding@(G iMcq)(x)#†c q̄

†(x)1H.c. to the cur-
rent operatorJi(x) does not affect the on-shell amplitude.

APPENDIX B: TIME-ORDERED PERTURBATION
THEORY

Here, we derive the rules for calculations of the on-sh
quark-antiquark scattering amplitude in time-ordered~old-
fashioned! perturbation theory. TheS-matrix element be-
tween the eigenstates of the free Hamiltonian defined in
~32! with an infinite time separation~asymptotic states! is
given by

19This follows from

E Dcq

d

dcq~z!
G i†~x,z! c q̄

†
~x! cq~y! c q̄~z! eiS50

and integrating overz.

FIG. 14. The diagrammatic representation of Eq.~A8!. The first
two diagrams give rise to a wave function renormalization comm
to Fig. 13. The third diagram is one-particle irreducible with resp
to the leg with ^ , hence it does not contribute to the on-sh
amplitude.
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Sf i5 lim
T→`

^pW ,2pW ,l,l̄ue2 iHTuqW ,2qW ,l8,l̄8& ~B1!

5 lim
T→`

R dP0

2p i
e2 iP0T

3^pW ,2pW ,l,l̄u
1

P02H1 i e
uqW ,2qW ,l8,l̄8&. ~B2!

In the integrand, we see the Green functi
G(pW ,qW ;l,l̄,l8,l̄8;P0) introduced in Eq.~31!. We expand
the right-hand-side inV, whereH5H01V,

1

P02H1 i e
5

1

P02H01 i e
(
n50

` S V
1

P02H01 i e
D n

,

~B3!

and insert the completeness relations in terms of the eig
states ofH0. One readily sees that, at each order of the p
turbative expansion, the free propagator poles (P022vpW

1 i e)21 and (P022vqW1 i e)21 are attached at the both end
Therefore, if we write

^pW ,2pW ,l,l̄u
1

P02H1 i e
uqW ,2qW ,l8,l̄8&

5
Mqq̄→qq̄~P0!

~P022vpW1 i e!~P022vqW1 i e!
~B4!

and set 2vpW52vqW5As, we find

Sf i5 lim
T→`

R dP0

2p i
e2 iP0T S 1

P02As1 i e
D 2

Mqq̄→qq̄~P0!

~B5!

5 lim
T→`

]

]P0
$e2 iP0T Mqq̄→qq̄~P0!%uP0→As ~B6!

5 lim
T→`

e2 iAsT$Mqq̄→qq̄
8 ~As!2 iT Mqq̄→qq̄~As!%.

~B7!

The second term in the last line represents the dominant t
asT→`. Thus, we obtain the reduction formula Eq.~50! as

n
t FIG. 15. Typical diagrams which have power countin
bn0 (aS /b)n for n@n0. The ghost is connected with the uncross

ladders ofqq̄ with a finite number@&O(n0)# of lines.
1-16
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well as the rules for calculations of the scattering amplitu
in time-ordered perturbation theory.20

Following similar steps, one can show that in general
Green functionG appears as an intermediate matrix elem
when one evaluates a transition amplitude involving con
butions from the quark-antiquark bound states using tim
ordered perturbation theory.

APPENDIX C: ABSENCE OF BOUND STATE POLES
IN EQ. „46…

We show that the state given by Eq.~46! cannot accom-
modate a pole which is degenerate with any of the qua
antiquark bound state poles, (P02M n1 i e)21. We first note
thatQB anddO have the ghost number11 and21, respec-
tively. Suppose this state contains some of these bound
poles. Then, the matrix element composed of this s
should have a power counting in terms ofaS andb as

^pW ,2pW ,l,l̄udO
1

P02H1 i e
iQB uqW ,2qW ,l8,l̄8&

;bn0(
n

cn ~aS /b!n3@11O~1/c!# ~C1!

20The phase factore2 iAsT always appears in a perturbative eval
ation ofSf i . It is irrelevant if we are interested only in the absolu
value uSf i u.
s.

v.
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for somen0, since P02M n5@12CF
2(aS /b)2/4l 2# mb2 at

leading order. It is known that the diagrams which can ha
the leading power counting (aS /b)n are only the uncrossed
ladder diagrams; see Sec. III. Therefore the diagrams wh
can contribute tobn0 (aS /b)n for n@n0 are only those dia-
grams where a ghost is connected to one of the uncro

ladders ofqq̄ with a finite number@&O(n0)# of lines; see
Fig. 15.21 After integrating over the loop momenta, the
remains no pole in theP0-dependence of the sum of th
diagrams, in the same way that a usual one-loop diag
does not exhibit a pole but rather contains branch point~s!;
cf. Eq. ~73!.

We may restate it differently. If a ghost and a nonrelat

istic qq̄ pair should constitute a boundstate, intuitively t
sum of the ladder diagrams with multiple gluon exchang

between the ghost andqq̄ pair may exhibit a bound stat
pole. Since the coupling of ghost and gluon is suppressed
powers ofb, the binding energy of the bound state shou
scale differently from~have more powers ofaS than! the
Coulomb binding energies~if the bound state should exist a
all!.

21We discard the diagrams without cross talks betweenqq̄ and
ghost sectors; see Sec. VI.
D
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