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A nonrelativistic bound state formalism used in contemporary calculations is investigated. It is known that
the effective Hamiltonian of the bound state system depends on the choice of gauge. We obtain the transfor-
mation charge& of the Hamiltonian for an arbitrary infinitesimal change of gauge, by which gauge indepen-
dence of the mass spectrum and gauge dependences of the bound state wave functions are dictated. We give
formal arguments based on the BRST symmetry supplemented by power countings of Coulomb singularities of
diagrams. For illustration(l) we calculateQ up to O(1/c) and (2) we examine the gauge dependences of
diagrams for a decay ofqﬁbound state up t@(1/c) and show that cumbersome gauge cancellations can be
circumvented by directly calculatinQ. As an application we point out that the present calculations of the top
quark momentum distribution in the threshold region are gauge dependent. We also show the possibilities
for incorrect calculations of physical quantities of bound states when the on-shell matching procedure is
employed. We give a proof of a justification for the use of the equation of motion to simplify the form of a
local NRQCD Lagrangian. The formalism developed in this work will provide useful cross-checks in compu-
tations involving NRQED or NRQCD bound states.

PACS numbds): 11.10.St, 12.20.Ds, 12.38.Aw

[. INTRODUCTION isms are known to be dependent on the choice of gauge.

Recently there has been much progress in our theoretical The purpose of this paper is to investigate gauge depen-
understanding of nonrelativistic QED and QQDRQED  dence of a nonrelativistic bound state formalism used in con-
and NRQCD bound states such as positroniuyiy,and rem-  temporary calculations[3,14,16—20,28 which is also
nant of toponium bound states. Following the idea of nonrelclosely tied to the potential-NRQCD formaligi]. Our mo-
ativistic effective field theory proposed by Caswell and Le-tivations for the study are as followd) In the present fron-
page[ 1], the formalisms necessary for precise descriptions ofier calculations of higher order corrections to physical quan-
these bound states have been developed signifidghtly1].  tities of bound states, often the Feynman gauge is used to
At the same time there appeared many new calculations afalculate typically ultraviolet radiative corrections whereas
higher order corrections to physical quantities of both thehe Coulomb gauge is used to calculate corrections originat-
NRQED[12-14 and NRQCD bound stat¢45—-24 (bound ing typically from infrared regions. Although much care has
state mass, decay width, production and decay cross sectiorixen taken to calculate consistently in each gauge separately
etc). Despite these developments, a completely systematigauge independent subsets of the corrections, it is desirable
formulation necessary for computations of these physicalo clarify gauge dependences of the formalisms actually used
guantities in perturbative expansions has not been estaln these calculationgll) We would like to find transforma-
lished yet. Among the current technologies, the asymptoti¢cions of bound state wave functions when we change the
expansion of Feynman diagram®] seems to be the most gauge-fixing condition. We may apply these transformations
suited for calculations of the physical quantities, in particularto study various amplitudes involving bound states. Since a
for fixed-order calculations. In addition, effective field theo- physical amplitude is gauge independent, once we know how
ries are powerful tools in order to sum up various large logathe wave function transforms, we know how other parts of
rithms originating from the widely separated scales inherenthe amplitude should transform to cancel gauge dependence
in the problems. Efficiencies and correctness of various efas a whole. This would provide a useful cross check for
fective theories are, however, still under debd&ee Refs. identifying all the contributions that have to be taken into
[8,10] for discussions on the current status of the formal-account at a given order of perturbative expansion.
isms) Already some time ago, gauge independence of the mass

A notable characteristic in these new developments is thagpectrum of the NRQED bound states was shown and stud-
the conventional Bethe-Salpeter equation is no longer beingd in detail based on the Bethe-Salpeter formali&s-27:
used to calculate the spectrum and wave functions of boundRef.[25] gave a brief discussion; R¢26] examined a Feyn-
states. Instead, one starts from the nonrelativistic Schraman gauge calculation of the bound state spectrum at next-
dinger equation(of quantum mechani¢svith the Coulomb  to-leading order very closely and showed that an infinite
potential. Then one adds to the nonrelativistic Hamiltoniamsnumber of two-particle irreducible diagrams contribute in
relativistic corrections and radiative corrections as perturbathis gauge, which in the end all cancel due to fairly compli-
tions to obtain an effective Hamiltonialguantum mechani- cated gauge cancellatioiihis feature is much more com-
cal operator valid up to a necessary order of perturbativeplicated in comparison to the calculation in Coulomb
expansion. Effective Hamiltonians used in these new formalgauge); Refs.[27] gave formal arguments as well as pertur-
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bative analyses which apply to all orders of perturbation seistic regions. In this case one should calculate amplitudes for

ries. a number of processes to determine all the coefficients. The
In comparison to these earlier works, new achievementproblems are also related to the use of the equation of motion
of the present work are the following. to simplify the Lagrangian since the on-shell condition is the

We use the Becchi-Rouet-Stora-Tyu(BRST) symmetry  equation of motion for an asymptotic field. For comprehen-
to formulate our arguments, which allows us to treat both thesiveness we prove in an appendix that it is justified to use the
NRQED and NRQCD bound states on an equal footing. Irequation of motion to simplify the local NRQED-NRQCD
particular we are able to discuss gauge dependence of thegrangian and also to simplify local current operators; to
NRQCD bound state formalism rigorously using this sym-the best of our knowledge such a proof has never been pro-
metry. vided explicitly, although similar proofs for other effective

Presently, there exist several different definitions of anfield theories have been givgé#8,29 and the claim itself is
effective Hamiltonian beyond leading order. We introducewidely accepted already.
an effective Hamiltonian defined naturally in the context of Below we will use the language of QCD consistently;
time-ordered(or “old-fashioned”) perturbation theory of nevertheless all of our arguments hold also for the QED
QED-QCD. Then we obtain a transformation char@e boundstates. Throughout the paper we neglect nonperturba-
(quantum mechanical operatosuch that the effective tive effects(those effects which are typically parametrized
Hamiltonian and the bound state wave function change as by Aqcp) and restrict ourselves to arguments which can be

understood from a summation of perturbation seriegdro
SHei(PO)=[Her(P%) —P°1iQ(P%) —iQ"(PP) all orders.
0 0 The organization of this paper is as follow. After review-
X[Hen(PY)—PY], . :
ing general aspects of gauge dependence of the conventional

So=—iQ-¢ r_elativistic aq t_)ognd state _formalisn@Sec. ), we summa-
rize characteristic properties of the nonrelativistic bound
when the gauge-fixing condition is varied infinitesimdily. States from the viewpoint of the leading Coulomb singulari-
Also, gauge independence of the spectrum is shown usinges: the|r_ gauge independence anq some nontrlwal fea_tures
the transformation. We define the chaiQeof the effective re explalnec(Sec;lll). Then we define the effective Hamil-
Hamiltonian directly in terms of the BRST charge and thetonianH for aqq system and investigate its gauge depen-
field operators in the QED-QCD Lagrangian. dence as well as gauge dependences of the spectrum and
For illustration: (1) we calculate the transformation wave functions of the bound states using the BRST symme-
chargeQ at next-to-leading ordef2) we demonstrate gauge try, within the framework of perturbative expansions iw;1/
cancellations among diagrams by examining an infinitesimain particular we define the transformation chaQeof the

gauge transformation of the amplitude fogg bound state €ffective HamiltonianSec. 1V, App. §. We clarify possible

decaying intoq’?’W*W*. From the latter example, one can problems in the determination éf if one uses the on-shell

. matching proceduréSec. V). For illustration, we present a
deduce that the present calculations of the top momentum gp €Sec. V) ' P

T = ] calculation of the charg® at O(1/c), corresponding to an
distribution in thett threshold region at next-to-next-to- jnfinitesimal gauge transformation from the Coulomb gauge;
leading order are gauge dependent.

: - ) .~ we also examine gauge cancellations in the decay amplitude
Another subject of this paper is to study the problems in a

i AV YaiY Yo
- . o of aqq bound state intg’'q"W"W™ at the same orddSec.
determ_lnatlon O.f the effective l—_|am|lton|an fror_n the_on She"VI). Conclusion and discussion are given in Sec. VII. In
scattering amplitude of a fermion and an antifermion. Gen- . . o .
. . LT Appendix A we give a proof to justify the use of the equation
erally a fermion and an antifermion inside a bound state are : 2 .
Lo ) . of motion to simplify a local NRQCD Lagrangian. Some
off-shell so that use of a Hamiltonian determined in the on- . : . : . .
. . . _detailed discussions are given in Appendixes B and C.
shell matching procedure may lead to incorrect calculations

of the physical quantities of the bound state. We clarify this

point. Il. GAUGE DEPENDENCE OF THE RELATIVISTIC

The same prOblemS do not occur if we use a local BOUND STATE FORMALISM: GENERAL ASPECTS
NRQED-NRQCD Lagrangian and determifi&ilson) coef-

ficients in the Lagrangian by matching onto the full theory, ~We consider the BRST invariant QCD Lagrangian
i.e. by matching on-shell amplitudes of all relevant physical
processes to those of perturbative QED-QCD in nonrelativ-

£==SU(G* Gyl + 2 YliB(A)=me] Y+ Lor.re,
'One may conjecture that gauge dependence can be described by @
unitary transformation, since effective Hamiltonians are heriiite
we neglect decay widths of bound statead the bound state spec- where generally the sum of gauge-fixing and ghost terms can
trum is invariant under this transformation. For our effective Hamil- be written in a BRST exact form as
tonians, however, the transformation is not unitétye charge is
not hermitg, since the Hamiltonians are dependent on the c.m. o
energyP? of the system. Loeiep=1iQg,tr{cF]} 2)

105001-2
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P/2+p P/2 +q

1
\ / X=§(x1+x2), X=X1— Xy,
w,,’|5=\/|52+|\/|,2,. (8)

In this paper we assume that the decay width of a bound state
/ \ is infinitesimally small except where it is stated otherwise.
Py-p Ph-q An infinitesimal deformation of the gauge-fixing function,

F—F+ 6F, induces a change of the Lagrangian
FIG. 1. The four-point functiorG(pqP). P/2*=q denotes the

four-momentum of incoming quark-antiquamRf2=p denotes the

4 i B
four-momentum of outgoing quark-antiquark. J d*x 6£={iQg, 50}, 50—J d*xtr{c 5F]. (9)

with the BRST chargeQg and an arbitrary gauge-fixing Accordingly the Green function changes as
function F=F(A,#,¢,c,c,B) [30].2

Define a four-point functioriFig. 1) as 8G(X1,X2,X3,Xa)
G(Xq 1 Xp,Xg,X4) = (O T ¢h(Xq) (Xo) (Xg) th(Xa)| O) 3 = —(0|T{Qg, 80} th(X1) (%) h(X3) h(x4)[0)  (10)
d'p d*q d*P = —(0|T 80 Qg ¥(x1) ¥ X2) ¥(X3) ¥(x4)]|0). (1)
[ S S G ap)
(2m)" (2m)" (2m)

P Suppose we are interested in the bound states which can
XeXF{—I E-(X1+X2—X3—X4) be created from the vacuum via gauge invariant operators,
e.9.4(X) (X), Y(X)D (x), ¥(x)y*i(x), etc. For example,
. . in the above Green function we may Sgt=X,=X, X3=X4
~IP- (X1 =Xp) 10 (X3=Xg) |. (4) =y and contract color indices to make color singlet opera-
tors ¢(X) (X)), ¥(y)¥(y). It then follows from[Qg, /]
Here and hereafter we restrict our discussions to a quark=0 that
antiquark of some specific flavor and omit the flavor indlex
The field operators and states are those of the Heisenberg SG(X,X,Y,Y) . =0. (12)
picture. A quark-antiquark boundstate contributes a pole to "y |C°'°rsmglet_

the Green functior&(p qP). In the yicinity of a pole corre-  comnaring this with Eq(5), one sees that both the mass and
sponding to a bound Stat?;m (with quantum numbew,  the residue of any bound state which couples to the operator
massM, and momentumP), the Green function takes a Zw are invariant:

form [31]
_ oM ,=0 (13
Xop(P) X, 5(Q)
G(pqP)= ’ ' + (regular aP’— w, ),
(PP = e arie T —~0u8) g
5 — .
8(0] p(x)(x)|v;P)=0,
where
_ R i.e.
(O|T ¢h(x1) h(X2) | v; P)
4 o dp d*p
=g i(onpXPX) f ———e "y, 5(p), (6) d f oy XvP(P) =0. a4
(2 77)4 ’ (2m) color singlet
X0 8(P)=x05(P) T (¥°2 ), (7)  Since botH0) andy(x) #(x) are BRST invariant, it implies
that the bound state satisfies the physical state condition
2In our convention, the BRST transformation is defined as QB|V;I5)=O. (15

{iQg,y}=dsy=ig cy, Sgy=igyc, 8A,=D,C, dxc=igc?, .
5sc=iB, and6gB=0, whereB is the Nakanishi-Laudrup auxiliary Note, however, that generally the bound state wave function
field. X»,p(P) depends on the gauge-fixing condition:

105001-3
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1 d %/B

((Zyﬁ).?

FIG. 2. The ladder diagrams for the proce,éS—»qa The dia-

(L

(%/B)*

gram wheren uncrossed gluons are exchanged has a behaviol!

~(ag/B)" near threshold.

8x,,6(p)=— F.T.(0|T O[ Qg ,¥(X) ¥(y)1|v; P)
— F.T.(0|T 98O [c(X) h(X) h(y)
+ () (y)e(y)]|viP),

where F.T. stands for an appropriate Fourier transform.
Any physical amplitudg/f;outi;in) which involves the

(16)

PHYSICAL REVIEW D61 105001

@: fiss o« §

E B <1 xR = %

FIG. 3. The Cutkosky rule for evaluating the imaginary part of
the 1-loop diagram. The factors g and 8 are shown explicitly.

Hence, the contribution of theth ladder diagram will not be
small even for a larga if B<ag. Thatis, higher order terms

in ag remain unsuppressed in the threshold region. These
singularities inB which appear in this specific kinematical
configuration is known as the “Coulomb singularities” or
“threshold singularities.” The singularities arise because, for
a particular assignment of the loop momenta, all the internal
particles can simultaneously become almost on-shelBas
—0.

The appearance of the factord/B)" may be seen as
follows. First, consider the one-loop diagram. iltsaginary
part can be estimated using the Cutkosky ridet-diagram
method, see Fig. 3. Namely, the imaginary part is given by

quark-antiquark bound state contributions includes the abovée phase space integration of the product of tree diagrams.

Green functionG(pgP) as a part of it. Since the initial and
final states satisfy the physical state conditid@g|i;in)
=Qglf;in)=0 and the theory is BRST invariant, the ampli-

tude is gauge independent. Hence, the bound state poles in-

The intermediate q phase space is proportional fas

dd,(qq) = %d cos, (18

cluded in the amplitude are also gauge independent. An in-

teresting question is whether the Green functi®(pqgP)

where@ is the angle between the momenta of the intermedi-

includes any unphysical pole, which does not contribute tte and final quarks in the c.m. frame. Tqa scattering

the physical amplitude, close to or degenerate with one of th

physical bound state polésAs for nonrelativistic quark-

antiquark bound states the answer is no, as will be shown i

Sec. IV and in Appendix C.

IIl. NONRELATIVISTIC BOUND STATES:
LEADING COULOMB SINGULARITIES

It is well known that, in describing a system of a nonrel-

ativistic color-singlet quark—antiquarlqa) pair, naive per-

turbation theory breaks down due to formation of bound

states[32,33. Intuitively, this is because the slowandq
are trapped by the attractive force mediated by exchange

process of ajq pair.

%

gluons and multiple exchange of gluons between the pai
becomes significant. We review this property in a production

fliagram with a-channel gluon exchange contributes a factor
~ ag/ B2 since the gluon propagator is proportional t@2;/
the propagator denominator is given by

2

k2=—|k|2:—%(1—cos¢9), (19

wherek denotes the gluon momentum. Thus, we see that the
imaginary part of the one-loop diagram has the behavior
B- asl B?= agl B. Analyticity implies that the real part of
the one-loop diagram has the same structures/B. By
repeatedly using the cut-diagram method, one can show by
duction that the imaginary part of the ladder diagram with
uncrossed gluons behaves-agas/B)", see Fig. 4.
Alternatively this fact can be shown by a power counting
method[8]. The relevant loop momenta in the loop integrals

q anda 'y*—>qa just above the threshold. As we will see
below, the ladder diagram for this process witlgluon ex-
changes has agehavie{(asl/s’)“, see Fig. 2. Heres is the

velocity of g or q in the c.m. frame,

4m?
s

17

3A typical example is theR,-gauge for electroweak interaction
where an unphysical polek{—¢M3,+ie) ™t is included in the
gauge boson propagator.

p°—m, p°~m~0(B?), p=-p~O(B),  (20)
({1 = flsa—(] - |
Box wh < % = (WY

etc.

FIG. 4. The cut-diagram method for evaluating the singularities
of the higher order ladder diagrams. The factorsxinand B are
shown explicitly.

105001-4
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Here,p, Eandk represent the internal momentaapfaand
the gluon, respectively, in the c.m. frame. For such configu- FIG. 5. The self-consistent equation satisfied by the leading sin-
rations,q(a) and gluon propagators are counted~a$/ﬂ2, gularities of theqqgy vertexI'*. One should take only the leading

and the measure for each loop integratiatik/(2m)* as  Part~(as/B)" on both sides of the equation.
5

Thus, the ladder diagrams contain the leading singularitiegomomb gauge. Equatiof22) also ho_Ids for the momenta
N(aslﬁ)n_ Other diagramsin particular crossed g|u0n dia- (20) if we note that the Off-Sheth andq wave functions are
grams do not possess the leading singularities but only nongiven by
leading singularities- a2*'/8" (1=1).

As the higher order terms iag cannot be neglected near
threshold, we are led to sum up the leading Coulomb singu- _
larities. Let us first discuss gauge dependence of the ampli- —p+m=m(1-9°)+0O(B). (24

tude when this summation is performed, in particular be- ) ) )
cause only the ladder diagrams are included. The exacthus, gauge independenceafs 1S ensured by gauge inde-
amplitude for the process*e*—>qa near threshold can be pendence of the leading partl/g" of the gluon propagator

p+m=m(1+°)+O(B), (23

. in Eq. (22).
expanded in terms afs and§ as Let us denote b)l;“ the sum of the leading singularities
0 of the vertexy* —qq. It satisfies a self-consistent equation
MU g)= c /8)" + (nonleading ter as depicted in Fig. 5. Retaining only the leading part
(as.8) n§=:0 las/B)" +( g terms ~(as/B)" on both sides of the equation, one obtains the

(21 vertexI'* as

1+y0 1—)/0

The full amplitudeM (! is gauge independent, so must be [he R

the each coefficient,. Because only the ladder diagrams B

possess this type of singularitighe most singular parof

the ladder diagrams has to be gauge independent. whereE= \/s—2m is the energy measured from the thresh-
To see this explicitly, we examine gauge dependence o|d. G(p;E) is the Green function of the nonrelativistic

the gluon propagator. In a general covariant gaugegiipe  Schralinger equation with the Coulomb potential:

—(( scattering amplitude in the threshold region is given by v2
a
[( - CF—S) —(E+ie)

m r

)<E_52/m)a(5;5>, (25)

G(r;E)=8%r), (26)

— |
us v*u——— v 1—
£y Ik2+i6|:gp, ( g)

kK,
k2

- 14
UiY Us

é(ﬁ;E>=fd3Fe*‘5'fG<F;E>, (27)
— el
=uiYui————vYu X[ 1+

sy u'_|22+iev'7 vix[1+ 0B, 22 whereCg=4/3 is the color factor. The analytic expression of
G(F; E) is given in terms of the hypergeometric function and
where the subscripts and f stand for the initial and final includes the boundstate spectrum below threstotd0. Al-
state, respectively. We have used the fact that the space cofg/natively, we may write
ponents of the currentsi;y*u; andv;y"vs, are orderg in s 2
the c.m. framé. Note that the leading part of the gluon é(ﬁ'E):— én(P) ¥ (0) (29)
propagator is identical with the Coulomb propagator in the ' "E—E,tie’

whereqbn(f)) and ,,(r) are the Coulomb wave functions in
“4In counting the powers g8 of a loop integral, the singularity of _momentum space and coor(_jlnate space, respectively. fiere,
: o : . includes the bound states with,= — (Cras)?m/4n? and the
the integrand will increase if one assigns a large powes td the ) - 6 F&s
momentum in the propagators, but the integration measure is mof€@ntinuum states witfe,>0.

suppressed. The optimal assignment of the ordgt ia each inter- Atthis stage, we see a nontrivial consequence of the sum-
nal momentum must be sought to identify the most singular part ofnation to all orders invs. At any order Of_the perturbative
the integral. This procedure leads to ER0). expansion inag, the amplitude fory* —qq is zero below

SDirac representation of the-matrices is most useful in power
countings, wherey? is diagonal andy'’s are off-diagonal. The
quark spinor wave function has the upper two componentg(af) R .
and the lower two components suppresseqBbyice versafor the ®To see that E—p?/m)G(p;E) is a function of as/B, one
antiquark. should identifyE—mp?2 and|p|—mp at leading order.
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threshold E<0. For example, the absorptive part of a quark©(1/c)  corrections  include a2"Y/B"=ag(as/B)"

loop contribution to the vacuum polarization function =B(as/B)" 1. Note that the parametgd is guaranteed to
2w papr ) be small if &g is small, since we are interested in the sum-
(P2g#"=P“P")Im I1(P%) mation of the leading singularities only in the kinematical

_ - region where naive perturbation theory breaks dovh (
= f d*x &P OVIm (O] T ¢h(x) y*(X) gh(y) y" ()| 0) <ag). The bound state mass is given as a power seriegin
since they are independent Bf° Throughout this paper we

(29 setc=1 in our formulas in order to maintain simplicity of

expressions; one may easily count the power ofl/ count-
vanishes below threshold. After summation of the leadingng the powers ofrs and 8.

singularities, however, it is given in terms of the Green func-
tion at the origin[32]

IV. THE EFFECTIVE HAMILTONIAN

|qu(s)=N—"2|mG(F:o; E=\s—2m) FOR A qq SYSTEM
2m In this section we discuss gauge dependences of the spec-
trum and the wave functions of the nonrelativistic bound
ol n(0)|2 S(E-E,), (30)  states in a general framework.
2m? Let us introduce an effective Hamiltonian for a color-

singletqasystem as follows. First we define a Green func-
ntion for aqq pair in the c.m. frame as

which in fact diverges at the positions of bound states,
=E,<0. This discrepancy before and after the summatio
can be traced back to the fact that the linai=0 in the
propagator denominators does not commute with the summa-

> Sy Yy 5 7-p0
tion to infinite orders inag. Namely, if we pursue the per- G(p.a:N M AT NPT

turbative calculations with a finite>0, the absorptive part 1

ImIT,(s) remains nonzero below threshold at each order. =(p,—p.\ Mﬁ a,— .\ \'),
After the summation, constructive interference effects result P*—H+ie

in a drastic magnification of the amplitudel/e at E=E,,. (31)

In order to reach below the threshold for the process

e e*—>qa we need to include a subsequent decay process,

e.g.q andq decaying into lighter quarks, arq annihilating where H denotes the full QCD Ham|lton|a(1nclud|ng the

into multiple gluons, etc. Then the corresponding amplitudegauge-fixing and ghost termgp, —p,\,\) is an eigenstate

is nonzero and gauge independent both above and below tieé the free HamiltonianH,=H|,__., and represents a color-

threshold. Summation of the leading singularities can be pefsinglet two-body state composed of a free quark-antiquark

formed in the same way as above and leads to the sangir:

vertexI'#, except that in this case the quark momentyh

needs not equafs/4—m? (as required for an on-shell quark e — oy

as long as it is in the nonrelativistic regién. [P, =P.NN)y=ag,b_ 5 10)red color singles Ho|O)tree=0-
Below we discuss gauge dependences of the spectrum and (32

the wave functions of the nonrelativistipq bound states

within the framework of their calculations in perturbative t (b") denotes th i tor of a f K
expansions. An appropriate expansion parameter of thlg| re,a’ ( ) enotes the creation operator of a Iree quar

problem is 1¢, inverse of the speed of light, whanis re-  (antiquarl; p (—p) and\ (X) denote the three momentum
stored as a dimensionful paramef&i. In this case both and the spin index of (q) in the c.m. frame, respectwely
as=g’/4mfic andB=v/c areO(1/c) quantities’ Therefore PO represents symbolically the c.m. energy of gfgsystem,
the sum of the leading singularitiege§/8)" is counted as but we take the three energie®®, 2 52+m2 and

O(1). Perturbative corrections to the bound state wave func-
(1). 2\/q 2+ m?, not necessarily equal to one another. Note that

tion are given as a double expansion &3 and 3, e.g. -
the above two-body state is not a physical sta@g|p,
—p,\,\)#0, which stems from the fact thatl, is not
"The nonzero decay width of the bound stdte renders the BRST invariant. Then we define an effective Hamiltonian

S-function in Eq.(30) to the Breit-Wigner distribution which operates only qn the subspace spanned by the t_WO'
body states such that it generates the same Green function:

SE-E) ry2
mTole—E)—>——————————.

" (E-En%+T24

8Here, B symbolizes botrfn5|/mc and VE/m¢ for a nonrelativis- %In addition to powers ofrg and 3, there appear also powers of
tic off-shell quark-antiquark. log ag and logs in these perturbation series.
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turbative expansions in 4/ As we have seen in the previous
section, the leading order Hamiltonian is given'by
~2

o
P .2

(LO) — L
m r

Hef =2m+ (35

Let us briefly explain the background for why we intro-
duced the Green function, E¢31). Suppose we consider
contributions from aqq boundstate to some physical pro-

cess. In a calculation of the corresponding amplitude using
time-ordered(or “old-fashioned”) perturbation theory, the

dashed line represents the instantaneous Coulomb gluon; the waghove Green function always appears as a part of that calcu-

line represents the transverse gluon.
G(P.G;N N N5 PO)

1
PO—Hex(P%) +ie

=(p,~ P\ G, — G\ A7),

(33

Namely, the effective Hamiltoniafa quantum mechanical

operatoy is defined by
He(P%)=P°~G~1(P?), (34)

where G~ X(p,q;\ N\ NP =(p,—p,\ NG Y(PY)q,

—g,\',\') is the inverse of the Green function restricted to

the two-body subspace [take the inverse of
G(p,d; N\, N, \";PY) considering it to be a matrix with in-
dices @,\,\) and @,\’,\")]. For analyzing the nonrelativ-

lation. This is parallel to the fact that the four-point function
Eq. (4) appears as a part of the calculation of the same am-
plitude using thelLorentz covariant Feynman rules. Time-
ordered perturbation theory is often more suited for calcula-
tions of nonrelativistic processes because additional quark-
antiquark pair productions are suppressed by powersoof 1/

The rules for time-ordered perturbation theory g3d]:
draw time-ordered diagram.g. time flows from right to
left), assign a matrix elemenri|V,|j) at the time of each
vertex, and assign a propagatorA¢E;+ie) to an inter-
val between two adjacent vertices. Heve, is an interaction
term,H=H,+3>,V,; P%is the total energy of the system;
li) and E; denote the eigenstate and the eigenvalue of the
free Hamiltonian, respectivelyo|i)=E;|i). Then we sum
over all the intermediate states, where in general the energy
is not conservedg; # PP.

Although there are many ways to derive the rulese
Appendix B, simple correspondences to the ordinary Feyn-
man rules may be seen by integrating over the time compo-

istic qq bound states, one first calculates the effective Hamilnents of loop momenta and over the time components of
tonian in a series expansion incl/then uses ordinary external particles’ momenta of a Feynman diagram for an
perturbation theory in quantum mechanics for calculating theinamputated Green function. In Coulomb gauge, decompos-
spectrum and the wave functions of the bound states in peing the quark and transverse gluon propagators as

i(p+m i

2_2.i,. no L A+(5)7’0+ 0. - A—(F;)YO, (36)
p°—m°tie p —wptle P +wp—ie
- . wpE(m=p-y)y°
wp=\pZ+m?,  A.(p)=—" : , 37
2wy
(s kiki)— PR ! ! (39)
riel TR 2k R KRR rie KO+ [K|—ie)

and using the Cauchy theorem, every wave function becomes or[ﬁfgel}:xu(ﬁ,)\)uT(ﬁ,)\):A+(|5)] whereas the energy
conservation is violated. The ghost propagator can be handled similarly to the transverse gluon propagator. Integrating the
Coulomb propagator is trivial because it is independent of the energy of the gluon. By way of example, the diagram in Fig. 6,
which contributes to the Green functi¢h is given by

Ppresently the QCD effective Hamiltonian is known upc®1/c?) in Coulomb gauge, see efd.6,17.
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(Cg-4mag)? dk — .
(PO—Zw,;-i-ie)(PO—de—i—ie)f (zw)3u(p’)\) ¥ A (k=p) y u(q,\")
Xv(=q,\") Y A_(q+K) y°v<—5,ﬁi(&i—ﬁ o
2|k kI?/]g+k—pl?

x : (39)

(PP~ wg—wi_p— w5~ wg+k+i€)(PP—wi— g i— K| +ie)

We return to the discussion of the Green functi@rand the effective Hamiltoniai ;. If we vary the gauge-fixing
function, the QCD Hamiltonian changes-hs

H—H—{iQg, 50}, 5o=fd3>2 tr[coF], (40)
and the corresponding change of the Green function is given by
SG(P, AN NN N PO =—(p,—p,\ A ! {iQg, 50} ! ld,— g\ \) (42)
pyqu IEAS] il 3 pl pi 1 PO_H+|E B PO—H+|6 q’ q' ’

1
50
°—H+ie P°-H+ie

=—<5,—5,A,Y|iQBP 14, — AN \)

I — 1 1 . . —
—(P,—P,A\,A 60 i =, NN 42
(P, =P AN S = 00 5 ——iQala. g ) (42)

Since Qg|p,—p,\,A)#0, generally 5G#0, so the corre- (v;eff| SHeg(M,) | v; ff)
sponding effective Hamiltonian also changésl.#0. As Mv=<y.eﬁ| 1-H. (M )|v'eff)'
we use the effective Hamiltonian to calculate systematically ' eft 2
the bound state spectrum and the wave functions in pertufy, e nymerator, the variation of the Hamiltonian can be
bative expansions in &/ we would like to see how they | itten as
depend on our choice of gauge.

The massM, of a bound state is given as the position of sy _.(p%) = — sg-1(p?)
a pole of the Green functio@. Equivalently, it is calculated
from Hq4(P°) by solving =[P°—Heg(P%)] 8G(P%) [PO—Hu«(P%)]  (45)

(44)

v;effy=0. (43) according to Eq(34). Equationg44) and(45) imply that 5G
should contain a double polePf—M ,+ie) 2 in order to
In the discussion to follow, we consider only those boundgenerate a nonzero shift of the ma#d,, #0 [27]. &G con-

. . _ . 71 .
states which appear already at leading order|ioeff).12 tains, however, only a single pol®{—M,+ie)"*, since

[Mv_Heff(Mv)]

From the definition ofM, above, one may evaluate its de- the state

viation when the effective Hamiltonian is varied infinitesi- 1

mally: 50— iQg|P,— PN (46)
S he QelP TP

in Eq. (42) does not include the bound state pole. This fol-

otherwise the change of the Hamiltonian takes a different form. Sel®Ws from the physical state condition HA5). Also one can

Sec. VI for a more general case. see explicitly by power countings of diagrams that at any
2\ote that at leading order all bound states in the spectrum ar@fder of 1¢ expansion the above state does not contain this

the Coulomb bound states which are physical stdtesparticular, ~bound state pole; a proof is given in Appendix C. Thus, the

all these states can be created from the vacuum via gauge invaria@@und state mass is gauge independent in spite of the fact

operators. It already suggests that to all orders of there are no  that the effective Hamiltonian is gauge dependent.

unphysical bound states in the spectrunigf which are degener- In addition, the proof in Appendix C also shows that there

ate with these physical bound states. is no unphysical state which contributes a pole to the Green

Y'Here, we assume thaiF is independent oBpA,, doC, etc.;
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function@ that is degenerate with or close to one of the poles Next we turn to the bound state wave function, which is
of the physical bound states of our interest. Stated more e>deflned from a Laurent expansion of the Green function at
plicitly, there is no unphysical bound state with a blndlngP =M, as?

energy~ a’Zm.

Now let us define a quantum mechanical oper&¢P°) GG NN N PO = @,(P.\N) @3 (AN \)
(which operates only on the subspace of two-body stdugs P A A AA PO—M,+ie
(p,—P. M AQ(PY)|g,— g\ \) +(regular aP®—~M,), (52)
d3q’ L 1 or equivalently,
:f 5 > (P PANQeg——— o
(2m)"amar PHte ¢, (PN N)=(p,— P\ N v;eff) (53)
X 50 1 q',—q’ .\ p> with a normalization condition
PO_H+. 1 1 1
. (vieff| 1—H.(M,) [veffy=1. (54)
ngl(qr,q;}\u')\/r’)\/’)\r;PO). (47)

Alternatively, from the original definition of, Eq. (31), one
Then Q(P° does not include the bound state pold®’( may express
—M,+ie) 1. Q can be interpreted as the generator of the . L
transformation of gauge-fixing condition as seen from the @,(P, N N)=(p,— P\, N |v;P=0), (55
relations -
where |v;P=0) is the eigenstate of the full QCD Hamil-
8G=-iQ G+igQ", (48)  tonian H; see Sec. Il. Then from Eq$42) and (48) the

and variation of the wave function is given by

_ _ 1
— 0\ _ pO7; 0\ _inT/p0 0\ _ pO g _ /R A : D
OHer=[Her(P7) —P~]1Q(P™) —iQ'(P”) [Hen( P7) P(4]§) So,(p.NN)=—(p, p,)\,)\|lQB—Mv_H+I65O|V,P—0>

(56)
The last equation concisely represents the transformation of
the effective Hamiltonian in a form which clearly shows the and
spectral invariance; cf. Eq44). One may easily see that the R
chargeQ has following properties: in gener@l is not Her- 3¢, (PAN)==T[Q(M,)-¢,](P,\,\)
mite, thus the transformation is nonunitai@; vanishes at d3*
leading order of the &/ expansion; beyond leading order, =—j j 4
even at some specific order ofclthe chargeQ contains all (2m)3
orders ofag due to the form of Eq(47). We will confirm
these properties by explicit. caIcuIation; in Sec. VL. % Z {5,—5.)\X|Q(M V)|5I-—Ci.?\',r'>

Another method to verify gauge independence of the B\

bound state spectrum is as follows. The on-sheiscatter- -,
ing amplitude can be calculated using the reduction formula X@,(dNN) (57)
of time-ordered perturbation theory,

when the gauge-fixing condition is varied. The last equation
Mg qq= lim (P°—2w,;) shoyvs once again th& can be interpreted as the transfor-
mation charge.
Looking at Eq.(56) one might think that it is possible to
><(P°—2wd) G(P,a; NN\ N3 PY). (500  mix different gauges in calculations of decay amplitudes of
the bound state. Namely, one might take the wave function
(See Appendix B.If this amplitude is analytically continued , (5 \ \) calculated in one gaude.g., Coulomb gauges
to an unphysical region, it exhibits a pole at the position Ofthe initial state wave function and calculate the rest of the

the boundstate?°=2w;=2wi—M, . If we expand the am-  gecay amplitude in another gauge.g., Feynman gauge
plitude as a Laurent series at the pole

w'; ,a)c"—> pO/2

14

PO fie +(regular a’—M,), (51) 13at leading order of 1¢ expansiony=(n,s,s) and

. : e PN = a(p) &) &NV, M0 (Cragm
and calculate the mad8, in a perturbative series ind/M, " s v 4an?
should be gauge independent at each order of dihce  where £(\)=(\s) is a two-component spin wave function. Ex-
Mq_a_,q_g is gauge independent at any order of perturbatiorpressions ofp, andM, up to O(1/c?) for the bound states can be

series inas. found in[16,19.

Maq—aq=
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Generally final states satisfy the physical state condition Next we consider the bound state wave functions. Gener-
Qg|f)=0, so the above equation may suggest that such ally the wave functionp, changes whe@dg includes a single
calculation gives the correct resihe result of a consistent pole (P°—M ,+i€) 1. For example, if we take

calculation in one specific gaugeThis expectation, how-

ever, is wrong since the two-body states—p,x,\) do not 0G=XG+gX, (60)
span the complete Fock space. This fact will be verified ex-
plicitly in the second example in Sec. VI. I.€.

SHer=[P°—Hex( PO ] X+ X[PP—Hex(P%)], (61

V. PROBLEMS WITH THE ON-SHELL MATCHING e =1 e P7)] [ e(PO], (61)
PROCEDURE the on-shell amplitude is not affected, whetés nondiago-

In the definition of the effective Hamiltonian in terms of Nal in momentum space and does not include the free particle

the full QCD Hamiltonian[Egs. (31) and (34)] we kept the ~Poles P°—2w;) ™%, (P°~2wg)~*. On the other hand, the

energies of the initial and finajastates different fronP?, ~ Wave function varies as
(It corresponds to off-shell initial and final states in the lan-
guage of a Lorentz covariant formulatiprccordingly the
form of H; depends on our choice of gauge. In some Iitera—I hi h L , . diff lcul
tures, however, the on-shell scattering amplitude (&6) is n this case the variation is serious, since different calcula-

" ' S tions of a decay amplitude of a bound state do not lead to a
used instead of the off-shell Green functignin order to . . . X

. - ) L . ._unique result if one uses different,’s connected by the
determine a similar effective Hamiltonian. This leaves, in b ; . he intial p )
eneral, more freedom to the form of the effective Hamil-2>ovc transformation as the Intial state wave functions,

genera, . . One may think that the ambiguity related to the on-shell
tonian than what is due to gauge dependences. The differ-

ence is irrelevant when the Hamiltonian is applied to de_matchlng procedure to determiit,; can be eliminated by

. — directly matching all the relevant on-shell amplitudes to the
scribe an on-shellqq system, whereas the quark and pertyrpative expansion of the same amplitudesvin This

antiquark inside a bound state are generally off-shell. In thigq ks at lower orders of t/expansiongin Coulomb gauge

section we examine how the spectrum and the wave fungs; from the order bf there appear contributions from the

tions of the bound states are affected when we employ the, i asoft gluons™ which include all orders ofs [24] such

on-shell matching procedure to determine the effectivgnat one should really consider the off-shell matching proce-
Hamntoman. . - dure seriously.
First we consider a variation of the bound state mass as \ye conclude, therefore, that the determination of the ef-
we vary the effective Hamiltonian under the constraint that it ctive HamiltonianH . from the off-shell Green functiog
e

gives the same on-shell scattering amplitude. As we havfy favorable, and that the on-shell matching procedure can in

seen in Eq.(45), &G should include a double poleP{ general lead to incorrect calculations of the bound state

B . -2 B . . . .
M,+i€)”“ in order to generate a nonzero mass shift. Wein555es and the physical amplitudes involving bound states.
may try a simplest example:

5¢,=X-¢,. (62

VI. EXAMPLES
v

N AN - U 3
OG(P AN AP )_(PO—M,,+ie)2(2W) In this section we apply our formalism to two examples,

where we study an infinitesimal gauge transformation from
><5(3)(5—ﬁ) Snon, (58 the Coulomb gauge. First example is a calculation of the
transformation charg€; in the second example we study
ie. gauge dependences of diagrams for a decay amplitude of a
bound state.
) Let us consider a class of gauge-fixing functions which
SHeif(PO) =—————[P°~H((P9)1%. (59 interpolates the Coulomb gauge and the Feynman gauge. The
(PT=M,+ie) gauge-fixing function is chosen as

Evidently it does not modify the on-shell amplitudg0),

while it does generate a mass siit,—M ,+AM,,. In the F=—2i
calculation of the bound state mass in a perturbative expan-

sion in 1k, if we add the abovéH ¢ to the effective Hamil-

tonian retaining terms up to some chosen order o) file  from which one obtains
mass is shifted up to the corresponding order. In fact one

may find a variety of examples which can affect the bound

state mass while keeping the on-shell amplitude unchanged. Lopipp=—1r
Nevertheless we consider that it will not create a serious

problem in practice, since we do not see any good reason

why 6H ¢ which has explicit pole structug® should mix in +2itr
the determination oH .

: (63

1 1 .
z mgp .
2B-|—¢9MA +§m2DV A

c (64)

1 s o
E(ﬁMDM-FQDV'D
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after integrating out the auxiliary fielB. Here, £>0 is the -—q -5
gauge parameteg&—0 and é—« correspond to the Cou- G .
lomb gauge and the Feynman gauge, respectively. The gluon ;}1 50 e
propagatoiD ,,(K) is given by ? 3-/3, 880
—i 1 i 0
. _ ot - - &
e b a2)+||2|2a2’ (5 ?

FIG. 7. The tree diagrams which contribute to the chapger
i KkO &m? an infinitesimal transformation from the Coulomb gauge. The dot-

Dio=—— =55 =3 (66)  ted line represents the ghost. The wavy line represents the gluon
k*+ie [k[“a® |K| propagatoiD;q; it is reduced effectively to an instantaneous propa-
. gator since the polekf+ie) ! is cancelled byk? included in§O.
i ; 'k! ~
iDjj=———| 8" === [1+2&m?[k|*] |, (67)
oKk tie |K|2a? &

whereH=Hy+V. P denotes the projection operator to the

wherea=1+ £m?/|K|2. Our formal arguments in the previ- g nshace spanned by the two-body stafes PN, and
ous sections do not apply directly to this gauge-fixing con-.

" . . > . =1-P. Time-ordered diagrams are obtained by expanding
via relations similar to Eqg36)—(38).* For an infinitesimal X?SS reIapon n terms of the eigenstatestyf. We may
change of the parametér— &+ 5, discard diagrams without cross talks betwegnand ghost

sectors, i.e. those diagrams which contain vacuum buBbles.

. The on-shell renormalization scheme is assumed for any
trfcV-A]. (68)  value of¢, so we may neglect quark self-energy diagrams at

O(1/c). The BRST charge reads

2i 5¢
§2m2

5o:J d3x

A. The chargeQ at O(l/c)
First we calculate the transformation chafgevhich gen- . 3> ot
erates an infinitesimal gauge transformation from the Cou- QB_f d*x g 1 (X)) P(X) + -, (70
lomb gauge £€=0) at O(1/c). For perturbative calculations
it is convenient to rewrite Eq47) as
where only the term which contributes up t9(1/c) is

QPY)=P Qo 50 - P shown. _
P“H+ie _ 1 ' Simplest diagrams generated by E6Q) are the tree dia-
1-P—F—F——V grams shown in Fig. 7. The two diagrams give equal contri-
P - H0+ le . H H H
69) butions, the sum of which is given by

SO O S¢m? 1
(P, =P AN Q(PY)[A, = AN N ) o(ag =i Cr4mas »g = ~—— —. (71
Ip—ql* P'—Ip—a|l-w;—wg+ie

Examining variations of the bound state wave functions generated by this di&gg&7)], we see that two regions of the
gluon-ghost momentum,

soft:  |p—ql~0(B),

A more natural choice of gauge-fixing function that interpolates the Coulomb gauge and the Feynman gauge would be

F=-2i

1 1. .
— M-V .
5Bro A+ VAl (72)

In this case, canonical quantization can be performed straightforwardly following the standard prd&&jumed all of our formal
arguments apply directly. On the other hand, practical calculations are tediously complicated in this gauge due to the existence of a double
pole (k*+i€) 2 in the gluon propagator. For simplicity of practical calculations, we present the examples according to the gauge-fixing
condition Eq.(63). Another class of gauge-fixing conditions which interpolates these two gauges was introduced, for QFD,vifich
corresponds to a class of nonlocal gauge-fixing functions.

5This corresponds to renormalizing the perturbative vaclin.e appropriately in each gauge.
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ultra-soft:  |p—q|~O(B?),

are relevant a®(1/c).!® Existence of the ultrasoft region indicates that the diagrams with multiple Coulomb-gluon exchange
in ladder contribute also &(1/c). Indeed one may check that all the diagrams shown in Fig. 8 contribui¢ tat this order;

the contributions come from the ultrasoft region of the gluon-ghost momeﬁuﬁhm@(ﬂz). This is also consistent with the
result of Love[26]. Hence, we find

g g NI 0\~ AN . d3E 5§m2 (LO)[ IZQ |2 N \/ y7.p0 IZ |IZ|2
(P,— P\ NQ(PO)[g, — g, )\ >|O(1/c)_|CF47TaSJ(27T)3 I g P— 5.0+ 5 MNANTGP - |_m ,
(73)
where
GOp, AN NN NP =(p, ~ P AN =5 |d, — AN N 74
(p.q )=(p.—p lPO—Hg;%ie'q q ) (74)

includes summation of the Coulomb ladders to all ordersf The chargeQ(P°) turns out to be anti-hermite &(1/c). We

note that the above charge does not include any bound state pole because of the integraﬁon over

Alternatively it is possible to calculate the cha@%(l,c) by first evaluatingdH . and then extractin@ via the relation Eq.
(49). This procedure becomes cumbersome at higher orderg bécause the number of gauge cancellations among diagrams
increases. These gauge cancellations are automatically incorporated in the direct calcul@taipoot by the BRST invari-
ance of the full QCD Hamiltonian,Qg,H]=0.

B. A decay amplitude of aqabound state atO(L/c)

Next we analyze infinitesimal gauge transformations of the diagrams for the decay process of the bound stat@anchere

g decay into lighter quarks via electroweak interaction. We analyze the infinitesimal transformation from the Coulomb gauge
up to O(1/c) as in the above example and see how the variation of the initial-state wave functi@b7Egets cancelled in

the total amplitude. The diagrams which contribute to this process @f1¢c) in Coulomb gauge are shown in Fig[36].1’

When we vary the gauge-fixing function, additional diagrams which contribute t@¢fiéc) decay amplitude are shown in

Fig. 10. Here, the double-wavy lines represeaD ,,, where
i 6D i ! + L |20em” (75)
| ==l 7T =5 | =5,
% K+ie [K2) |k

etc. Diagramga) and(b) can be regarded as transformations of the initial-state wave function of the leading-order diagram

Conversely, the diagrants)—(e) cannot be regarded as such, since they do not contgintao-body state as an intermediate
state.

Using diagrammatic analysis, one may verify that the sum of all diagams$e) vanishes so that the total amplitude is
indeed gauge independent. In fact, from diagrammatic manipulations as shown in Fig. 11 and also from similar manipulations
corresponding to the diagrafh), one can show that the sum of diagramgahand (b) can be regarded as the leading order
diagram Fig. @) with the initial state bound state wave functign replaced by its infinitesimal transformation E&?7).
Rearrangement of diagrams may be performed, for instance, using the relation

1 1 1 . 1 \26ém? 1
PO—2w;+ie K| P°—|l2|—w,;—w5+|;+ie k|2 |k|2 PO—2w;gtie

2
1 sEm ( 1 1 76

=— - -~ +
[KI2(PO— K|~ w5~ wpiit+ie) |k|? \PO—2w;+ie P°—2wj itie

%n power counting we considet¢ m%/|p—q|?~O(1).
It is understood that the bound state wave functgrincludes®(1/c) corrections. For simplicity, we negle@(«s) corrections to the
qq’W andqq"W vertices, which constitute gauge independent subsets by themselves and do not mix with the gauge transforgation of

105001-12



GAUGE DEPENDENCE AND MATCHING PROCEDURE B. . . PHYSICAL REVIEW D 61 105001

5. =z al
Qb - o < ;
g 80 N i
5 3w @ \\/_,JMM
FIG. 8. The diagrams which contribute to the chaQeat %gpv = __éfQ.(pv

O(1/c) for an infinitesimal transformation from the Coulomb (@) (1)
gauge. The dashed line represents the Coulomb gluon of the Cou
lomb gauge. Other notations are same as in Fig. 7.

for manipulating the propagator E({.5). On the other hand, 4
from Fig. 12 we see that the sum of the diagramscip-(e) § M
exactly cancels the sum @& and (b). For details of the I,

o
diagrammatic analyses, see R¢5,27). LLHﬂ

7

i

According to the formal arguments in Sec. IV we know @)
how the initial-state wave function transforms and therefore
we know the sum of the other diagrart@—(e) in order to
ensure gauge independence of the total amplitude. This ex
ample demonstrates that the diagrammatic analyses ar
rather cumbersome since infinitely many diagrams contribute
even at the lowest nontrivial order of thecléxpansion.

]
—
=
S

/]

(e)

W
FIG. 10. The diagrams which are generated by the infinitesimal

variation of the gauge-fixing condition from the Coulomb gauge.
The double-wavy line represents the variation of the gluon propa-
gatori 6D ,,, .

Q)

VII. CONCLUSION AND DISCUSSION

In this paper we analyzed gauge dependence of an effec-
tive Hamiltonian formalism that describes the nonrelativistic
quark-antiquark bound states and discussed problems of the
on-shell matching procedure within this formalism. The sig-
nificance of our present work may be put as follows.

We used the BRST symmetry, which is known to be a
powerful tool to study QCD Green functions, to analyze the
NRQCD bound states. The arguments were supplemented by
power countings of singularities of relevant diagrams to
make them more explicit and detailed. Gauge dependence of
the NRQCD bound state formalism is more complex than
that of usual(naive perturbation theory since we have to
deal with an infinite number of diagrams at each order of the
1/c expansion[e.g., an infinite number of diagrams contrib-
ute to Hey at O(1/c) in gauges other than the Coulomb
gauge[26].] We definedH o naturally in the context of time-
ordered perturbation theory. Then we obtained the transfor-
mation chargeQ of Hq, from which we could easily see
gauge independence of the spectrum and obtain transforma-
tion of the bound state wave functions. For an infinitesimal

5 = J transformation from the Coulomb gauge, we calculag@d

where § =Q® directly up toO(1/c). Also we saw that, without resort to the
. BRST symmetry, cumbersome gauge cancellations among
- B diagrams are necessary to show gauge independence of a

decay amplitude of the bound state. At higher orders of 1/
diagrammatic analyses such as what we presented in the sec-
FIG. 9. The diagrams which contribute to the amplitude for agnd example or those in Ref26,27 become quite intricate
nonrelativistic bound state decaying irfbg”W* W~ up toO(1/c). so that the arguments based on the BRST symmetry would
We suppressed diagrams f6(ag) corrections to thegq'W and become more important.

qq”W vertices. Furthermore, we showed possibilities for incorrect calcu-
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. o
T -

|
q

FIG. 11. A diagrammatic method to show that the sum of dia- elc.
grams in Fig. 1(g) can be regarded as the leading order diagram
Fig. i) with the initial state bound state wave functigp replaced
g. A) oprep -

half of its infinitesimal if ioriQ-¢,/2.
by a half of its infinitesimal transformatioriQ - ¢,/ e N [_ &‘LLL _ Hﬁ } N
L of

i

lations of amplitudes involving bound states if one uses only

the on-shellqa scattering amplitude to determinie ;. FIG. 1_2. Exam_ples_ of the diagrammatic method to show that the
These problems do not occur if we determidg; from the ~ Sum of diagrams in Fig. 16)-10() exactly cancels the sum )
off-shell Green functiong, or, if we use a local NRQCD and(®)-

Lagrangian consistently and determine its coefficients via

proper matching procedure, e.g. as in lattice calculations i ,

[37,38. The latter procedure has a disadvantage that on€?3] @€ gauge dependent, i.e. they vary if we transform the

should calculate a number of amplitudes to determine all th@@uge infinitesimally from the Coulomb gauge, since they do
coefficients. not include the final-state interaction diagrams. Also the ex-

Presently we still do not have at our disposal a completely2MPI€ suggests how gauge cancellations should take place in
systematic way to identify all the necessary contributions inf"€ complete amplitude &(1/c®) which has not been ob-
computations of physical quantities of the NRQED-NRQcCD!@ined yet.
bound states at a given order ot léxpansion. We believe

that the formalism developed in this paper will provide use- ACKNOWLEDGMENTS
ful cross checks in these computations. Now we know how a _ . _ _
bound state wave function or the Green funct@mntained We would like to thank K. Hikasa and K. Sasaki for fruit-

in an amplitude transforms. The transformation cha@yis ~ ful discussions. One of the authof$.S.) is grateful to A.
process independent and depends only on the gauge-fixirfgZzarnecki and T. Onogi for discussions. This work was sup-
condition, and it can be calculated directly in a perturbativePOrted by the Japan-German Cooperative Science Promotion
expansion in 1. Program.

A possible application is to use the formalism to study

gauge dependences of the diagl’ams involved in the CalCUlaAPPEND'X A: USE OF THE EQUATION OF MOTION IN
tion of the top quark momentum distribution in thtethresh- A LOCAL NRQCD LAGRANGIAN

old region atO(1/c?). It is known that at leading order the . L
top momentum distribution is proportional to the absolute M Writing down a local NRQCD Lagrangian in terms of
square of the wave functions 6fould-be toponium bound the nonrelativistic quark,), nonrelat_|V|st|c antiquarkiyg) ,
states in momentum spa¢89]. As we saw in this paper, gluon (A,), ghost(c) and antighost() fields, in principle
wave functions of bound states are gauge dependent beyos#ie writes down all possible local interactions consistent
leading order. In the second example of Sec. VI, we verifiedvith the rotational and BRST symmetries. In addition, one
that this gauge dependence is cancelled by that of the finamay simplify the Lagrangian using the equation of motion,
state interaction diagranis)—(v) at O(1/c). In other words, —and it is often convenient to eliminate all terms includDp

a bound state wave function mixes with the final-state inter(n=2), whereD ,=d,—igA,(x) is the covariant deriva-
action diagrams by gauge transformation. This shows thdive. After such a simplification, the Lagrangian takes a stan-
the present calculations of the top momentum distributiordard form

TN D2 D* g - - 9 - - - = g - =2 - - =
L= (%) |Do+czﬁ+c4ﬁ+cFﬁB-J+CDﬁ(D-E—E-D)+CSW|J-(DXE—EXD)+--~ q(X)

2 1
# (g )+ Cararmi 5 VAU UXUG00 -+ = S GHG, ] (A1)
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FIG. 13. The diagrammatic
representation of EQ.(A7). ®

shows the position of the local op-
= —R® o—f L 2 e
6 X y + ﬁ% + & T ete eratorN. The pole position is not
changed, while the Z factor
changes.

We suppressed the gauge-fixing and ghost terms. One shouldl order to rewrite the right-hand-side of EgA4) one may
determine théWilson) coefficients of local operators, ¢4, use the Schwinger-Dyson equattdn

Cg, etc. by matching various on-shell amplitudes to those of
full QCD. Furthermore, in practical applications of the
NRQCD formalism, we often evaluate the correlators involv-
ing the current operators composed of the nonrelativistic
quark and/or antiquark fields. The equation of motion is also T i f D

used to eliminateDg from the current operators, and the *¥(¥) lpq(y){l "z Nz2)
coefficients of local operators constituting the current opera-

tors are determined by matching the on-shell amplitudes to X
those of full QCD.

In this appendix we prove that we may use the equation oﬁ_
motion appropriately in order to simplify the form of the . o . !
Lagrangian. We also prove that in the evaluation of on-shel '?f‘%' regularlzat_lon, s_mcal(z,z) contf’;uns 5°(0) andfor
amplitudes involving current operators, the change of the?z9 (2)]z—o which give scaleless integralétadpoles.
Lagrangian can be compensated by local redefinitions of thEl€Nce, we have
current operators and that one can use the equation of motion 1
to rewrite the current operators. It is understood that we s5(o|T (%) l/,g(y)|0>:_<o|-|—|§¢,q(x) [(N%)(y)]f
regularize ultraviolet and infrared divergences using the di-
mensional regularization. 1

Let wus start from a general local . Lagrar?g|an +§(Nz//q)(x) ,/,g(y)] |0). (A7)
L(¥q,¥4,A, ,c,c) and add a local operator which vanishes
by the equation of motion:

1 1
(0T 5 #g(3) L(NgQ)(V)]"+5 (Nhg) (%) 5 (y)

+ (%) YY)

[ ezu@in @] l0-0. (A

he third term of this equation vanishes within the dimen-

This equation shows that the change of the Lagrangian does

+ not affect the pole mass of the quark propagator, whereas the
+ ) . - .
L=k lpq{N’M}% (A2) Z-factor (wave function renormalization constanaries; see
Here, the equation of motion faf, is denoted by Fig. 13.

Following similar steps, one can show that the variation
of the four-point function is given by

= (M) (%), S=dex.c, (A3)
sugx) SOIT o) YY) vg(x') w(y")|0)
and N denotes a local operator with=N", e.g. N iq 1 + 1
=iDoiq, 521//q, B-o g, etc. N may include the gluon =—(0|T E:/fq(x)[(qu)(y)] +§(N'//q)(x)

field but not the quark or antiquark field. For simplicity we

do not change the antiquark sector of the Lagrangian in our + oot

argument. According to EqA2), the two-point and four- X ¢q(y)] Yalx )‘ﬂa(y )0). (A8)
point functions change as

Thus, if we redefine th&-factor according to Eq(A7), the
on-shell amplitude of the quark-antiquark scattering remains
the same; see Fig. 14. Similarly the amplitudes where mul-
tiple gluons are attached to the quark-antiquark scattering

S(O|T hq(x) ¥ (¥)10)=(OIT thg(x) wém{i f d°z y(2)

can be shown to be invariant under the variation of the La-
X({N,M}44)(2)|]0), (A4)  grangian Eq(A2).
Equationg/A7) and(A8) also show that, when evaluating
(O[T g (x) l,//;(y) Ya(X') z,b&(y’)|0> correlators involving current operators, the change of the La-
_ T ’ T T
= (O[T 4hq(X) ¢rg(y) ¥ig(x") galy ){'j d°z ¥q(2) 18n the path-integral formulation, this follows readily from
) )
Dyt 1g(X) ¥(¥) [(Ng) (2)]" €5=0
X({N,M}g)(2) ||0). (A5) f Soylz) T !
and a similar term withy— "
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X y
{00) AR
SN 7 NN

FIG. 14. The diagrammatic representation of ). The first
two diagrams give rise to a wave function renormalization common 80
to Fig. 13. The third diagram is one-particle irreducible with respect
to the leg with®, hence it does not contribute to the on-shell
amplitude.

2R QAR
LESEEE N

9.9.9.9.9.9.9

29I AR
PR EEEE
LSRN S
2 2 2 9.2 9 02

&

FIG. 15. Typical diagrams which have power countings
B (ag/ B)" for n>n,. The ghost is connected with the uncrossed

ladders ofqawith a finite numbef <O(n)] of lines.

grangian can be compensated by local redefinitions of the

current operators. By way of example, for a current operator S;= lim <p, p.N e T g, — g\ N ) (B1)
which creates and annihilates a quark-antiquark pair, T
. . D2 P
i _ T v i v i t — |i — A—iPTT
J'(X)=gg(x)| clo +C20'1 (¥ +H.c., ‘|I'Ian ﬁ;Zﬂ'i e
(A9)
T 1 . —
the on-shell amplitude calculated from the correlator X(P, = PN —5———a,—a,\"\). (B2
(O]T J'(x) q(y) #q(2)|0) remains unchanged if we redefine P*—H+ie
the current as . .
In the_mtegrand, we see the Green function
J(x)—J(x)+ 83'(x), (A10)  G(p,g;\,M, N NP9 introduced in Eq.(31). We expand
~ the right-hand-side itv, whereH=H,+V,
2
83 (X)=[(Nyg)(x)]1" cio'+chor | wix)+H.c. 1 1 5) 1 n
(A12) PO—H+ie PO—Ho+ien=0| PO—Hg+ie

B3
Finally we show that we may use the equation of motion B3)

in order to rewrite the current operators. One may derive thgnq insert the completeness relations in terms of the eigen-

Schwinger-Dyson equatidh states oH,. One readily sees that, at each order of the per-
i it turbative expansion, the free propagator pol&d 2w;
OITHLI M ) O] g (X) g (Y) ¥(2) +ie) tand (P’ 2w;+ie) ' are attached at the both ends.

it (xy) Q%(X) l//qTZ)HO):O, (A12) Therefore, if we write
wherel" is a local operator and may include the gluon field (p,— P\ ;_m’_a,)\rx»
but not the quark or antiquark field, e.B!(x,y) =o' 8°(x pPY—
—vy), D'(x,y), etc. The second term does not contain the
quark pole, hence it does not contribute to the on-shell am- _ Mg P%) (B4)
plitude. Thus, addm@(l“ szq)(x)] ¢—(x)+H c. to the cur- (P0—2w5+ie)(P0—2wa+ie)
rent operatod'(x) does not affect the on-shell amplitude.

and set 2;=2w;= s, we find
APPENDIX B: TIME-ORDERED PERTURBATION )
THEORY 0
= lim j;—e P T( Maq-qq(P%)
Here, we derive the rules for calculations of the on-shell T —s+ie

quark-antiquark scattering amplitude in time-ordefettl- (BS)
fashionedl perturbation theory. The&Smatrix element be-
tween the eigenstates of the free Hamiltonian defined in Eq. d -
(32) with an infinite time separatiofiasymptotic stat@sis = lim F{e"P T Mga—aq(PO)}Hpo_ 5 (B6)

given by T

= lim e STM! - (V9 =T Mggaq( VS

T—oo

This follows from (B7)

) ) )
it t iS_
j Dyq Sihg(2) T%.2) 4400 ¢q(y) vez) €7=0 The second term in the last line represents the dominant term
and integrating over. asT—o. Thus, we obtain the reduction formula E§0) as
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well as the rules for calculations of the scattering amplitudefor somen,, since P°—M,=[1—CZ(as/B)?/4%] mpB? at

in time-ordered perturbation theofy. leading order. It is known that the diagrams which can have
Following similar steps, one can show that in general thehe leading power countingss/B)" are only the uncrossed

Green functiong appears as an intermediate matrix elemeniadder diagrams; see Sec. Ill. Therefore the diagrams which

when one evaluates a transition amplitude involving contri--g;, contribute tg8" (as/B)" for n>n, are only those dia-

butions from the quark-antiquark bound states using timegrams where a ghost is connected to one of the uncrossed

ordered perturbation theory. ladders ofgqq with a finite numbe{ =O(ny)] of lines; see
Fig. 152 After integrating over the loop momenta, there
remains no pole in thé@°-dependence of the sum of the
diagrams, in the same way that a usual one-loop diagram
We show that the state given by Ed@6) cannot accom- does not exhibit a pole but rather contains branch ggint
modate a pole which is degenerate with any of the quarkef. Eq. (73).
antiquark bound state pole{—M ,+i€) . We first note We may restate it differently. If a ghost and a nonrelativ-
thatQg and 5O have the ghost number1 and—1, respec- istic qq pair should constitute a boundstate, intuitively the
tively. Suppose this state contains some of these bound stal®m of the ladder diagrams with multiple gluon exchanges

poles. Then, the matrix element composed of this stat — o
should have a power counting in terms @f and 8 as etween the ghost anglq pair may exhibit a bound state
pole. Since the coupling of ghost and gluon is suppressed by

APPENDIX C: ABSENCE OF BOUND STATE POLES
IN EQ. (46)

R 1 L powers of 3, the binding energy of the bound state should
(P,— P\ N[00 ————1iQg|q,—q,\"\) scale differently from(have more powers ofrg than the
PT—Htlie Coulomb binding energieif the bound state should exist at
all).
~Bh2 cy(as/B)"x[1+0(1/c)] (el
n

20The phase factoe 5T always appears in a perturbative evalu- 2*We discard the diagrams without cross talks betwqanand
ation of S;; . It is irrelevant if we are interested only in the absolute ghost sectors; see Sec. VI.
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