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O„as
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… corrections to e1e2

˜t t̄ total and differential cross sections near threshold
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Recently full O(as
2 ,asb,b2) corrections to the threshold total cross section fore1e2→t t̄ have been

calculated, and the reported corrections turned out to be unexpectedly large. We study how to reduce the
theoretical uncertainties of the cross section. We adopt a new mass definition proposed by Beneke, which
incorporates a renormalon-pole cancellation in the total energy of a static quark-antiquark pair. This improves
the convergence of the 1S resonance mass, while the normalization of the cross section scarcely changes. We
argue that resummations of logarithms are indispensable, since two largely separated scales dictate the shape of

the cross section. As a first step, we resum logarithms in the Coulombic part of thet t̄ potential, and observe
a considerable improvement in the convergence of corresponding corrections. There still remain, however,

large corrections, which arise from a 1/r 2 term in the t t̄ potential. We also calculate fullO(as
2 ,asb,b2)

corrections to the momentum distributions of top quarks in the threshold region. Corrections to the distribution
shape are of moderate size over the whole threshold region.@S0556-2821~99!02321-8#

PACS number~s!: 14.65.Ha, 12.38.Bx, 12.38.Cy, 13.85.Lg
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I. INTRODUCTION

The top quark pair production in the threshold region
future e1e2 or m1m2 colliders is considered as an ide
process for precision measurements of top quark proper
Already many works have been devoted to the analyse
this process both theoretically and experimentally@1–29#.

Recently fullO(as
2 ,asb,b2) corrections to the total cros

section fore1e2→g* →t t̄ in the threshold region have bee
calculated independently by@23,24# using the nonrelativistic
QCD ~NRQCD! formalism.1 Both calculations showed tha
these corrections are surprisingly large. Moreover, th
found very poor convergence of the cross section as t
compared the leading-order~LO!, next-to-leading order
~NLO! and next-to-next-to-leading order~NNLO! calcula-
tions. Theoretically, the calculation in@24# is more sophisti-
cated in that in the vicinity of each resonance pole it includ
all O(as

2) corrections to the resonance mass and to the r
due.~Practically, the location of the 1S resonance peak wil
provide important information related to the top quark mas!
The two calculations were reproduced in@25#, where some
numerical error of@24# was corrected. There appeared oth
observations which noted potentially large theoretical unc
tainties on different grounds@26,27#.

In this paper, we first study how to cure the problem
the bad convergence of the total cross section observed in
above works. One possible modification is to redefine the
quark mass. It was found@30–32# that a renormalon pole
contained in the QCD potential between a static qua
antiquark pair gets canceled in the total energy of the p
2mpole1VQCD(r ) if the pole massmpole is expressed in term
of the modified minimal subtraction scheme (MS) mass. As
a result, the series expansion of this total energy in theMS

1Corrections induced by the axial-vector coupling to aZ-exchange
have been calculated, which also contribute asO(as

2 ,asb,b2) cor-
rections@2,29#.
0556-2821/99/60~11!/114014~11!/$15.00 60 1140
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coupling as(m) behaves better if we use theMS mass in-
stead of the pole mass. This suggests that theMS mass has a
more natural relation to physical quantities of a static~or
non-relativistic! quark-antiquark system. Beneke proposed
new quark mass definition, which incorporates a renorma
pole cancellation, and which is related to theMS mass in a
well-behaved series@31#.2 We adopt this new mass definitio
and study the convergence properties of thet t̄ threshold
cross section.

As another improvement, we incorporate a log resumm
tion in the cross section. There is a logical necessity
resummations of logarithms in calculations of the total cro
section in the threshold region. This feature is qualitativ
different from energy regions far above the threshold. In
vicinity of distinct resonance peaks~for a realistic top quark
this corresponds only to the 1S peak!, the total cross section
takes a form

s tot~s!;2Im (
n

ucn~0!u2

As2Mn1 iGn

. ~1!

The resonance spectraMn’s are dictated by the shape of th
quark-antiquark QCD potential at the scale of Bohr rad
r;(asmq)21, while the wave functions at the origincn(0)’s
are determined by the shape of the potential at a consider
shorter distance, 1/mq,r !(asmq)21. Thus, in order to pre-
dict reliably both the energy dependence and normaliza
of the total cross section in the resonance region, one ne
to calculate the shapes of the QCD potential accurately
largely separated two scales. This naturally requires log

2A problem is that the relation between theMS mass and the pole
mass is known only up toO(as

2) @33#. Meanwhile, if we want to
use theMS mass in the NNLO analyses of the threshold cro
sections, we need to know this relation up toO(as

4), since the
binding energies of the boundstates are;as

2m already at LO.
©1999 The American Physical Society14-1
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summations using renormalization-group equations.
NLO, a log resummation was incorporated first in@3#. As a
first step at NNLO, we resum logarithms in the Coulomb
part of thet t̄ potential in this work.

The second subject of this paper is a calculation of
O(as

2 ,asb,b2) corrections to the momentum distribution
top quarks in the threshold region. It is expected that the
momentum distribution will provide important informatio
independent of those from the total cross section@5–7,15#.
We therefore study how the distribution are affected by
corrections. We find that the sizes of corrections to the d
tribution shape are moderate in comparison with the cor
tions to the total cross section.

We note here that in our analyses no consistent treatm
of the decay process of top quarks is attempted. Follow
@23,24# we merely replace the non-relativistic Hamiltonia
as

HNR→HNR2 iG t, ~G t : top-quark on-shell width! ~2!

which is the correct prescription for calculating the to
cross section at LO@1# and at NLO@11–15# @provided we
includeO(as) corrections toG t @34,35# at NLO#. At NNLO,
corrections related to the top decay process have not b
calculated yet. As for the differential cross sections,
above prescription is valid only at LO. At NLO, the fina
state interactions affect the differential cross sections n
trivially in the threshold region but cancel out in the tot
cross section@12,13,15,21,22#; see also@36–38#.

In Sec. II we recalculate the total cross sections at L
NLO and NNLO. Then we incorporate a new mass definit
in Sec. III. We examine the effect of a log resummation
the Coulombic potential in Sec. IV. The momentum dist
butions of top quarks including fullO(as

2) corrections are
presented in Sec. V. Sec. VI contains summary and dis
sion. In Appendix A all notations and definitions are co
lected. A derivation of the momentum distribution at NNL
is presented in Appendix B, while in Appendix C we pro
the unitarity relation between the total cross section and
momentum distribution.

II. TOTAL CROSS SECTION

As derived in@24#, the photon-exchange contribution
the e1e2→t t̄ threshold total cross section including fu
O(as

2 ,asb,b2) corrections is given by

s tot~s!5
32p2a2

s2
NcQt

2H 11S as~mt!

p DCFC1

1S as~mt!

p D 2

CFC2~r 0!J
3ImF S 11

E1 iG t

6mt
DG~r 0 ,r 0!G . ~3!

Here, C1 and C2(r 0) are vertex renormalization constant
their explicit forms are given in Appendix A. The Gree
function is defined by
11401
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H 2
1

mt
F d2

dr2
1

2

r

d

drG1V~r !2F v1
v2

4mt
G J G~r ,r 8!

5
1

4prr 8
d~r 2r 8!, ~4!

where

V~r !5VC~r !2
3v

2mt

CFas~m!

r
2

CF~3CA12CF!as~m!2

6mtr
2

,

~5!

VC~r !52 CF

as~m!

r F 11S as~m!

4p D $2b0log~m8r !1a1%

1S as~m!

4p D 2H b0
2S 4log2~m8r !1

p2

3 D
12~b112b0a1!log~m8r !1a2J G , ~6!

v5E1 iG t , E5As22mt . ~7!

In the above formulasmt and G t denote the pole mass an
the decay width of top quark, respectively.VC(r ) is the Cou-
lombic part of thet t̄ potentialV(r ) including the full second
order corrections. Definitions of all parameters in the abo
formulas are collected in Appendix A.

Equation~3! includes not only allO(as
2 , asb, b2) cor-

rections to the LO cross section but also, in the vicinity
each resonance peak, allO(as

2) corrections to the resonanc
pole position and to its residue.3 The only difference of Eq.
~3! from the corresponding formula in@24# is a factor
iG t /6mt , which arises from a relativistic correction to thet t̄
kinetic energy,p4/4mt

3 , and from a relativistic correction to

the t t̄ production vertex,c̃† s i(nJ /12mt
2)x̃. This factor is

omitted incorrectly in@24#; numerically its contribution is
negligible.4

For G t50, Eq. ~3! becomes independent of the cutoffr 0
asr 0→0 up to the order of our interest. ForG t.0 there are
uncanceled 1/r 0 and logr0 singularities due to our imprope
treatment oft decay processes. Thus, following@24# we ex-
pand Eq.~3! in r 0 and omit all terms that vanish asr 0→0,
and then we set

r 05
e22gE

2mt
. ~8!

3Hereafter we writeO(as), O(as
2), etc. instead ofO(as , b),

O(as
2 , asb, b2), etc. for the sake of simplicity.

4The authors of@24# claim that they incorporate the top quar
width via replacementE→E1 iG t . Nevertheless, they do not fol
low this prescription consistently in their derivation ofs tot(s) and
overlook the factoriG t /6mt .
4-2
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We also setmt5175 GeV, G t51.43 GeV andas(mZ)
50.118 in our numerical analyses below. As a cross ch
of our calculations, we reproduced the total cross secti
calculated in@25#.

In Figs. 1 we compare theR-ratio R(s)5s tot /spt at LO,
NLO, and NNLO (spt54pa2/3s). As noted in@23,24# the
cross section changes considerably as we includeO(as) and
O(as

2) corrections, respectively. One sees that, as we incl
these corrections, convergence of the normalization of
cross section is better form575 GeV than that form520
GeV, whereas convergence of the peak position (. mass of
the 1S resonance! is better form520 GeV than that form
575 GeV. This indicates that the peak position is det
mined mainly by the shape of the potentialV(r ) at the Bohr
scale;(asmt)

21, while the normalization of the cross se
tion is determined by the shape ofV(r ) at a shorter distance
note that corrections to the potential are minimized arou
r .1/m85e2gE/m. In the same figure we also show the cro
section calculated using an old value@42# of a2 in VC(r ),

FIG. 1. R-ratios for e1e2→t t̄ at LO ~dot-dashed!, NLO
~dashed!, and NNLO ~solid! as functions of the energy measure
from twice the pole mass,As22mpole. Arrows indicate disloca-
tions of the maximum point ofR as theO(as) andO(as

2) correc-
tions are included, respectively. We setmpole5mt5175 GeV,G t

51.43 GeV, and as(mZ)50.118. Dotted lines show NNLO
R-ratios calculated with an old value ofa2 @42#, which is one of the
coefficients in the two-loop perturbative QCD potential.~a! is for
m575 GeV and~b! is for m520 GeV.
11401
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which has been corrected recently@43#. A change of the
cross section caused by correctinga2 is small.

In Figs. 2 we vary the value ofr 0 by factors 2 and 1/2.
The cross section varies correspondingly, which is genera
by O(as

3) andO(G t /mt) terms in Eq.~3!. The sizes of the
variations serve as a measure of uncertainties of our theo
ical prediction. They seem to be rather small as compare
what one naively expects from the poor convergence pr
erties seen in Figs. 1.

III. REDEFINITION OF TOP QUARK MASS

According to Beneke@31#, we define a new quark mas
appropriate in the threshold region~the potential-subtracted
mass! by adding an infra-red portion of the Coulombic p
tential to the pole mass. In this way the new mass is rela
to theMS mass in a more convergent series than to the p
mass~in our casempole5mt):

mPS~m f ![mpole1Dm~m f !, ~9!

Dm~m f ![
1

2Euqu,m f

d3q

~2p!3
ṼC~q!, ~10!

FIG. 2. R-ratios for e1e2→t t̄ at NNLO for several values of
r 0 : r 0 5 a/2 ~dashed!, r 05a ~solid!, and r 052a ~dot-dashed!,
wherea[e22gE/2mt . ~a! is for m575 GeV, and~b! is for m520
GeV. Other notations and parameters are same as in Fig. 1.
4-3
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T. NAGANO, A. OTA, AND Y. SUMINO PHYSICAL REVIEW D 60 114014
whereṼC(q) is the Fourier transform of the Coulombic po
tentialVC(r ).5 At the same time we subtract a correspond
part from the potential as

VC~r ;m f ![VC~r !22Dm~m f ! ~11!

such that the total energy of a quark-antiquark pair rema
unchanged in both schemes:

2mpole1VC~r !52mPS~m f !1VC~r ;m f !. ~12!

In Fig. 3 are shown the LO, NLO and NNLO total cro
section by fixingmPS(3 GeV)5175 GeV. It can be seen
that the convergence of the 1S peak position becomes bette
as expected. Meanwhile the normalization of the cross s
tion scarcely changes by this modification. It is because
~9! essentially incorporates a constant shift of the cross

5Note that ourDm(m f) is related to a corresponding quantity
@31# by Dm(m f)52dm(m f).

FIG. 3. R-ratios for e1e2→t t̄ at LO ~dot-dashed!, NLO
~dashed!, and NNLO ~solid! as functions of the energy measure
from twice the potential-subtracted mass,As22mPS. We setm f

53 GeV andmPS(m f)5175 GeV.~a! is for m575 GeV, and~b! is
for m520 GeV. Other notations and parameters are same a
Fig. 1.
11401
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tion in the horizontal direction by an amountDm(m f), while
changes in the normalization generated by a modification
the mass in the Schro¨dinger equation~4! is negligibly small.

IV. RENORMALIZATION-GROUP IMPROVEMENT
OF VC„R…

As already mentioned, it is important to resum logarithm
in calculations of threshold cross sections. We demonstr6

an improvement of convergence of the cross section by
corporating log resummations to the Coulombic poten
VC(r ).

The Coulombic potentialVC(r ) is identified with the
QCD potential between a static quark-antiquark pair. If
write this potential in momentum space@Fourier transform of
Eq. ~7!# as

ṼC~q!524pCF

aV~q;m!

q2
, ~13!

a log resummation using a renormalization group equatio
achieved simply by a replacementm→q @42#:

ṼC
(RG)~q!524pCF

aV~q;q!

q2
. ~14!

Hence, in accordance with the formulation in the previo
section, we define a potential-subtracted mass and
renormalization-group-improved potential in coordina
space, respectively, as

mPS~m f ![mpole1Dm~m f !,

Dm~m f ![
1

2Euqu,m f

d3q

~2p!3
ṼC

(RG)~q!, ~15!

VC
(RG)~r ;m f ![E

uqu.m f

d3q

~2p!3
eiq•r ṼC

(RG)~q!

5VC
(RG)~r ;m f50!

2E
uqu,m f

d3q

~2p!3
eiq•r ṼC

(RG)~q!. ~16!

In this formulation bothmpole andDm(m f) suffer from the-
oretical uncertainties of the order;LQCD due to the renor-
malon poles, but they cancel inmPS(m f). We note that
strictly speaking there is no guiding principle for subtracti
also ar-dependent part from the potential in~16!, since there
is no known renormalon cancelation related tor-dependent
part of the potential. In fact the total energy of a quar
antiquark pair ~12! is not well-defined after the
renormalization-group improvement~14!, and a theoretical

6A full resummation of logarithms up to NNLO requires a signi
cant modification of the formulas~3! and ~4!; we will study its
incorporation in our future work.

in
4-4
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ambiguity of the order;LQCD
2 r is caused by a non-cancele

renormalon pole in ther-dependent part.7 This ambiguity is
negligible in our case thanks to the large mass and de
width of the top quark@1#; see @3–5# for more practical
analyses. Thus, we should setm f@LQCD in order to avoid a
bad convergence of the cross section generated by a re
malon pole, while we should setm f!asmt such that a main
part of bound-state dynamics is preserved. In our analy
below we choosem f53 GeV. @We have checked that upo
varyingm f the cross section changes only by a constant s
in the horizontal direction and a change in the normalizat
is negligible, i.e.r-dependence of the subtracted part in~16!
plays no significant role.#8

We compare the couplings of the momentum-space
tential with @aV(q;q)# and without@aV(q;m575 GeV!# a
renormalization-group improvement in Figs. 4. One sees
convergence of the coupling improves drastically by the

7Within our perturbative formalism;LQCD
2 r term in the potential

is forbidden by the rotational invariance, and the first ambigu
r-dependence arises at;LQCD

3 r 2.
8In rewriting the pole massmt in terms ofmPS(m f) in Eqs.~3!-~7!,

we retained terms up to~and including! O(as
3) in this relation.

FIG. 4. The momentum-space couplingsaV vs momentum
transferq at LO ~dot-dashed!, NLO ~dashed!, and NNLO ~solid!.
~a! is the fixed-order coupling (m575 GeV!, and ~b! is a
renormalization-group improved coupling (m5q).
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resummation over the whole range of our interest,mt
21,r

&(asmt)
21. One therefore anticipates thatO(as) and

O(as
2) corrections to the total cross section originating fro

VC(r ) also become smaller and more converging. In orde
see only these corrections separately, we show in Fig. 5
R-ratio calculated from

R~s!5
6pNcQt

2

mt
2

Im G~0,0! ~17!

with

H 2
1

mt
F d2

dr2
1

2

r

d

drG1V0~r !2vJ G~r ,r 8!

5
1

4prr 8
d~r 2r 8!, ~18!

both for V0(r )5VC(r ) and V0(r )5VC
(RG)(r ;m f). Namely,

we omit allO(as) andO(as
2) corrections other than those i

the Coulombic potential. One sees clearly that the conv
gence property has improved considerably by the log res
mations.

Finally we combine the above corrections with all oth
corrections. Namely we show in Fig. 6 the total cross sect
~3! with and without the renormalization-group improveme
of the Coulombic potential. Also we list the ‘‘binding ene
gies’’ of the 1S resonance state 2mPS(m f)2M1S in Table I.
Although it is seen that convergence of the normalization
the cross section as well as convergence of the 1S resonance
mass become slightly better, improvements are not so dr
matic. This is because other corrections, in particular th

s

FIG. 5. R-ratios for e1e2→t t̄ calculated with a Hamiltonian
H5p2/mt1V0(r ), whereV0(r ) includes only the Coulombic par

of the t t̄ potential. Other corrections~vertex renormalization con-
stants, kinematical corrections, etc.! are not included. Solid and
dashed lines, respectively, showR-ratios with @V0(r )
5VC

(RG)(r ;m f)# and without @V0(r )5VC(r ), m575 GeV# a
renormalization-group improvement of the Coulombic potent
We set m f 5 3 GeV, mPS(m f)5175 GeV, G t51.43 GeV, and
as(mZ)50.118.
4-5



e

e
p

rk
de-

er

lds

ec-

ter

a
me

bi
er

-

,

T. NAGANO, A. OTA, AND Y. SUMINO PHYSICAL REVIEW D 60 114014
originating from the 1/r 2 potential inV(r ), are uncomfort-
ably large. It remains as our future task to gain better und
standings of these residual large corrections.

V. TOP QUARK MOMENTUM DISTRIBUTION

Using the NRQCD formalism and also techniques dev
oped in@24#, one obtains the momentum distribution of to
quarks in the threshold region including allO(as

2) correc-
tions as

ds

dp
5

16a2

s2
NcQq

2 H 11S as~mt!

p DCFC1

1S as~mt!

p D 2

CFC2~r 0!J 3p2G t f ~p;r 0!, ~19!

where

FIG. 6. R-ratios fore1e2→t t̄ at LO, NLO, and NNLO. Solid
lines show those with renormalization-group improved Coulom
potentials,VC

(RG)(r ;m f). Dashed lines are those with fixed-ord
Coulombic potentialsVC(r ). Arrows indicate dislocations of the
maximum point ofR as theO(as) and O(as

2) corrections are in-
cluded, respectively. We setm f53 GeV, mPS(m f)5175 GeV,m
575 GeV,G t51.43 GeV, andas(mZ)50.118.

TABLE I. ‘‘Binding energies’’ of the 1S resonance state de
fined as 2mPS(m f)2M1S at LO, NLO, and NNLO calculated with
VC(r ) ~fixed-order! and with VC

(RG)(r ;m f) ~RG-improved!. We set
m f53 GeV, mPS(m f)5175 GeV, G t51.43 GeV, andas(mZ)
50.118.

~Fixed-order! ~RG-improved!
m520 GeV m575 GeV m520 GeV m575 GeV

LO 1.390 GeV 0.838 GeV 1.573 GeV 1.573 GeV
NLO 1.716 GeV 1.453 GeV 1.861 GeV 1.861 GeV
NNLO 2.062 GeV 1.817 GeV 2.136 GeV 2.058 GeV
11401
r-

l-

f ~p;r 0!5H S 11
2E

3mt
D uG̃~p;r 0!u2

1
3

2
CFas~m!2 Re@G̃1/r~p;r 0! G̃~p;r 0!* #

2
11

6
CFas~m!2 Re@G̃ipr

~p;r 0! G̃~p;r 0!* #

1
1

6mt

sin~pr0!

pr0
Re@G̃~p;r 0!#J . ~20!

In these formulas,p denotes the magnitude of the top qua
three-momentum. Momentum-space Green functions are
fined from the coordinate-space Green function in~4! by

G̃~p;r 0!5E d3r eip•r G~r ,r 0!, ~21!

G̃1/r~p;r 0!5E d3r eip•r
1

as~m!mtr
G~r ,r 0!, ~22!

G̃ipr
~p;r 0!5E d3r eip•r

ipr

as~m!mt
G~r ,r 0!, ~23!

with ipr5d/dr11/r . A derivation of the formulas is given
in Appendix B. One can show that upon integrating ov
*dp the total cross section formula~3! is recovered. A proof
of the unitarity relation between the total cross section~3!
and the momentum distribution~19! is given in Appendix C.
We also checked numerically that the unitarity relation ho
well within our desired accuracies.

For consistency with our analyses of the total cross s
tion, we expand Eq.~19! in terms of the cutoffr 0, omit terms
regular asr 0→0, and set its value as in Eq.~8!.9 In all

9Note that strictly speaking the unitarity relation is violated af
this expansion, because*dp integration and expansion inr 0 do not
commute forG t.0. Practically the unitarity relation holds to
sufficient accuracy by cuting off the momentum integration at so
appropriately large scale.

c

FIG. 7. Top quark momentum distributions at LO~dot-dashed!,
NLO ~dashed!, and NNLO~solid! for m520 GeV. For each curve
we set the c.m. energy on the 1S resonance state,As5M1S .
4-6
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figures we choosem520 GeV since a relevant scale arou
the distribution peak is the scale of Bohr radius;(asmt)

21.
Top quark momentum distributions~normalized to unity

at each distribution peak! are shown in Figs. 7–10. Follow
ing a strategy advocated in@15#, we fix the c.m. energy rela
tive to the 1S resonance massDE5As2M1S upon compar-
ing LO, NLO and NNLO distributions. On the 1S resonance
(DE50, Fig. 7!, O(as) andO(as

2) corrections shift the dis-
tribution peak,ppeak, by 20.8% and by12.5%, respec-
tively. Also one sees that theO(as

2) corrections are larger a
higher momentum region. This is expected because pa
the O(as

2) corrections are relativistic corrections which a
enhanced in the relativistic regime. In Fig. 8 we incorpor
a log resummation in the Coulombic potential, i.e. repla
VC(r )→VC

(RG)(r ;m f). Qualitative tendencies of the corre
tions are not changed by the resummation.@dppeak/ppeak5
10.5% and12.2% atO(as) andO(as

2), respectively.# We
show momentum distributions atDE54 GeV in Fig. 9@with
VC(r )] and in Fig. 10@with VC

(RG)(r ;m f)]. One sees that in
both figuresO(as) andO(as

2) corrections, respectively, re
duce the peak momentumppeak.

FIG. 9. Top quark momentum distributions at LO~dot-dashed!,
NLO ~dashed!, and NNLO~solid! for m520 GeV. For each curve
we set the c.m. energy at 4 GeV above the 1S resonance mass.

FIG. 8. Same as Fig. 7 but with a renormalization group i
provement in the Coulomb part of the potential: LO~dot-dashed!,
NLO ~dashed!, and NNLO~solid!.
11401
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In general, we see following energy dependences of
O(as) and O(as

2) corrections to the peak momentu
dppeak/ppeak. At DE50 the corrections are positive;1
few %; betweenDE50 andDE51-2 GeV, the corrections
decrease and change sign from1few % to 2 few %; at
higher energies,DE.1-2 GeV, the corrections stay nega
tive, but their magnitudeudppeak/ppeaku decrease with energy
The energy dependences of theO(as) and theO(as

2) cor-
rections are qualitatively similar.

These energy dependences can be understood as a c
quence of an increase of attractive force betweent and t̄ .10

Namely, atDE50, ppeak is determined by the binding en
ergy and is larger for a larger binding energy. At high
energies,DE.1-2 GeV, the peak momentum of the distr
bution tends to be determined only from kinematics,ppeak

' 1
2 As24mt

2. Meanwhile, if the binding energy become
larger due to an increase of attractive force, the 1S resonance
mass will be lowered, and thereforeAs becomes smaller for
a fixedDE.

In all the above results, the decay process of top qua
have been treated only effectively by the replacement~2!,
and we have not included in our analyses even the alre
known O(as) corrections which arise in relation to the to
quark decay process, namely the final-state interactions
tweent and t̄ decay products. For comparison, we show
Figs. 11 and 12 these effects of theO(as) final-state inter-
actions on the top quark momentum distribution. As noted
@12,13,15,21,22#, the final-state interactions reduce the pe
momentum about 5% almost independently of the ener
These energy dependences are distinctly different from th
of the NLO and NNLO corrections studied above. Thus,

10In fact the strength of the Coulombic force,udVC /dru or
udVC

(RG)/dru, increases by theO(as) andO(as
2) corrections at rel-

evant distances.~This may be seen from increases of the couplin
in Fig. 4.! Also, there is an additional attractive force@1/r 2 term in
V(r )] at NNLO. Thus, reflecting the increase of binding energi
the mass of the 1S resonance state decreases; see Table I.

- FIG. 10. Same as Fig. 9 but with a renormalization group i
provement in the Coulomb part of the potential: LO~dot-dashed!,
NLO ~dashed!, and NNLO~solid!.
4-7
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effects of theO(as) final-state interactions are larger an
qualitatively different, so that they would be distinguishab
from other NLO and NNLO corrections considered in th
paper.

VI. SUMMARY AND DISCUSSION

We studied convergence properties of the total cross
tion for e1e2→t t̄ in the threshold region. By expressing th
cross section in terms of the potential-subtracted m
mPS(m f) instead of the pole mass, a better convergence
the 1S resonance mass was obtained, whereas the norma
tion of the cross section hardly changed. We argue that
resummations are indispensable for analyses of the cross
tion in the threshold region. As a first step, we resumm
logarithms in the Coulombic part of thet t̄ potential by
renormalization-group improvement. In this prescription,
followed closely a formulation of the potential subtraction
the fixed-order analysis. Corrections originating from t
Coulombic potential became much more converging after
log resummations, both for the 1S resonance mass and fo

FIG. 11. Top quark momentum distributions at NLO with th
renormalization group improvement for the Coulomb part of
potential. The c.m. energy is set on the 1S resonance state. Th
solid ~dashed! line is calculated with~without! theO(as) final-state
interaction corrections.

FIG. 12. Same as Fig. 11 but for the c.m. energy 4 GeV ab
the 1S resonance state.
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the normalization of the cross section. There still rema
however, unexpectedly largeO(as

2) corrections, whose main

part arises from the 1/r 2 term in thet t̄ potentialV(r ). We
should implement full log resummations to the thresho
cross section and see whether these large corrections rem

We also calculated the momentum distributions of t
quarks in the threshold region including fullO(as

2) correc-
tions. On the 1S resonance state, theO(as

2) corrections to
the distribution shape are small. In particular the shift
ppeak is 12.2% after a renormalization-group improveme
of the Coulombic potential, which seems to be of a leg
mate size. At higher energies, the corrections change
and become negative. Over the whole threshold region
size of the correctionsdppeak/ppeak stays within a few per-
cent. These features can be understood as a combined e
of kinematics and an increase of binding energy. Thus
major part of the corrections can be traced back again to
1/r 2 term in V(r ) which affects the binding energy signifi
cantly. In addition to the full resummations of logarithms,
is mandatory to incorporate the decay process of top qu
properly in order to attain a more reliable theoretical pred
tion of the momentum distributions, since off-shell contrib
tions, i.e. ;(p2pon-shell)

2/mt
2 corrections, are not treate

correctly in the present calculation. We demonstrated that
O(as) final-state interaction corrections to the distributio
shape are significant in comparison to other NLO corr
tions. Thus, we think that yet uncalculatedO(as

2) final-state
interactions may give rise to corrections which are no
negligible compared to the NNLO corrections calculated
this paper.

It was argued in@26# that a large theoretical uncertaint
exists even after a renormalization-group improvement of
Coulombic potential. This claim was based on a large d
crepancy between results of renormalization-group impro
ments in momentum space and in coordinate space. Now
have a better guiding principle. The large discrepancy or
nated from a renormalon pole@39,31#, and by adopting an
appropriate mass definition we can cancel this pole~at least
in the r-independent part of the Coulombic potential! and
obtain a more convergent perturbative series conseque
In this work, we adopted the potential-subtracted mass.

After completion of this work, we received a paper b
Beneke, Signer, and Smirnov@28#. Their work has a signifi-
cant overlap with Sec. III of the present paper. Effects
introducingmPS(m f) on the cross section are consistent b
tween their results and ours. We adopt a value ofm f consid-
erably smaller than that adopted in their paper. This is
view of our application of the formalism to th
renormalization-group improved potential; see discussion
low Eq. ~16!.
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APPENDIX A: DEFINITIONS AND CONVENTIONS

In Eq. ~3!, the vertex renormalization constants are giv
by @23,24#

C1524, C25CF C2
A1CA C2

NA1TRNL C2
L1TRNH C2

H ,
~A1!

where

C2
A5

39

4
2z31p2H 2

3
log~2egE22mtr 0!1

4

3
log22

35

18J ,

~A2!

C2
NA52

151

36
2

13

2
z31p2H log~2egE22mtr 0!2

8

3
log2

1
179

72 J , ~A3!

C2
L5

11

9
, ~A4!

C2
H5

44

9
2

4

9
p2. ~A5!

QCD color factors are defined asNc53, CF54/3, CA53,
TR51/2, and the fermion numbers in our problem are giv
by NL55 andNH51. Also, the top quark charge is define
by Qt52/3.

The Coulombic potential~6! is identified with the QCD
potential between a static quark-antiquark pair. The fi
order correction to the QCD potential was calculated
@40,41#, while the second-order correction was calcula
first in @42#, a part of which has been corrected recently
@43#. Their coefficients are given, respectively, by

b05
11

3
CA2

4

3
TRNL , ~A6!

b15
34

3
CA

22
20

3
CATRNL24CFTRNL , ~A7!

a15
31

9
CA2

20

9
TRNL , ~A8!

a25S 4343

162
14p22

p4

4
1

22

3
z3DCA

2

2S 1798

81
1

56

3
z3DCATRNL2S 55

3
216z3DCFTRNL

1
400

81
TR

2NL
2 . ~A9!

In Eq. ~6!, m85megE, where gE50.5772 . . . denotes the
Euler constant.
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APPENDIX B: DERIVATION OF TOP QUARK
MOMENTUM DISTRIBUTION

According to the NRQCD formalism, the NNLOgt t̄ ver-
tex in the threshold region is given by

G i~p,E!5g i3FC~r 0!1
D r 0

6mt
2c2G

3S p2

mt
2

p4

4mt
3c2

2v D G̃NR~p;r 0!, ~B1!

v5E1 iG t , E5As22mtc
2. ~B2!

The NRQCD Green function is defined by

@HNR2v# GNR~r ,r 8!5d~r2r 8!, ~B3!

HNR5
p2

mt
2

p4

4mt
3c2

1VC~r !1
11pCFas

3mt
2c2

d~r !

2
CFas

2mt
2c2 H 1

r
,p2J 2

CFCAas
2

2mtc
2r 2

, ~B4!

G̃~p;r 0!5E d3r eip•r GNR~r ,r 0!, ~B5!

where GNR(r ,r 8) denotes the S-wave component of
GNR(r ,r 8). In these formulas we restored the speed of lig
c, and definedas[as(m) c. Then one can identify the NLO
and NNLO corrections with the coefficients of 1/c and 1/c2,
respectively, in the series expansion ofG i(p,E) in 1/c @44#.
The vertex renormalization constantC(r 0) is determined by
matching~B1! to the 2-loopgt t̄ on-shell vertex@45#.

From the relation@24#

HNR5
p2

mt
1VC~r !2

H0
2

4mtc
2

2
3CFas

4mtc
2 H H0 ,

1

r J
1

11CFas

12mtc
2

@H0 ,ipr #2
CF~3CA12CF!as

2

6mtc
2r 2

, ~B6!

H05
p2

mt
2CF

as

r
, ~B7!

one may find an approximate expression for the Green fu
tion

GNR~r ,r 8!.F11
v

2mtc
2

1
3CFas

4mtc
2 S 1

r
1

1

r 8
D

2
11CFas

12mtc
2 S 1

r

d

dr
r 1

1

r 8

d

dr8
r 8D GG~r ,r 8!

1
1

4mtc
2

1

4prr 8
d~r 2r 8!, ~B8!
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whereG(r ,r 8) is defined from a simplified Hamiltonian in
Eq. ~4!. Using standard perturbative expansion in quant
mechanics, one can show that both sides of~B8! coincide up
to ~and including! O(1/c2) in the series expansion in 1/c,
and that also in the vicinity of each resonance pole, the p
position and the residue coincide up to the same order.
may then express the Fourier transform of~B8! in terms of
the momentum-space Green functions defined in Eqs.~21!–
~23!. In addition, in the limitr 0→0 one can justify a replace
ment

d

dr0
r 0 G̃~p;r 0!→S 12

1

2
CFmtasr 0D G̃~p;r 0!. ~B9!

By including the gt t̄ vertex in the Born diagram fo
e1e2→t t̄→bW1b̄W2 and integrating over thebW phase
space, one obtains the momentum distribution formula~19!.
All r 0-dependent factors multiplyingG̃(p;r 0) are combined
with C(r 0) and included in the vertex renormalization co
stant given in~19!.

APPENDIX C: PROOF OF UNITARITY RELATION

In order to prove the unitarity relation between Eqs.~3!
and ~19!, it is sufficient to show

Im F S 11
E1 iG t

6mt
DG~r 0 ,r 0!G

5E d3p

~2p!3
G t H S 11

2E

3mt
D uG̃~p;r 0!u2

1
3

2
CFas~m!2 Re@G̃1/r~p;r 0! G̃~p;r 0!* #

2
11

6
CFas~m!2 Re@G̃ipr

~p;r 0! G̃~p;r 0!* #

1
1

6mt

sin~pr0!

pr0
Re@G̃~p;r 0!#J . ~C1!

This equality follows readily from a combination of the ide
tities

E d3p

~2p!3
G t H S 11

E

2mt
D uG̃~p;r 0!u2

1
3

2
CFas~m!2 Re@G̃1/r~p;r 0! G̃~p;r 0!* #J

5Im G~r 0 ,r 0!, ~C2!

E d3p

~2p!3
G t Re@G̃ipr

~p;r 0! G̃~p;r 0!* #50, ~C3!

E d3p

~2p!3
G t

sin~pr0!

pr0
Re@G̃~p;r 0!#5Im@ iG tG~r 0 ,r 0!#,

~C4!
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and neglecting terms suppressed byO(as
4).

Proof of Eq. „C2…

Let us define an operator

G5F p2

mt
1V~r !2S v1

v2

4mt
D G21

. ~C5!

Then

Im G5G†
~G21!†2G21

2i
G52 G†Im@G21#G

5G†S G t1
EG t

2mt
1

3CFas

2mtr
DG, ~C6!

where the imaginary part of any operatorX is defined as
ImX5(X2X†)/(2i ). Sandwiching both sides bŷr 0u and
ur 0&, and inserting a completeness relation on the right-ha
side, one obtains Eq.~C2!.

Proof of Eq. „C3…

E d3p

~2p!3
G t Re@G̃ipr

~p;r 0! G̃~p;r 0!* #

5E d3p

~2p!3

G t

asmt
@^r 0uG†up&^pu iprGur 0&

1^r 0uG†~ ipr !
†up&^puGur 0&#

5
G t

asmt
^r 0uG† ipr G1G† ~ ipr !

† Gur 0&50, ~C7!

where we used hermiticity ofpr in the last line.

Proof of Eq. „C4…

Im@ iG tG~r 0 ,r 0!#5
G t

2
^r 0uG1G†ur 0&

5
G t

2 E d3p

~2p!3
@^r 0uGup&^pur 0&1^r 0up&

3^puG†ur 0&#

5E d3p

~2p!3
G t

sin~pr0!

pr0
Re@G̃~p;r 0!#.

~C8!

Note that the S-wave component ofeip•r is given by
sin(pr)/(pr).
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