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We present the results from quantitative studies of physics at tf threshold, taking into account
realistic experimental conditions expected at future linear e*e™ colliders. A possible experimental
strategy is illustrated for a sample case of m;=150 GeV, where the importance of the measurements
of both total and differential cross sections is emphasized for precision determinations of various
parameters. The studies are based on a recently developed theoretical formalism which includes
full O(a,) corrections. An energy scan of 11 points with 1 fb~! each allows us to measure the top
mass and the strong coupling constant with statistical errors of Am;=0.2 GeV and Aa,=0.005,
respectively. As for the top width, AI';/T';,=0.2 (stat) is expected, if both m; and a, are known.
The measurement of the top momentum at some optimized energy point with 100 fb~! reduces the
error on a, to Aa,=0.0015, provided that the 1.5 peak position is known from the threshold scan.
The momentum measurement also improves the precision on the top width to AT';/I"';=0.04, if a,
is known from other sources. The forward-backward asymmetry in the threshold region provides
another interesting method to measure a, and T';.
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PACS number(s): 13.65.+i, 14.65.Ha

I. INTRODUCTION

The top quark is one of the most important physics
targets at future linear e*e™ colliders. As recent experi-
mental limits on the top mass [1,2],

mw < mz S m; < 200 GeV, (1)

indicate, the top decays directly into bW, which essen-
tialy saturates the branching fraction in the standard
model and is dominant in most of its extensions. The
dominance of the ¢ — bW mode leads to a large top
width which is about 0.8 GeV for m; = 150 GeV and
becomes as large as 2.2 GeV for m; = 200 GeV. The
most important new feature is probably this large top
width that makes the top physics at future linear ete~
colliders unique. In the ¢ threshold region, the large top
width acts as an infrared cutoff [3], which allows us a
reliable estimate of cross sections based on perturbative
QCD: the top decays before entering the nonperturba-
tive regime and is insensitive to long-distance physics.
Therefore, we can perform a clean test of QCD at the tZ
threshold. More importantly, since we can calculate the
QCD contribution unambiguously, other smaller effects
such as the Higgs boson exchange contribution may be
extractable.

The basic physical parameters that enter the tf thresh-
old physics are the top mass, the top width, and the
strong coupling constant. In addition, we may include
the top Yukawa coupling and the Higgs boson mass, when
the Higgs boson exchange contribution is of observable
size. The observation that the large top width acts as
an infrared cutoff initiated serious feasibility studies on
the measurements of these parameters. The first attempt
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was made theoretically on the total tf cross section [4],
which was soon supplemented by experimental feasibil-
ity studies [5-8]. It was then pointed out that differential
cross sections, the top momentum distribution [9,10], and
the forward-backward asymmetry [11] in particular, pro-
vide information independent of what is extractable from
the total cross section. In the course of these develop-
ments, it was recognized that the full next-to-leading or-
der corrections to the total and differential cross sections
are indispensable for providing reliable theoretical predic-
tions that stand up to the expected experimental accu-
racy. Recently, the calculation of full next-to-leading or-
der corrections has been completed [12-14], which include
the contributions from final state interactions (gluon ex-
change between ¢ and b or ¢ and b and between b and
b) together with that from real gluon emissions. These
new corrections modify the top quark differential cross
sections nontrivially, affecting the parameter determina-
tions significantly [13,14]: for example, it has been shown
that at \/s = 2m, the final state interactions reduce the
top momentum by about 5%, which corresponds to an a,
shift of Aa, ~ 0.01 if we are to extract a, from the top
momentum distribution. It turned out, however, that
these corrections cancel out altogether in the total cross
section at the next-to-leading order [12-14].

In this paper, we report quantitative studies on the
determinations of physical parameters under realistic ex-
perimental conditions, according to the formalism given
in Ref. [14], which includes the full next-to-leading order
corrections [15]. We show the importance of the mea-
surements of the top momentum distribution and the
forward-backward asymmetry. It is demonstrated that
the top momentum distribution is indeed measurable and
is useful in the parameter determinations, when mea-
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sured at the energy optimized by using the information
from the total cross section measurement. We illustrate
our strategy for such consistent measurements, taking a
sample case of m; = 150 GeV.

The paper is organized as follows. In Sec. II we briefly
review the theoretical background on which the subse-
quent analyses are based. Section III discusses exper-
imental determinations of various parameters through
the measurements of the total and differential cross
sections where complications such as smearing effects
due to beam energy spread and beamstrahlung (which
is the bremsstrahlung from beam particles due to the
strong electromagnetic fields produced by opposing beam
bunches) are taken into account. Finally, Sec. IV sum-
marizes the results and concludes this paper. The for-
mulas necessary for our numerical studies are collected
in Appendix A, while Appendix B gives a brief descrip-
tion of our Monte Carlo simulation.

II. THEORETICAL BACKGROUND

The t and # quark pairs created in et e~ collision spread
apart from each other and decay via electroweak in-
teraction into bW+ and bW —, respectively, at distance
~ (mT'y)~1/2 before hadronization occurs [16,17). The
t and f quarks, being slow in the threshold region, are
trapped by the attractive force mediated by multiple ex-
change of Coulombic gluons between them. Therefore,
the tt threshold region is an ideal place to test the en-
hanced QCD interaction in the spacelike region without
uncertainties from the low-energy regime of QCD.

The basic building block of the amplitude for ete™ —
tf near the threshold is the Green’s function of nonrela-
tivistic Schrédinger equation in the presence of the QCD
potential:

2
[—V— +V(r) - (E + 15‘1)] G(x;E) = 8(x). (2)
mye 2
Here, E = /s — 2m, is the energy measured from the
threshold. r = |x| denotes the relative distance between
the t and  quarks, and the § function on the right-hand
side shows the creation of a t pair at the same point. Ty
is the running toponium width [9], which is almost twice
the top quark width I';. (See Appendix A.)

Roughly, the QCD potential is given by the Coulombic
potential with its running coupling constant evaluated at
momentum scale g ~ 1/r:

V(r) ~ —CFM- (3)

The toponium resonances feel the attractive force cor-
responding to the coupling a,(u) evaluated at the size
of their wave functions, typically u ~ a,m; ~(Bohr
radius)~!. Since the top quark is heavy, its typical ki-
netic energy inside a tf bound state far exceeds those of
quarks inside the lighter quarkonia. Therefore, the top
quark can probe the deep region of the QCD potential.
The leading enhancement of the amplitude in the
threshold region is attributed to the tZV(V = «, Z) vector
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vertex I}y, which is proportional to the above Green’s
function in momentum space [18,4]:

Ffﬂ/ X é(p, E)v (4)
G(p; E) = / Bx e P*G(x; E). 5)

See Fig. 1. Using the resonance wave functions v, (x)’s,
which are the solutions to the homogeneous version of
the Schrodinger equation [Eq. (2)] with energies E,’s,
and their Fourier transforms ¢,(p)’s, we may express
the Green’s function as

¢n(p)¢:| (x=0) (6)

Glp; B) = - 2 E — En+iTn/2’

A. Total cross section and momentum
distribution

The total cross section for ete~ — tf can be obtained

via the optical theorem (3]

Otot X ImG(x = 0 E Imz “E,—'l—,(é,n—_‘_z‘l.—“ﬁ (7)

We can see that the cross section exhibits a resonance
spectrum as a function of the c.m. energy. The level gaps
of the spectrum are of the order of AE ~ aZm,, while
the resonance widths are I',, ~ 2T';. For m; 2> 150 GeV,
AFE and T',, being of comparable size, various resonance
states interfere with one another so that the resonance
structure will be quite smeared. Thus, we are necessarily
concerned with the overall shape of the total cross section
in the threshold region.

On the other hand, one can measure the momentum
distribution of the top quark in the threshold region
by reconstructing the top quark momentum p from its
daughter bW-jet momenta. In the leading order aprox-
imation, the top quark momentum distribution is pro-
portional to the square of the momentum-space Green’s
function:

do

a] = |G B ®)

According to Eq. (6), we may measure the momentum-
space wave functions of the toponium resonances using

YZ

+

el e

FIG. 1. Threshold correction to the tf pair production pro-
cess.
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the top quark momentum distribution. Thus, the mo-
mentum distribution provides information independent
of that from the total cross section, so that it can be
used to measure physical parameters near threshold.

B. Forward-backward asymmetry

It has been discussed recently that there will be mea-
surable forward-backward (FB) asymmetry in the ¢ pair
production near the threshold. At the leading order, the
distribution of the top quark is known to be spherical.
The FB asymmetry originates from the following two
sources, which apper at the next-to-leading order.

1. S-P interference

The main contribution to the FB asymmetry comes
from the interference of the vector and axial-vector ver-
tices [11].

In the ete~ — tf process, one can show from the spin-
parity argument that the &tV (V = «4,Z) vector ver-
tex creates S- and D-wave resonance states, while the
ttZ axial-vector vertex creates P-wave states. Since the
P-wave amplitude is suppressed by a power of 3 near
the threshold, its interference with the S-wave resonance
states gives rise to an O(83) correction to the leading S-
wave contribution to the cross sections. Since this cor-
rection stems from the interference of the vector and the
axial-vector couplings, it is porportional to B cos#, thus
producing FB asymmetry of O(8) = O(a,).

In general, the S-wave and the P-wave resonance states
have different energy spectra. If the c.m. energy is fixed
at a resonance chosen from either one of the two spec-
tra, there would be no contribution from the other. The
widths of the resonances, however, grow rapidly as m;
increases, and they become so large that the S-wave
and the P-wave resonance states start to interfere for
m; 2 100 GeV. This is the main origin of the FB asym-
metry present even below the threshold, and provides in-
formation on the resonance level structure which is con-
cealed in the total cross section due to the large smearing
effect.

2. Final state interaction

There is also some contribution from the final state
interactions (Fig. 2) to the FB asymmetry as a part
of the next-to-leading order corrections. It turns out,
however, that this contribution is small, at the level of
1-2% [14].

So, in essence, the FB asymmetry “measures” the de-
gree of the overlap of the S-wave and the P-wave reso-
nances.

In the following section, we analyze the total cross sec-
tion, the momentum distribution, and the FB asymmetry
on the basis of the above physical picture. We include the
full next-to-leading order [= O(as,)] corrections and the
initial state radiation to the cross sections. The effects
of beam energy spread and beamstrahlung are also ex-
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FIG. 2. Next-to-leading order corrections from final state
interactions.

amined. All the necessary formulas for the cross section
evaluations are summarized in Appendix A.

III. DETERMINATION OF VARIOUS
PARAMETERS

In this section, we discuss how to determine various
parameters involved in the tf threshold cross sections.
We start with the measurement of the total cross section
through threshold scan in Sec. III A. The threshold scan
alone can provide fairly good measurements of various
parameters, given a moderate integrated luminosity ex-
pected at the initial stage of linear ete~ collider exper-
iments. The information gathered through the thresh-
old scan is essential for the decision of the energy points
to invest more luminosity (high luminosity top factory
runs) and to perform differential cros section (top mo-
mentum distribution and forward-backward asymmetry)
measurements. The energy points will be chosen so as
to maximize the sensitivity to the parameters in ques-
tion and to minimize the theoretical and experimental
ambiguities. As we will see, the differential cross sec-
tion measurements, the top momentum distribution in
Sec. IIIB and the forward-backward asymmetry in Sec.
IIIC, provide information which is independent of that
from the total cross section and help us improve greatly
the precision of the parameter determination.

Unless otherwise stated, we assume m; = 150 GeV in
what follows, which roughly corresponds to the current

best estimate from precision electroweak measurements
at the CERN ete™ collider LEP [2].

A. Threshold scan

1. Dependence of total cross section
on various parameters

The total ¢t cross section in the threshold region in-
volves the parameters

Utf(\/‘;7mt7rtaaa(mZ),mHaﬂH)a (9)

where Sy is the top Yukawa coupling normalized by its
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standard model value. We first examine how the thresh-
old shape depends on these parameters, leaving out the
beam effects.

As shown in Fig. 3(a), the first S-wave peak position
shifts downward, while the peak itself is enhanced when
a, increases. This is because, when the potential be-
comes deeper, the binding energy and the wave function
at the origin also become larger. Thus, the total cross
section tends to behave similarly in two situations: (a)
we increase a, with m, fixed, (b) we decrease m; with
a, fixed.

On the other hand, the correlation between m; and
the top width T; is small, as seen in Fig. 3(b). When
the width becomes narrower, the peak height increases,
while the tail part decreases. Notice that in Fig. 3(b),
|Ves|? is defined by

Ithlz = Pt/rt(SM : |th>|2 = 1), (10)
and can be greater than unity when there is (nonstandard
model) additional decay modes such as t — bH* or t —
£X° or both.

The most interesting is the Higgs boson effect. Since
this effect can be implemented to the first approximation
by adding to the QCD potential an attractive Yukawa
potential

V2GFr

4
the Higgs-boson-exchange contribution is expected to be
large for smaller my and larger By. Notice that the
range of this potential is controlled by the Higgs boson
mass (mg) and is short compared to the QCD poten-
tial. Therefore, the Yukawa potential does not change
the resonance position very much, but makes the wave

—MmgygT
26

(IBHmt) )

- (11)

VH (1‘) =
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function at the origin significantly larger, thereby mak-
ing the cross section larger everywhere in the threshold
region. The potential approximation is, however, known
to be inappropriate for myg > 50 GeV: the potential ap-
proximation significantly overestimates the Higgs boson
effects for large my. We, therefore, evaluate the Higgs
boson effects, according to the prescription recently pro-
posed in Ref. [19]. Namely, we include the Yukawa poten-
tial [Eq. (11)] in the calculation of the Green’s function,
and then multiply the cross section [x ImG(0; E)] as

ImG(0; E) — |Fuiggs(m}/m?)*ImG(0; E),  (12)

where the hard Higgs boson correction factor is given by

0B
47 sin? Ow < )
x (fth(m%,/mf) e

p— ”r —
m
The function f;, is defined by

2
m
Fhiggs(mf/m?) =1+ ﬁ

H). (13)

fen(r) = —1-15 [—12 +4r + (=124 97 — 2r%) Inr
+§(—6 + 57 — 27‘2)14(1')] (14)
with
(4 — r)arccos(/r/2) if r <4,
) — (vF/2) "

14+,/1-4/r .
—{/r(r—4)3In i otherwise.
Figures 3(c) and 3(d) demonstrate the dependences on
mpyg and By, respectively. We can see that the above

qualitative observations, which were made based on the
potential approximation, still hold.

With ISR; m,,,=150 GeV
15 r a) o =0.11:dotdash T c) my = 5OGeV:dot'dash )
[Vil“= =0.12:solid a~0.12 =100GeV:solid
10 L No Higgs =0.13:dash Vl?=1 =150GeV:dash
Bul=1 A
05 f
3 FIG. 3. Dependence of the
Y threshold shape on (a) a,(mz),
< 00 P e oot (b) [Visl?, (c) mu, and (d) B
= 15 p) IVyp/? =0.8:dotdash T d) By’ =0.5:dotdash ] (the normalized Yukawa cou-
b a=0.12 =1.0:so0lid my=100GeV =1.0:s0lid pling), in the case of m. = 150
No Higgs =1.2:dash a.=0.12 =2.0:dash GeV. Initial state radiation is
1.0 |V:bf2=1 . incorporated in the figures.
05
iggs

0.0
292 294 296 298 300 302 292 294 296

Vs (GeV)

298 300 302 304
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2. Dependence on intermediate-distance potential

It is of importance to confirm that the threshold shape
is essentially determined by the short-distance part of the
potential, which is derived from perturbative QCD, and
is insensitive to the shape of the potential in intemediate-
and long-distance regions. We will examine here the de-
pendence on the change in the intermediate-distance po-
tential.

It is well known that the data from charmonium and
bottomonium spectroscopy are best reproduced when we
take a logarithmic function of r as the intermediate-
distance potential [20]. The intermediate-distance part
of our potential is determined by fitting to the charmo-
nium and bottomonium data, which smoothly continues
to the QCD-motivated short-distance potential at r = 7o,
where 7o is one of the adjustable parameters to spec-
ify the potential shape [9]. Since 7o affects most signifi-
cantly the intermediate-distance potential, we change it
by +5 standard deviations away from its best fit value
[21], while keeping the short-distance potential fixed, and
see how much the threshold shape changes. As shown in
Fig. 4(a), this modification of the intermediate-distance
potential does not alter the threshold shape at all. When
the top quark width is artificially reduced to 1/10, the
difference is visible for higher resonance states [see Fig.
4(b)]. This clearly demonstrates that the large top quark

2.0 e T
L 2 1
[a) V2 =1 m, = 150 GeV |
t as(mz)=o-12 4
15 F ]
=)
a,
=10 -
S
i ro = best fit 1
05 i -=-=- =50, bound—:
......... +5o'ro bound 4
0.0 . l :
-8 -6 -4 -2 0 2 4
E (GeV)
15.0 [ T T T DS
E b) [Vl = 0.1 m, = 150 GeV ]
125 [ o m)=0.12
100 R
o f ]
L5 B E
b., F ro = best fit ]
50 L —_——— ‘5Ur° bound—_
- +50’r° bound ]
25 |
0.0 P TEY m—
—4 -3 -2 -1 0 1
E (GeV)

FIG. 4. Dependence of the threshold shape on the interme-
diate-distance potential for (a) |[Vis|> = 1 and (b) |[Vzs|® = 0.1.
The figures are before the inclusion of initial state radiation
and beam effects.
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width actually acts as an infrared cutoff and the theoreti-
cal prediction of the threshold shape is indeed insensitive
to the intermediate-distance potential.

3. Beam effects

What we will actually observe at a future linear ete~
collider is the convolution of the threshold shape pre-
sented above with the beam energy spectrum in Fig. 5
(see Appendix A). The tail towards the low-energy re-
gion is the result of beamstrahlung. On the other hand,
the sharp peak at the nominal center-of-mass energy ,/so
corresponds to collisions with no beamstrahlung. The
width of this sharp peak is determined by beam energy
spread. Both the beam energy spread and the beam-
strahlung affect the observable threshold shape. It is,
therefore, very important to examine the effects of the
beam energy spread and the beamstrahlung for design-
ing the collider and the experiment therewith. Since the
effect of the beamstrahlung is expected to be similar to
that of the initial state radiation, we will examine how
the cross section changes in three steps: (i) no initial
state radiation (ISR) and no beam effects, (ii) with the
ISR but without the beam effects, and (iii) with both of
the ISR and the beam effects.

We can see in Fig. 6 that the ISR reduces the observ-
able cross section significantly, though the 15 peak is still
visible. The beam effects, the beam energy spread in par-
ticular, smear out the 1S peak. The main effect of the
beamstrahlung is, in this case, a loss of usable luminosity.

Since the beam energy spread appers to be the major
problem with our planned precision measurements, we
should also be aware of the effects of the structure inside
the é-function part which corresponds to the no beam-
strahlung case. In order to see the effects more clearly,
we switch off the beamstrahlung here and examine how
the threshold shape changes with the beam energy spread
for two kinds of spectra, flat-top and double-peak, which
is more realistic. Figure 7(a) is the enlargement of the
é-function part for these two spectra with various beam
energy widths, and Fig. 7(b) is the corresponding thresh-

T AR 7100
1.00 f—-=-——-—-————————- - ]
9 - -~ { 80
- [ \\ /.
V) F \ ]
Tl5 075 ]
x‘“ Vs = 300 GeV 1 60 __1|,<
e AEpgam = 1.0%(FWHM) ©lo
~|= 050 F N =063 x 10" - 40 ~la
| g, = 0.335 um
i —_
025 | g, = 3.92 nm 3 20
o, = 85 um l
R ‘—’/ 0
0.4 0.6 0.8 1
X = Vsg/ Vs,

FIG. 5. Differential luminosity as a function of the cen-

ter-of-mass energy after the inclusion of beam energy spread

and beamstrahlung.
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FIG. 6. Effects of the initial state radiation and the beam
energy spread and beamstrahlung on the threshold shape for
m, = 150 GeV and a,(mz) = 0.12: with no ISR and no beam
effects (dash), with ISR but without beam effects (dotdash),
and with both ISR and beam effects (solid).

old shape. We can see that, when the beam energy spread
is greater than 0.4%, the structure inside the é-function
part affects the threshold shape.

The beam effects can be summarized as follows. (i)
The beamstrahlung reduces the usable luminosity in the
threshold region. In other words, the usuable part is es-
sentially restricted to the d-function part. Therefore, we
need to know the height of the é-function part accurately
for precision measurements. (ii) The beam energy spread
is the major source of the peak smearing. When the
energy spread is less than 0.4%, however, the threshold
shape is practically independent of the structure inside
the d-function part. If we cannot achieve such a nar-
row band beam, it is important to measure the spectrum
inside the 4-function part with a high-energy resolution
[22].

4. Fvent selection

The signature of £ pair production is two b quarks and
two W bosons in the final state. The two W bosons decay
into either qg’ or li. Therefore the final state configura-
tions are (i) two b jets and four jets from W’s (45%),
(ii) two b jets, two jets, and one charged lepton (44%),
and (iii) two b jets and two charged leptons (11%). Case
(i) is useful for the total cross section and the momen-
tum distribution measurements, while case (ii) is the only
channel to measure the forward-backward asymmetry in
practice. The basic cuts used in these analyses can be
classified into the following three groups: (a) event shape
cuts such as those on the number of charged particles,
the number of jets, and thrust, (b) mass cuts to select
W’s and t’s by jet-invariant-mass method, and (c) re-
quirements of leptons in cases (ii) or (iii). If available,
b tagging is a powerful tool to reduce the combinatorial
background in the parton reconstruction by jet-invariant-
mass method.

In order to measure the threshold shape reliably, we
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need to select tf events with a good signal-to-background
ratio. For our choice of the beam-related parameters, the
effective cross section at the threshold is about 0.5 pb for
my = 150 GeV, while that of the largest background
(W*W~ productions) is about 14 pb. We need some
10~3 suppression.

To see how this can be achived, we took case (i) as an
example and carried out Monte Carlo simulations (see
Appendix B). Figure 8(a) shows a tyical 6-jet event ex-
pected for case (i). Its calorimetric lego plot is in Fig.
8(b), where we can clearly see six jets.

Our event selection proceeds as follows. We first re-
quire 20 or more charged tracks and impose cuts on the
visible energy (the energy sum of all the detected par-
ticles including neutral ones) and the total transverse
momentum: FE;; > 200 GeV and pr < 50 GeV. The
remaining events must contain six or more hadronic jets
after jet clustering with ycue = 5 X 1073, where ycus is
the cut on jet-invariant masses normalized by the visible
energy. When there are more than six jets, we increase
the ycut value so as to make the event yield exactly six
jets. Two pairs of jets out of these six jets must have 2-
jet invariant masses consistent with my . These two W

SAERER R B LA B B AR B
800 L @) Effective Vs Distribution B
No beamstrahlung 1
Initial state radiation convoluted
Epeam SPread ]
600 FWHM = 0.1 % —
3‘ F =04% 1
Rt =07%
o) i =10% 1
© 400 =147 —
Q r J
o Dot : flat
& [ Solid: 1-exp(-(4/0)%/2)/1.2
200 o = FWHM/2 N
0 L L = 1L AR
0.98 0985 099 0.995 1 1.005
Normalized Vs 4
I T T T T
r b) Corresponding Threshold Shape
1.00 ~ =
—~ Of?s —
Nel
(o}
~
T 0.50
© 50 i
my,, = 150 GeV
[ as = 0.12 ]
0.25 | Vel = 1 ]
No Higgs ]
OAOO-"“" Ill'i
292 294 296 298 300 302 304
Vs (GeV)

FIG. 7. (a) Reduced center-of-mass energy distributions in-
cluding the effects of initial state radiation and natural beam
energy spread but leaving out the effect of beamstrahlung.
Distributions for two kinds of spectra, flat-top and dou-
ble-peaked, which is more realistic, are shown for various
beam energy spreads. (b) Corresponding theshold shapes.
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candidates are then required to make invariant masses
consistent with m;, when combined with one of the re-
maining two jets. (The locations of these mass cuts will
be shown in Figs. 10 and 11 below.) Finally we impose
a cut on the event thrust: thrust< 0.75.

Histogrammed in Figs. 9(a) and 9(b) are the visible
energy and the total transverse momentum for the ini-
tial sample of ¢ events (20k events), respectively, where
the final ¢ sample distributions after all the cuts are also
shown as hatched histograms. Figure 10 is the scatter
plot of the 2-jet invariant masses corresponding to two
W candidates for the final tf sample where their projec-
tions are also shown. The cut on the invariant masses is
depicted as a square in the figure. Figure 11 is a similar
plot for the 3-jet invariant masses corresponding to the
bW candidates at the threshold. The smooth curve indi-
cates the location of the m, cut. Finally, Fig. 12 shows
the thrust distribution for the ¢Z sample (open histogram)
just before the final thrust cut. The hatched histogram
in the same figure is the remnant W+W— background
which can be effectively suppressed with the thrust cut
indicated by an arrow. After this final cut, the detection
efficiency is 29% while the signal-to-background ratio is
greater than 10. This detction efficiency translates to
about 63% when the W — ¢q branching ratio of 67%
is taken into account. Although we can obtain similar
efficiencies and signal-to-background ratios for cases (ii)

event from ete”

FIG. 8. (a)

_ Typical
— tf —» bWbW~ where both W+ and W— decay into qg.
(b) The same event in the calormeter.

6-jet
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a) b)
2000 F ° AE = +2 GeV 1 1
m,, = 150 GeV

1500 1 b

1000 4 4

500 1 b

Cut Cut
0 v & v
0 100 200 3000 20 40 60 80 100
Eyie (GeV) Py (GeV)

FIG. 9. (a) Evis and (b) P; distributions for initial (open
histograms) and final (hatched histograms) samples.

and (iii), we conservatively assume this efficiency in the
following section.

5. Ezpected ezperimental sensitivity

Using the tf sample so obtained, we can determine
the physical parameters that enter the threshold formula.
Experimental feasibility of such a measurement has been
studied by several authors [5-8]. We show below the re-
sults of our study using the new formalism summarized
in Appendix A.

Figure 13(a) is an example of the energy scan to deter-
mine m,; and a,(mz). Each data point corresponds to 1
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efe” >ttt
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400 | 3 AE = +2 GeV
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200 ]
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150 | {F ]

100

szels (GeV)
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0 50 100 150 0 200 400 600 800
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FIG. 10. A scatter plot of the invariant masses of the 2-jet
systems reconstructed as W boson candidates together with
their projection to each axis.
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FIG. 11. A similar plot for the invariant masses of the 3-jet
systems reconstructed as bW candidates.

fb~! and was generated with |V;|2 = 1, a,(mz) = 0.12,
and myg = oo(no Higgs boson). By fitting these data
points to the threshold formula convoluted with the nat-
ural beam energy spread and the beamstrahlung spec-
tra, we obtain a contour plot shown in Fig. 13(b). The
strong correlation between m; and a,(mz) stems from
the fact that the resonance mass decreases as a,(mz)
increases. If a,(mz) is known, we have Am; ~ 0.1
GeV and even if a,(mz) is totally unconstrained, we
can expect Am,; ~ 0.2 GeV. On the other hand, the ex-
pected statistical error on the strong coupling constant is
Aa,(mz) = 0.005, when there is no other measurement
on mg.

Figure 14(a) is a similar plot for the determination of
[Vis|2. Again we assume 1 fb~! per point. The corre-

1500 ]
[ my, = 150 GeV \ ]

1250 |- AE = +2 GeV WW BG
[ All but thrust cut P/ ]

1000 [ =
L Cut ]

750 [~ -]
500 |- T § .
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L Y 1

0 C ke &\\\\\;;\‘\L R ]
04 05 06 7 08 09 1

Thrust

FIG. 12. Thrust distributions for the tf signal and the
W+ W~ background with all but the thrust cut indicated by
an arrow.
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sponding contour plot [Fig. 14(b)] shows no correlation
between m; and |V;|? and indicates A|Vjp|? ~ 0.15 ~
0.20.

Figures 15(a) and 15(b) are examples of the my and
By measurements where the energy points are chosen in
the same way as with Figs. 13(a) and 14(a). The my-
B% contours are given in Fig. 15(c) where the solid and
dashed lines correspond to 1 fb~! and 2 fb~! per point,
respectively. We note that, when we use the lepton-plus-
4-jet mode together with the 6-jet mode, the detection
efficiency almost doubles and the contours for 1 fb~! per
point roughly become the dashed lines. For the standard
model Higgs boson of mg = 100 GeV, the expected error
on g is Afyg = 0.43 and 0.29 for 1 b~ and 2 fb~! per
point, respectively.

It should be noted that the energy points used here are
by no means optimized. Prior to the actual energy scan,
we will have a fairly good estimate of m; from the mea-
surement of the 3-jet invariant mass [6,7]. Based on this
knowledge, we should be able to improve the precision
of the measurements by optimizing the energy points to
maximize the sensitivities to the model parameters dis-
cussed above.
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FIG. 13. (a) An example of energy scan to determine m.
and a,(mz) where each point corresponds to 1 fb~1. (b) The
contour resulting from the fit to the data points.



30
1.0
[ a) ]
[ ‘myp = 150 GeV [Vyl? = 0.8: dotdash
08 I o, =012 = 1.0: solid -1
[ No Higgs = 1.2: dash ]
0.6
—~
0 [
Q_‘ -
\_./- -
% 04
] L
oz f .
MC: 1 fb~!/point
0.0 re el PP IV I I
292 294 296 298 300 302 304
Vs (GeV)
—— T
- b) 1
15 |8 = 1.00 : dotdash B
' L = 2.28 : dash 1
L = 4.61 : solid 4
g + New Decay Mode 1
E@, [ Standard ? 1
T 1.0 — Model = — - +—— 71— —"————— —
~ F Vel?=1 & J
~ [ New Generation
F -
Input j
0.5
R I R R I B
149.6 149.8 150 150.2 150.4
mtop (GeV)
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contours resulting from the fit to the data points.

B. Measurement of momentum distribution

By virtue of the large top quark width, we can measure
the top quark momentum by reconstructing the 3-jet de-
cay of a top quark, even below the ¢f threshold. This is
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in contrast to the charmonium and bottomonium cases,
where the annihilation modes dominate. As Egs. (6)
and (A3)-(A5) indicate, the top momentum distribution
provides information on the momentum-space wave func-
tions of the toponium resonances. On the other hand, the
total cross-section measurement only probes the wave
functions at the origin [see Eq. (7)]. The momentum
measurement thus allows us to extract additional infor-
mation for parameter determinatons. It should be em-
phasized that the toponium is the first quarkonium that
enables us to measure the momentum-space wave func-
tion.

Before discussing the sensitivity of the top momentum
measurement to various parameters, we need to fix the
energy point at which the momentum measurement is to
be performed. The choice of the energy point should be
made from the viewpoint of insensitivity to theoretical
ambiguities and beam effects and sensitivity to physi-
cal parameters to be determined. Up to this point, we
have been using the energy measured from the threshold
(E = y/s—2m,) which depends on m;. There is, however,
a strong correlation between a, and m; in the total cross
section measurement. Moreover, the definition of m; has
a theoretical ambiguity of ~ 300 MeV due to the ambigu-
ity in the constant term of the QCD potential: the char-
monium and bottomonium data only constrain the slope
of the potential [23]. There remains, therefore, some am-
biguity in the definition of the threshold position. This
difficulty can be avoided, if we measure the energy from
the 1S peak position which can, in principle, be fixed by
the threshold scan. For simplicity, we assume, in what
follows, that the 1S-peak position (,/31s) is known and

use AE = /s — /315 to specify the energy point.

1. Dependence of momentum distribution
on various parameters

Since the Higgs boson exchange contribution is of short
range and only affects the overall normalization of the
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cross section, the shape of the momentum distribution
is insensitive to the Higgs boson effects. The relevant
parameters are thus my, Iy, and a,(mz). We will first
examine the dependece of the top momentum distribu-
tion on these parameters before the inclusion of the beam
effects.

Figure 16 shows how the momentum distribution
changes with a, at the tf threshold (E = 0). The peak
momentum |p|peak increases with a,. This behavior is
expected from the virial theorem which predicts that the
average top momentum is roughly given by a,m:. When
we plot the momentum peak position as a function of
AE, however, this naive expectation is no longer valid,
since the 1S-peak position (E;s) varies rapidly with a,:
E;s ~ —a?m,. This rapid change of ,/s;5 overcom-
pensates the |p|peax shift at a fixed AE and the corre-
lation between |p|peak and a, is reversed [23]. Figure
17(a) shows the dependence of |[p|peak 0n AE for various
a,(mz) values.

The dependence on the normalized top width (|V;5|?)
is shown in Fig. 17(b), where the peak shifts toward the
higher momentum side when the top width gets larger.
This is because, when the width grows, the top decays at
shorter distance where the tf potential is deeper.

Figure 17(c) again plots |p|peak as a function of AE
but, this time, for different values of m;. Give the pre-
cision expected for m; from the threshold scan, we can
practically ignore the m; dependence. Notice that this is
so only when we fix the center of mass energy at a con-
stant AE. The momentum measurement thus provides
us with another handle to determine a,(mz) and I'y with
virtually no ambiguity caused by m; uncertainty.

2. Beam effects

Since the momentum distribution depends heavily on
the energy, the beam effects must be properly taken into
account. In Fig. 18(a) we compare the top momentum
distributions in the three cases considered for the total
cross section: (i) no ISR and no beam effects, (ii) with

T
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FIG. 16. Dependence of the top momentum distribution at
the tf threshold on a,(mz) in the case of m; = 150 GeV.
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the ISR but beam effects, and (iii) both the ISR and
the beam effects. Despite the significant change in the
low momentum region, the peak momentum position is
rather stable against the ISR and the beam effects. To see
this more quantitatively, we plot |p|peax in Fig. 18(b) as
a function of AF for the three cases. The figure demon-
strates that |p|peax is indeed quite insensitive to the beam
effects, if we sit at sufficiently high energy: AE > 1.5
GeV in our case.

3. Dependence on intermediate-distance potential

We have shown that the intermediate-distance poten-
tial has practically no effect on the total cross section.
We cannot, however, conclude that this is also true for
the momentum distribution. Figure 19 compares the mo-
mentum distributions, after the inclusion of the beam ef-
fects, at three different energy points (AE = 0,+2,+4
GeV) with those for which r¢ is displaced by +5 stan-
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FIG. 17. Momentum peak position (|p|peak) as a function
of the energy measured from the 1s peak (AE) plotted to
show the dependence on (a) as(mz), (b) |Vis|?, and (c) m..
These include the initial state radiation but not the beam
effects.
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FIG. 19. Dependence of the momentum distribution on the
intermediate-distance potential, after the inclusion of the ini-
tial state radiation and beam effects.

dard deviations from the best fit value. Since the short-
distance potential essentially determines the wave func-
tions of low-lying resonances, the modification of the
intermediate-distance potential has virtually no effects on
the momentum distribution at the 15 peak (AE = 0). At
AE = +2 and +4 GeV, however, the modification pro-
duces a slight difference in the shape of the momentum
distribution. The shifts in r¢ of +1 standard deviation
induce shifts in the momentum peak position of +40(60)
MeV at AE = +2(4) GeV. Although these systematic
shifts are rather small, we had better choose the energy
point near the 15 peak, in order to reduce the ambiguity
introduced by this effect of the intermediate-distance po-
tential. At all events, only the short-distance potential
can be determined from perturbative QCD.

4. Sensitivity to various parameters

We have shown in Figs. 17(a)-17(c) how |p|pear de-
pends on a,(mz), |Vis|?, and m;. The corresponding
figures after the inclusion of the beam effects are given in
Figs. 20(a)-20(c). As mentioned above, the effects of the
beam energy spread and beamstrahlung are significant
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FIG. 20. The same as Figs. 17(a)-17(c), but with the beam
effects.
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only in the energy region AE < 1.5 GeV. On the other
hand, the sensitivity to a,(mz) attains its maximum at
around AE = 2 GeV and stays essentially the same if
we further increase the energy: notice that for m; = 150
GeV the effective total cross section with beam effects
depends only weakly on AE and so does the statistical
error in the momentum measurement. The optimal en-
ergy, which maximizes the sensitivity to a,(mz), while
keeping small the beam effects and the dependence on
the intermediate-distance potential, is thus AE = 2 GeV
for my = 150 GeV. As for the width measurement, a
slightly lower energy is preferred. Since the sensitivity to
the width is not much worse at AE = 2 GeV, we fix the
energy for the momentum measurement at AE = 2 GeV
in the following.

5. FEvent selection

In order to measure the top momentum, we need to
select top quarks which are well-reconstructed as 3-jet
systems from t — bW decays. This requires final states
with at least one t or { quarks decaying into three jets:
configurations (i) and (ii) of Sec. III A 4. The 6-jet mode
[case (i)] is advantageous from the statistical point of
view, since both t and f quarks in a single event can
be used for the momentum measurement. This mode,
however, tends to suffer from combinatorial background:
even if we have a perfect b-tagging capability, some am-
biguity would still remain in assigning other four jets to
two W’s. The lepton-plus-4-jet mode [case (ii)] is cleaner
in this respect. Therefore, we first consider case (ii).

The event selection starts with the requirement of an
energetic (E > 20 GeV) electron or muon and at least
four hadronic jets at yeus = 5 X 1073 well within the
detector acceptance. When there are more than four jets
in the final state, the y.,; is understood to be increased
to yield just four jets. Two out of the four jets must
be tagged as heavy flavored by the impact parameter
method: tagging efficiencies of 0.78 and 0.38 are assumed
for b and c jets, respectively [24]. The two tagged jets
are b-jet candidates. The invariant mass of the remaining
two jets must be consistent with the W mass: | M3 jets —
mw| < 20 GeV. Since t and f quarks are slow in the
threshold region, the b quark and the W boson from a
single top decay are expected to be nearly back-to-back.
We note this and impose a cut on the &-W angle to select
the b-jet candidate to be attched to the W candidate:
cosOpw < —0.75. To minimize the misassignment of a
wrong b jet to the W candidate, we demand that the two
b-jet candidates are well separated: cos 8y, < 0.70.

The above selection criteria provide a very clean sam-
ple of top quarks. This is, however, not enough for the
momentum measurement. We have to make sure that
the momentum of a reconstructed top quark is well mea-
sured. The rejection of events with energetic missing
neutrinos is thus necessary. This forces us to apply a
cut on the 3-jet invariant mass of the reconstructed top
quark. This cut should, however, be applied with care,
since the invariant mass cut in principle biases the mo-
mentum measurement. Figure 21 plots the top-quark
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FIG. 21. Top momentum as a function of the invariant
mass of the offshell top quark at AE = 2 GeV.

momentum as a function of the mass of the off-shell one:
notice that the dominant configuration below threshold
is that one of ¢ and % is on-shell and the other off-shell.
The invariant mass cut should be loose enough not to
affect the measurement in the momentum range of inter-
est: p < 30 GeV. The following mass cut satisfies this
condition: | M3 jets — me| < 15 GeV.

Figure 22 plots the residuals of the reconstructed top
momenta against the generated top momenta for 20k
(corresponding to ~ 40 fb~!) Monte Carlo tf events gen-
erated by the Monte Carlo programs described in Ap-
pendix B. The corresponding detection efficiency is 4%,
including the branching fraction to the lepton-plus-4-jet
mode. In the momentum reconstruction, we primarily
used the central tracking device for charged tracks. The
calorimeter information was used only for neutral clus-
ters which have no matched charged tracks. The average
of the residuals is shown in Fig. 23(a) as a function of
the generated top momentum. In the low momentum re-
gion, the reconstructed top momentum is systematically
higher than the generated one, since we are dealing with
the absolute value of the top momentum. On the other
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FIG. 22. Difference of the reconstructed and the generated
top momenta plotted against the generated momentum for
the lepton-plus-4-jet mode.



50 PHYSICS AT F THRESHOLD IN e *e~ COLLISIONS

hand, missing neutrinos are epxected to reduce the re-
constructed momentum in the higher momentum region.
These systematic shifts are less than 1 GeV in the peak
region of the momentum distribution. The momentum
resolution is plotted in Fig. 23(b) again as a function of
the reconstructed top momentum. The resolution is 3—4
GeV in the relevant momentum range, which is much less
than the width of the momentum distribution.

Figure 24(a) compares the distribution of the recon-
structed top momenta (solid circles) after all the cuts
with that of the generated ones (histogram) before any
cuts, where the generated distribution has been scaled to
match the total number of detected events. Although the
reconstructed top momenta are plotted with no correc-
tions for resolution and cut effects, the agreement is fairly
good. Plotted with solid squares are the combinatorial
background due to wrong jet combinations.

As for the 6-jet mode, the selection philosophy is
basically the same as that explained in Sec. IITA4.
Therefore, we only sketch it below. The main difference
from the threshold scan is the cut values which must be
much tighter to require four-momentum balance, well-
reconstructed W’s, and t’s: Apr < 12 GeV, Apr, < 12
GeV, Eyi, > 270 GeV, |M3 jets — mw| < 8 GeV, and
| M3 jets — my| < 15 GeV. The b tagging and the cut on
the b-W angle are necessary in addition, as in the lepton-
plus-4-jet case.
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FIG. 23. (a) Systematic shift in the reconstructed top mo-
mentum as a function of the generated top momentum. (b)
Momentum dependence of the momentum resolution. These
figures corresond to Fig. 22.
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Monte Carlo simulations resulted in a detection effi-
ciency of 2.2%, including the branching fraction to the
6-jet mode. Since both ¢ and # quarks can be used for
the momentum measurement, the effective selection ef-
ficiency is twice this value. The reconstructed top mo-
mentum distribution is shown in Fig. 24(b) (solid cir-
cles), which should be compared with the generated one
(histogram). The agreement of the reconstructed with
the generated is not as good as in the lepton-plus-4-jet
case. This is because of the combinatorial background
shown as solid squares in the same figure. If we can elimi-
nate the contamination from c jets in the b-jet candidates
[25], this combinatorial background can be significantly
reduced. At the same time, we can relax the kinemat-
ical cuts to gain in the detection efficiency. Although
this is an important possibility and worth further stud-
ies, we conservatively assume, in what follows, that only
the lepton-plus-4-jet mode is usable.

6. Ezpected precision

We have demonstrated above that the top quark mo-
mentum is indeed measurable with reasonable resolution
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and detection efficiency. We can thus estimate the statis-
tical error on the |p|peax from the width of the expected
momentum distribution and the expected number of re-
constructed top quarks. In actual experiments, we need
to examine various systematic errors of both theoreti-
cal and experimental nature. One of the most serious
theoretical ambiguities is due probably to the fact that
the top quark has color. In the threshold region, how-
ever, the color neutralization is expected to take place
between b and b quarks. Therefore, the additional un-
certainty from possible top-hadron formation is absent.
Nevertheless the b-quark fragmentation must be well un-
derstood to eliminate the ambiguity introduced when we
group particles in the final state into t and £ sides. We
will not try to estimate the systematic errors by extrap-
olations from the present knowledge. Instead, we discuss
only the statistical errors here to demonstrate the poten-
tial sensitivity of the momentum measurement to various
parameters.

Figure 25(a) plots the momentum distributions at
AE = 2 GeV for a,(mz) = 0.11, 0.12, and 0.13, when
|[Vis|2 = 1. The dependence of the peak position on
as(mz) at AE = 2 GeV is depicted in Fig. 25(b). The
dotted lines indicate the 1o bounds corresponding to an
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FIG. 25. Top momentum distribution at AE = 2 GeV, for
a,(mz) = 0.11, 0.12, 0.13, and m, = 150 GeV. (b) Momen-
tum peak position as a function of a,(mz). The dotted lines
indicate the 10 bounds expected for an intergrated luminosity
of 100 fb~1.
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integrated luminosity of 100 fb~!. The expected statis-
tical error on a,(mz) is about 0.0015, in this example, if
/315 is known and |V3|? = 1.

Plotted in Fig. 26(a) are the momentum distributions
at AE = 2 GeV, for |Vi)2 = 0.8, 1.0, and 1.2, when
a,(mz) = 0.12. The peak position (|p|peax) increases
with |V;5|? as shown in Fig. 26(b), where again the 1o
bounds are indicated by dotted lines. In this example,
A|Vis|? ~ 0.04 is expected for 100 fb~!, when /315 and
a,(mz) are known.

C. Measurement of forward-backward asymmetry

So far, we have been concentrating on the S-wave con-
tributions to the Green’s function, since the P-wave con-
tributions to the total cross section and the momentum
distribution are of O(32) and, therefore, can be ignored.
The P-wave contributions, however, may produce mea-
surable forward-backward asymmetry through the S-P
interference as an O(3) correction to the differential cross
section (see Sec. II).

In this section, we discuss the possible role of the
forward-backward asymmetry in parameter determina-
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FIG. 26. (a) Similar to Fig. 25 but plotted for different top
widths. (b) The momentum peak position as a function of
|[Vis|?. The dotted lines indicate the 1o bounds expected for
an integrated luminosity of 100 fb~*.
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tions. The forward-backward asymmetry of the top
quark production is defined explicitly in Appendix A to-
gether with the necessary formulas. After examining the
relevant parameters that controls the asymmetry, we fix
the energy point at which the asymmetry measurement is
to be carried out, according to the same criteria as with
the momentum measurement described in the preceding
section. We then study the sensitivity of the asymmetry
measurement to various parameters.

1. Dependence on various parameters

Figure 27 illustrates the locations of the S- and P-
wave resonances. The first S-wave resonance (15) stands
alone but the second and higher S-wave resonances (n.S :
n > 2) are accompanied by P-wave resonances. When
the tf potential is exactly Coulombic, the S- and P-wave
resonances are mass degenerate for n > 1. In the case
of a realistic QCD potential, the P-wave states, which
“feel” the longer distance part of the ¢ potential com-
pared to the S-wave states, acquire larger binding ener-
gies and have slightly lower masses. Suppose we sit at
the 1S peak. Then the S-P interference vanishes if the
level splitting between the 1S and the 2P states is much
larger than the widths of the resonances. The level split-
ting is determined by «,, while the resonance widths are
controlled by the t-quark width. Therefore, we expect
that the measurement of the forward-backward asymme-
try of the top quark reconstructed from the bW final
state allows us to extract additional information on the
top width and the strong coupling constant.

Figure 28(a) shows the forward-backward asymmetry
as a function of AE for a,(mz) = 0.11, 0.12, and 0.13,
before the inclusion of the beam effects. As expected,
the asymmetry at the 1S peak gets larger when a, de-
creases, though the dependence is rather weak. Figure
28(b), on the other hand, demonstrates the dependence
on the top width. The asymmetry is enhanced as the top
width grows, since the S-P overlapping becomes more
significant. As with the top momentum distribution, the
asymmetry is insensitive to m;, which is demonstrated in
Fig. 28(c).

2. Dependence on intermediate-distance potential

Since the intermediate-distance potential has practi-
cally no effect on the total cross section, and since the
asymmetry is also an integrated quantity, it is expected
that the asymmetry is insensitive to the intermediate-

n=1 2 3 4

° X® XO —X@—- - - - - - > E

® = S-wave resonances
X = P-wave resonances

FIG. 27. Schematic showing the locations of the S- and
P-wave resonances.

distance potential. This is indeed the case as shown in
Fig. 29(a) by virtue of the large top width. When the
width is artifically reduced to 1/10, the modification of
the intermediate-distance potential produces a visible ef-
fect on higher resonance states [see Fig. 29(b)].

3. Beam effects

Because the main source of the forward-backward
asymmetry is the interference among S- and P-wave res-
onances, the asymmetry depends rather strongly on the
energy. This necessitates the proper account of the beam
effects. Figure 30 plots the asymmetry as a function of
AEF for the three cases considered for the total cross sec-
tion and the top momentum measurements. The effect of
the ISR is similar to that of beamstrahlung and makes a
difference of 10-20 % in the observable asymmetry. The
effect of the beam energy spread is significant, about
50%, around the energy corresponding to the minimum
asymmetry. There is no particularly preferred energy
here in contrast to the momentum measurement case.
The asymmetry measurement thus requires the beam ef-
fects be properly understood and controlled.
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FIG. 28. Forward-backward asymmetry as a function of
AE, showing the dependence on (a) a,(mz), (b) |Vis|?, and
(c) m.. These include the initial state radiation but not the
beam effects.
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4. Sensitivity to various parameters

Figures similar to Figs. 28(a)-28(c) are shown in Figs.
31(a)-31(c) after including the beam effects. Figure 31(a)
tells us that the best sensitivity to a,(mz) is attained at
around AE =1 GeV. As for the width measurement, a
slightly lower energy is better as suggested in Fig. 31(b).
The dependence on m; is negligible in practice, given the
precision on m, expected from the threshold scan [see
Fig. 31(c)].

We set the energy for the asymmetry measurement at
AE =1 GeV below.

5. Ezpected precision

In order to measure the forward-backward asymmetry,
we have to know the charge of the reconstructed 3-jet
system. The most straightforward method is the use of
the lepton-plus-4-jet final state, for which we can use se-
lection cuts similar to those for the momentum measure-
ments. We must, however, relax the cuts significantly,
since the expected asymmetry is rather small and a high
statistics sample is necessary. If m, is larger, the asym-
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FIG. 29. Dependence of the forward-backward asymmetry
on the intermediate-distance potential, before the inclusion of
the initial state radiation and beam effects, for (a) |Vis|> =1
and (b) |Vu,|2 =0.1.
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FIG. 30. Effects of the initial state radiation and the beam
energy spread and beamstrahlung on the forward-backward
asymmetry.

metry becomes larger and the measurement becomes eas-
ier.

We might also be able to use the 6-jet final states: we
can use the semileptonic decays of heavy flavored mesons
for sure. We might even be able to use the D mesons if we
can reconstruct secondary vertices. Anyway, all of these
require detailed Monte Carlo studies which are heavily
detector dependent. We, therefore, restrict ourselves to
the discussion of the expected statistical errors on various
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FIG. 31. Similar plots to Figs. 28(a)-28(c) after the inclu-
sion of the beam effects.
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FIG. 32. The forward-backward asymmetry at AE =1
GeV as a function of a,(mz). The dotted lines indicate the
10 bounds expected for 40k reconstructed tf events.

parameters, provided that a sample of 40k reconstructed
events is given. The sample corresponds to 200 fb—1,
even if the detection effciency is as high as 40%. Since
the asymmetry value is small, the systematic error due
to the detector asymmetry must be carefully studied in
actual experiments. We expect collider operations at the
Z pole will be very useful, since the experimental limit
on the measurable asymmetry will be determined by the
number of events available for the detector calibration
[26].

Figure 32 shows the asymmetry at AE =1 GeV as a
function of a,(mz). The dotted lines in the figure indi-
cate the 10 bounds expected for 40k detected events. Un-
fortunately, the sensitivity to a,(mz) is poor compared
to that of the momentum measurement: Aca,(mz) =~
0.003, if , /515 and |Vy|? are known.

The asymmetry at the same energy is plotted against
the normalized top width (|V|?) in Fig. 33. If Vo1,
and a,(mz) are known, 40k detected events allow us to
determine the top width with a relative statistical error
of 7%.
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FIG. 33. The forward-backward asymmetry at AE = 1
GeV as a function of |V;»|?. The dotted lines indicate the 1o
bounds expected for 40k reconstructed tf events.
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IV. SUMMARY AND CONCLUSION

The large decay width expected for a heavy top quark
gives the t¢ threshold essentially new features distinct
from that of the lighter gg threshold. The large width
acts as an infrared cutoff and allows reliable estimates of
the QCD contributions to the threshold cross sections,
which, in turn, make possible the extraction of other
smaller effects such as Higgs-boson-exchange contribu-
tions. It should be also noted that event selection can be
efficiently carried out by reconstructing the bW+bW — fi-
nal states through the jet-invariant-mass method. We
have carried out quantitative studies of physics at the tf
threshold in e*e~ collisions, using the recently developed
theoretical formalism which includes full O(a,) correc-
tions.

There are many ways to extract physics at the tf
threshold. We have illustrated the strategy for the ex-
perimental studies, taking a sample case of m; = 150
GeV. The results of the studies can be summarized as
follows.

We can measure the threshold shape by energy scan.
Given 11 energy points with 1 fb~! each, we can deter-
mine the top mass with a statistical error of Am, = 0.2
GeV, even if a, is totally unconstrained. On the other
hand, we can expect Aa,(mz) = 0.005, even if m, is un-
known. The expected statistical error on the top width
is AT'y/T's = 0.2, when a,(mz) is known. For the stan-
dard model Higgs boson of myg = 100 GeV, the expected
statistical error on the normalized top Yukawa coupling
is ABg = 0.43, which can be reduced to AByg = 0.29
by doubling the integrated luminosity per energy point
or by making use of the lepton-plus-4-jet mode together
with the 6-jet mode. These results, however, assume a
good control of the beam energy spread, AEpeam < 0.4%
[full width at half maximum (FWHM)], or a precision
differential luminosity measurement.

The momentum spectrum measurement at the tf
threshold is less dependent on the beam effects. It should
be emphasized that such a measurement is possible only
for the top quark and provides information independent
of that from the total cross section measurement. Us-
ing the 1S-peak position determined by the threshold
scan, we can perform precision measurements of a,(mz),
which are essentially free from the ambiguity caused by
the top mass uncertainty. The sensitivity of the top
momentum measurement to a,(mz) is expected to be
Aa,(m;) ~ 0.0015 for 100 fb~1, provided that the 15-
peak position is known. Given the same statistics, we
expect AI';/T'; ~ 0.04, provided that the 1S-peak posi-
tion and a,(mz) are known from other sources. It should
also be noted that the top momentum measurement is
insensitive to the Higgs-boson-exchange effects. There-
fore the parameters determined from the top momentum
measurement can be fed back to the Yukawa coupling
extraction from the total cross section.

The forward-backward asymmetry gives additional in-
formation on a,(mz) and the top width. 40k detected
tt events provide us with an opportunity to measure
as(mz) with a statistical error of Aa,(mz) ~ 0.003,
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if the 1S-peak position and |V;|? are known. With the
same event sample, we can measure the top width with
a statistical error of AT';/T'; ~ 0.07, if the 1S-peak po-
sition and a,(mz) are known. This, however, requires a
small beam energy spread or a precise knowledge of the
differential luminosity.
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APPENDIX A: CROSS-SECTION FORMULAS

Here, we summarize the formulas necessary for the
evaluations of the tf production cross sections used
in our analysis, which include all the O(a,) correc-
tions. We present the formulas of the total cross section
o0 .(ete” — tf) and the top quark three-momentum dis-
tribution do®/d|p¢|dcos@ in Sec. A 1. Then the method
for including the initial state radiation is explained in
Sec. A 2. The effective beam energy spectrum used in
our analysis is given in Sec. A 3.

In addition to all the O(a,) corrections, we include
part of the O(a?) corrections to the cross sections given
below. These are (1) the two-loop corrections to the
QCD potential V(r), and (2) the running of the topo-
nium width T'e (E, p).

(1) We use the two-loop improved QCD potential V(r)
in the Schrodinger equations for the Green’s functions,
G(x; E) and F*(x; E), which determine the overall struc-
tures of the cross sections in the threshold region. This
|

_ 4CFa,(mt)
™

o =
tot 32

2,2
0 961ra{1

where Cr = 4/3 is the color factor and x is the ratio of
photon and Z propagators defined by

X=——p. (A2)

s —m2

The coupling factors are

ve = (—3+ 2sin® Ow) /(2 sin Ow cos Ow ),
vy = (1 — %sin® 0w ) /(2 sin Ow cos Ow),
ae = —1/(4 sinfw cosfw ),

a; = 1/(4 sinfw cosfw),

with Q. = —1 and Q;: = 2/3. We set o = 1/128,
sin? Oy = 0.23, mz = 91.17 GeV, and mw = 80 GeV in

} [(QeQ: + vevex)? + a2} x’|ImG (x = O E = /5 — 2my),
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QCD potential is determined from the two-loop pertur-
bative QCD (improved by renormalization group) in the
short-distance part, while the long-distance part is de-
termined phenomenologically. The overall form of the
potential is fixed by fitting to charmonium and bottomo-
nium data. Details of the potential can be found in
Ref. [9].

(2) We include the phase space suppression effect on
the widths of the toponium resonances, which is achieved
by using the running toponium width I'g¢(E,p) in the
Schrédinger equations for the nonrelativistic Green’s
functions, and also by including the O(3?) terms of the
phase space volume of bW’s; see the cross-section for-
mulas below. This prescription is important in preserv-
ing the unitarity relation between the total cross section
obtained from summing the final states and that calcu-
lated using the optical theorem. The running toponium
width reduces the top quark differential cross section in
the highly off-shell region as compared to the constant
width approximation, while it enhances the total cross
section at the resonance peak [27]. The readers may con-
sult Ref. [9] for the details.

1. Total cross section and
top 3-momentum distribution

There are two processes that contribute to the tf pro-
duction cross section up to O(c,) in the threshold region,
namely, ete~ — bWTbW ™ and ete” — bWTbW g.
The following formulas are derived in Ref. {14] and are
given as the sum of the cross sections for both of the two
processes. The real gluon in the final state, if any, is un-
derstood to be associated with b(b) if the invariant mass
of the bg(bg) system is smaller than that of the bg(bg)
system [28]. We neglect the b-quark mass for simplicity.

(a) Total cross section. The total cross section is ob-
tained via the optical theorem

(A1)

f

our analyses.
(b) Top 3-momentum distribution. The top quark 3-
momentum distribution can be written in the form

de® do} doge,
d|p|dcos®  d|p|dcosd ' d|p|dcosd
240’ Ty(E; p)
B

[p|?(To + T1cosf), (A3)
where E = /s — 2m, is the c.m. energy measured from
the threshold, p denotes the 3-momentum of top quark,
and 0 represents the polar angle of the top momentum
measured from the electron beam direction.

The spherically symmetric part (Tp) and the cos 6 part
(T1) are given, respectively, by
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To = [(Quu + vevo)? + a2oie?] {1 - @;m} Glps E)P

+Crdma,(up) / o ! G (@ E)G(s Bl ]

(A4)

Tl = (QcQtaeatX + zaeveatvtxz)%zRC[F* (P, E)é(P, E)] + 2aeth(Qth + veUtX)K'CF‘i"au (NB)

d3q 1
(2m)3 |q - p|® Ipllq Pl

with k = (1 — 2r)/(1 + 2r) and r = m%,/m?. It is un-
derstood that the principal value is taken in the loop
integral in the second term of Eq. (A5) as g — p. The
strong coupling constant for the final state interactions is
evaluated at the Bohr scale pg(~ a,m:), and we choose
kB = a,(mz)m;.

The phase space volume |p|*T'e (E, p) is explicitly fac-
tored out together with an appropriate coefficient, where
the running toponium width I'g (E, p) is given in terms
of the top quark width I';:

1‘_9(12‘3,_p) =T, [1 + i1 (m—ﬁ%) ~ i (,%;)] (A6)

with

. l4r+2r2 113 4 137 + 4672
n1_31+r—2r2’ =% 1+7r—-2r2 ° (A7)
and
2
My
r=—. A8
g (49

Here, the top quark width including O(c,) corrections is
given by [29]

Gr
72

;= ;lj(l + 27‘)(1 — 1‘)2 {1 — _CFazﬁmt) h(’r‘)}
(A9)

with

d3

P (4= P)yp.1G*(q; E)G(p; E),

s’ @ =

dq 1 p-(q—p)

(A5)

f

h(r) = n% + 2Liy(r) — 2Liz(1 — 1)
+2(5+4r)(1 —7)*In(1 —7)
+4(1+r)(1—-2r)r Inr
—(1=7)(5+9r —6r?)]/[2(1 — r)}(1 + 27)]. (A10)

_The S-wave and the P-wave Green’s functions,
G(p; E) and F(p; E), are determined by solving the in-
homogeneous Schrédinger equations in the coordinate
space, and then taking their Fourier transforms [30]:

Vz
s V() -

(E+1FT)]G(x E)=5(x), (All)

G(p;E) = /dsxe‘ip"‘G(x; E), (A12)

and

[—T—YE +V(r) - (E+zr2 )] F*(x; ) = —i6*8°(x),

(A13)

p*F(p;E) = / d*x e P*Fk(x; E). (A14)

Technical details of the method to solve these for the
Green’s functions can be found in Refs. [4,9,11].

Noting that the S-wave Green’s function G(q; E) is
only dependent on |q|, the angular part of the loop in-
tegrations [ d3q/(27)3 can be performed analytically in
Egs. (A4) and (A5), and they may be reduced to one-
parameter integrals using the formulas

w5 /| ~ dqwo(a/p)f(a), (A15)

(A16)

= 4:21, Lw dqwi(q/p)f(q),
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with
1 1
= - A17
w(@) =2 [y~ oy (a17)
1 1 2z +1 z+1
wl(z)ZE[Pw——l =11 —zln _1H, (A18)

for any function f(g) and ¢ = |q|, p = |p|.

(c) Forward-backward asymmetry. The forward-

J
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backward asymmetry is defined by

N — N

_Ne—Ng (A19)
Nr + N

ArB

where Np and Np are the numbers of top quarks pro-
duced with cos@ > 0 and cosd < 0, respectively. In the
absence of the initial state radiation and the beam ef-
fects, the theoretical prediction for the asymmetry can
be obtained from Eq. (A3) as

o 1 A 1 0 da,()
Anp = d / dcos@—/ dcosO] _—
B ok /(; Il [ 0 -1 d|p|dcosf

A A
= [ 4pllpPTiTa(Eip) /2 [ dipllol*TiLa (E:p) (A20)
where the momentum cutoff A is defined by
1

2. Inclusion of initial state radiation

It is well known that the initial state radiation has to be properly taken into account in the vicinity of a resonance
state. We include this by convoluting the differential cross section without the initial state radiation (do®) with the

radiator function introduced in Ref. [31]:

2 1
do = [1+2ﬂ(”——1)]/ dz B. [z'a‘_
Ly 6 4 0

where
§=s(1-2)
2(10 )
YR
T m2

The fine structure constant aq is taken to be 1/137 here,
since the relevant energy scale is of low energy.

(A23)

3. Beam energy spread and beamstrahlung

In order to study experimental feasibilities in a real-
istic environment, we need to include the effects due to
beam energy spread and beamstrahlung. In this paper
we assume that the primary e*e™ beams have a uniform
energy spread of 1.0% in FWHM, unless otherwise stated.
On the other hand, the fractional beam energy (€) after
beamstrahlung is given by the following formulas, when
normalized to the energy before the beamstrahlung [32]:

Y(e) = A dre=Nr (6(e -1+ %H(Nlryl/:’))

(A24)

1438 - (1= 2| a0
(1 + 3P (1 2) do®(5), (A22)
[
with
N,y = NgUp(&1),
N = 1.06aor. N ,
Oz + 0y
1 — 0.598¢ + 1.061¢£5/3
Uy(€) =
o(¢) 1+ 0.922¢2 ’
2
£1 — TCEON 2 (A25)

b
QM0 , Tz + Ty

1/2 z/3

3/4

1 /1
y—g(g—1>,

1 &1y
= Na + N. )
I+&y @ 1+&y "

where r. and m,. are the electron classical radius and
the electron mass, respectively, Ep is the nominal beam
energy, N is the number of particles per bunch, and o,
oy, and o, are the bunch size at the interaction point.
The energy spectra of the ete™ beams after beam-

N
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strahlung are obtained by convoluting the primary flat
energy distribution with the one given by the above for-
mulas. The relevant beam-related parameter values used
in this paper are E; = 150 GeV, N = 0.63 x 10°,
o, = 0.335 ym, o, = 0.00392 ym, and o, = 85 um,
which were cited from Ref. [24]. Figure 5 shows the re-
sultant effective center-of-mass energy distribution. The
sharp peak at /scg/./So = 1 [the -function part in Eq.
(A24)] corresponds to the no beamstrahlung case, while
the long tail downwards is due to beamstrahlung pho-
tons.

APPENDIX B: MONTE CARLO EVENT
GENERATION

When the top width exceeds a typical hadronization
scale, there will be no ¢-hadron formation [33]. Then the
polarization information of parent top quarks is trans-
ferred to decay daughters, which gives rise to angular
correlations in the final state particles. In order to take
proper account of this effect, we should use the full he-
licity amplitudes. As for the color neutralization, we
assume that the color flux is spanned between b and b
quarks. Since we are going to reconstruct top quarks by
jet-invariant-mass method, it is also important to con-
sider gluon emissions from b or b quarks as well as those
from W decay daughters. The point here is the en-
ergy scale to be used for the parton showering from b
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or b quarks. We should not, for instance, set Qmax =
/(ps + p§)?, but, instead, should set Qmax = m: — mw,
since the gluon emission is controlled by the accelera-
tion the b or b quarks receive when their parent ¢ or £
quarks decay. Consequently, the 4-momentum adjust-
ments after parton showering should be made within the
bW systems. Namely, the b and the b quarks radiate glu-
ons independently [34]. The gluon emissions from ¢ or
t quarks, which are not included here, could modify the
event shape: only the leading-order threshold correction
is implemented in our Monte Carlo event generator [35]
and, therefore, the generated top momentum distribu-
tion in Figs. 24(a) and 24(b) are slightly different from
the calculation with full O(a,) corrections. Nevertheless,
the gluon emissions from the ¢ and ¢ quarks affects the
detection efficiency only at the level of O(a,) and can be
ignored when we estimate statistical errors on various pa-
rameters. It is also essential to include initial state radia-
tions as well as beam energy spread and beamstrahlung,
since they may change the event shape significantly. In
order to take all of these effects into account, we have
used the HELAS system [36] for helicity amplitude cal-
culations and the BASES-SPRING system [37] for phase-
space integrations and event generations. The generated
Monte Carlo events were processed through a detector
simulator which simulates the response of the model de-
tector described in Ref. [24].
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