REAFEEBUKNSFY

Tohoku University Repository

Axial-vector-coupling contribution to toponium
resonances

00 OO0 OO0

journal or Physical review. D

publication title

volume 47

number 1

page range 82-92

year 1993

URL http://hdl.handle.net/10097/35279

doi: 10.1103/PhysRevD.47.82



PHYSICAL REVIEW D

VOLUME 47, NUMBER 1

1 JANUARY 1993

Axial-vector-coupling contribution to toponium resonances

H. Murayama
Department of Physics, Tohoku University, Sendai, 980 Japan

Y. Sumino
Department of Physics, University of Tokyo, Tokyo, 118 Japan
(Received 20 May 1992)

We study the effect of t£Z axial-vector coupling to the tf pair production process near threshold
at ete™ colliders. P-wave resonance states produced via axial-vector coupling interfere with S-wave
resonance states due to the large top-quark width. This interference gives rise to the forward-
backward asymmetry below threshold which grows from 0 to ~ 7% as m: is increased from 100 to
200 GeV. Its s dependence is magnified simultaneously. The measurement of the forward-backward
asymmetry may allow an efficient determination of a; for a relatively heavy top quark.

PACS number(s): 13.65.+i, 13.20.Gd, 14.40.Gx

I. INTRODUCTION

It was first pointed out by Fadin and Khoze [1] that
the ¢f threshold region at e*e™ colliders provides a fairly
clean test of perturbative QCD due to the large width of
the top quark. The top-quark width grows rapidly as m;
increases [2], and the dominant decay modes of toponium
resonances are expected to be almost saturated by the
electroweak decay process of each constituent. This large
width would act as an infrared cutoff, and hence we will
be free from the theoretical uncertainties of low-energy
QCD processes.

A quantitative analysis of the total cross sections in
the ¢t threshold region was first performed in Ref. [1],
and later refined in Ref. [3], where the Coulomb singu-
larities were summed using the Green’s function method.
Recently, the authors of Ref. [4] made a quantitative anal-
ysis including the effect of the considerable reduction of
the resonance widths below threshold, in which the im-
portance of simultaneous measurements of the total and
differential cross sections is stressed in order to determine
as and m; at a high precision near tf threshold, namely,
Am; <1 GeV.

To provide reliable theoretical predictions of the total
and differential cross sections in the threshold region, it
is desirable to include next-to-leading-order corrections
to the cross sections. Some of them are already in-
cluded in the above analyses. The leading-order terms
at the threshold are identified with the Coulomb sin-
gularities (threshold singularities), where all the orders
(as/B)™ are summed up [5, 6], with 8 ~ |ps|/m:. The
next-to-leading-order corrections are the terms a?+!/67,
which can be regarded as the order a4, or equivalently,
order B corrections to the leading-order terms, since
at*l/B" = a4(a,/B)" = B(as/B)"t!. Thus, the next-
to-leading-order corrections are expected to give order
10% corrections to the cross sections, and it is impor-
tant to establish the full theoretical prediction to this
order with regard to the future experiments. Further
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corrections from the terms ~ a7?+2/3™ are only of order
1%, which can be safely neglected for practical purposes.
Summation over all these next-to-leading-order correc-
tions is now underway [7].

Among these corrections, we report here the effect of
the t£Z axial-vector coupling which brings in the contri-
butions of P-wave resonance states. The P-wave contri-
bution to the total cross section has already been studied
[8,9], which only appears as the order-3? correction, since
the P-wave amplitude is of the order 8. In contrast with
the charmonium and bottomonium resonances, the large
widths of the toponium resonances allow the interference
of S-wave and P-wave states for m; 2 100 GeV. This
interference gives a term to the tf differential cross sec-
tion proportional to Bcos®, and hence gives rise to the
forward-backward (FB) asymmetry of the cross section
at order 5. In fact it can be shown that the forward-
backward asymmetry increases as well as becoming more
sensitive to a, for larger m;, since the overlaps of S-
wave and P-wave states increase with the rapid growth
of top-quark width. This is in contrast with the total
cross section, which loses sensitivity to a, due to the
smearing effect by the large top-quark width [3]. The
FB asymmetry “measures” the degree of overlap of the
S-wave and P-wave resonance states. The key point here
is that the top-quark width and the energy differences of
the resonance levels have the same order of magnitude
for m; 2 150 GeV.

We present a brief illustration of the effect of the
axial-vector coupling to the toponium resonance states
in Sec. II. The formulation for including the QCD en-
hancement effect to the axial-vector coupling near the
threshold is given in Sec. III. In Sec. IV, the formulas for
the differential cross sections and the FB asymmetry are
summarized, and their dependences on the various physi-
cal parameters are studied. Concluding remarks together
with some discussion are given in Sec. V. There another
source which may give rise to the FB asymmetry near
threshold is discussed.
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II. THE EFFECT OF AXIAL-VECTOR
COUPLING

We briefly review the effect of the axial-vector coupling
of top quark at the tf threshold region. It is emphasized
that the large top-quark width allows the interference be-
tween S-wave and P-wave resonance states, giving rise to
the forward-backward asymmetry even at the threshold
region.

If we consider only the electroweak interaction, there
are a number of tree diagrams associated with the pro-
cess ete™ — bW TbW~. Among them only one diagram
where tf are pair created (Fig. 1) is concerned in this pa-
per, since only this diagram is enhanced in the tf thresh-
old region. When the QCD interaction is switched on,
this particular diagram is enhanced near threshold due
to the formation of toponium resonance states by the
binding effect of the QCD interaction.

In the ete~ — tf process, the tf pair produced via the
ttV (V = v, Z) vector vertex has spin parity JF = 1,
whereas that produced via the t£{Z axial-vector vertex
has JP = 17 in the massless electron limit. Thus, the
vector vertex is associated with S- and D-wave resonance
states, and the axial-vector vertex with P-wave states.

The axial-vector coupling is suppressed by a power of
[ near threshold as can be seen from the nonrelativistic
form of the coupling

- 1 .. | X
eyt Z* ~ R:e”kxio”xgp’Zk +0(p?), (1)

where x1 and x2 denote two-component spin wave func-
tions of ¢ and £, respectively, and 2p is the relative three-
momentum between ¢ and £.

In general, S-wave resonance states and P-wave reso-
nance states have different energy spectra. However, the
widths of resonances grow rapidly as m; increases, and
they become so large that S-wave and P-wave resonance
states start to interfere for m; 2 100 GeV.

Let us state it more explicitly. At the lowest or-
der, it is expected that the toponium resonances exhibit
the Coulomb level spectrum because the binding effect
due to gluon exchanges can be regarded as a Coulom-
bic interaction [1]. Then, the level gaps typically be-
come of the order a?m; ~ 1 GeV, and the S-wave states
and P-wave states are degenerate in this approximation.
There will be S-wave states corresponding to the princi-
pal quantum number n = 1,2,3,..., and P-wave states
for n = 2,3,4,.... If we consider the higher order cor-
rections, the QCD potential deviates from the Coulomb
potential, and the S-wave states and P-wave states are
no longer degenerate, with typical level splitting of the

FIG. 1. The diagram which is enhanced near ¢ threshold
in the process ete™ — bW bW ™.

order am; ~ 0.1 GeV.

On the other hand, each resonance state has a width
almost twice that of the top quark I'y ~ Grm$/8+/2m,
which grows rapidly as m; increases. For instance,
I't ~ 0.1 GeV for m; = 100 GeV, and I'y ~ 1 GeV for
my = 150 GeV. If we fix the c.m. energy at the n = 1 reso-
nance, where no corresponding P-wave resonance exists,
the width and the level gap would become comparable
for m; 2 150 GeV. At n > 2 resonances, there would
be larger interference effects. Thus, we anticipate from
the above order estimation that the interference would
be significant at n > 2 resonances even for a light top
quark, where the resonance structures are more distinct,
and also at the n = 1 resonance for a relatively heavy
top quark.

The P-wave amplitude being of order 3 at the thresh-
old, its interference with S-wave resonance states gives
rise to the order § correction to the leading S-wave con-
tribution to the cross sections. Since this correction
stems from the interference of the vector and axial-vector
couplings, it is proportional to 3 cos#, or, it gives rise to
the FB asymmetry at order 8. Meanwhile the effect of
axial-vector coupling to the total cross section is of the
order (32, which is beyond our scope [9].

III. NONRELATIVISTIC GREEN’S FUNCTION

In this section we present our formalism to evaluate the
ete™ — tf — bW bW~ amplitude with the top-quark
axial-vector coupling at the tf threshold region. The
method to evaluate the S-wave amplitude is described
in Ref. [4] in detail, which we will not present in this
paper.

It is well known that a quark pair produced near
threshold forms resonance states by exchanging gluons
between them a number of times. Diagrammatically,
this is seen in the ladder diagram where the gluon is
exchanged n times between the pair in that it has the
behavior ~ (a,/3)™, and hence is not small even for large
n if B ~ a,. That is, higher order terms in a,; remain un-
suppressed. The singularity that appears at this specific
kinematical region is known as “threshold singularity.”

Since higher order terms can no longer be neglected,
we are led to add the ladder diagrams to infinite orders
to determine the t£Z axial-vector vertex. Let us denote
it as AL. (See Fig. 2.) For this purpose, we follow the
steps similar to that given in Ref. [3], which deals with
the fairly systematic derivation of the ¢V vector vertex
near tf threshold.

The axial-vector vertex Af satisfies the self-consistent
equation

FIG. 2. The diagrams which contain leading threshold
singularities to the axial-vector vertex AY. These are the sum-
mations of ladder diagrams where any number of uncrossed
gluons are exchanged between t and {.
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[ d%
A5 (q,p) = Y75 + z/ @ni” Sr(q/2 + k) A5 (g, k)Sr(—q/2 + k) 7aCF

which is depicted diagrammatically in Fig. 3. Here the
color factor is given by Cr = 4/3, and Sr denotes the
top-quark propagator

i(¥+me)
S =
r(p) p2 —m? +im.Ly

®3)

where T'; represents the top-quark on-shell width. Read-
ers are reminded that Eq. (2) shall be sandwiched be-
tween propagators Sr(g/2 + p) and Sr(—q/2 + p), since
we are concerned with the process where ¢ and ¢ finally
decay into bW’s. The threshold singularity arises from
the loop integral on the right-hand side (RHS) of Eq. (2)
when the internal ¢t and { momenta are in the nonrel-
ativistic region [10]. Therefore, we will keep only the
leading parts as 8 — 0 on both sides of the equation.

For nonrelativistic ¢ and £, their propagators reduce to
the form

Sr(q/2 +p)

1440 i
”’( 2 )E/2+p°—p2/2mt+irt/2’ (4)

J

Ao,
(k —p)? + i€’ 2)

[
Sr(—q/2 + p)

S (2 ’ (5)
2 E/2 —p® — p2/2m; + iy /2’

where the Z four-momentum is set as ¢ = (2m; + E, 0)
in the tf c.m. frame. Meanwhile, the gluon propagator
reduces to the instantaneous part as  — 0, since it will
be sandwiched between the above nonrelativistic ¢ (f)
propagators:

a —i 0 i (1]

We may also determine the spinor structure of the ver-
tex Af(g,p) in the nonrelativistic region. As A%(g,p)
is contracted with the wave function of virtual Z pro-
duced by ete~ annihilation, only the space components
of Af(q,p) are relevant. Then, if we note that

(d/2+ B+ me) Yo (— 4/2+ B+ me) = —imy (14+7°) o*lysp! (1 - 2°) (7

with
Ko Lok
o =5[],
it is expected A¥(q,p) would have the spinor structure

Ak (g, p) =~ (oFs) (—;—;:) I'y(q,p)

®)

9)

after repeatedly sandwiching (7) by the nonrelativistic propagators (4) and (5), and by tfg vertices (6). [See Eq. (1).]
Here and hereafter, the Latin indices refer to the space components.
Substituting the above propagators and vertices to Eq. (2), we find

4To

1 1

r =l —4 _.d_4.li.[‘l K .C
ale,p)=p" —i L 4(a,k)-Cr

|k —p|2E/2+ k0 —k2/2m; + iy /2 E/2 — kKO — k2/2m; + i['s/2°

(10)

The RHS is independent of p°, so that we may self-consistently set I'Yy = I'Y(g,k) on the RHS, and perform a k°

integration. Putting

T'Y(q,p) = —F'(p; E)(E — p?/m; + iTy),

we see that F''(p; E) becomes the kernel of the nonrelativistic Schrédinger equation:

2 . o d3k
[E —(E+ zI‘t)] FYp;E)=p'+ (2m)3

Going to the coordinate space, this is equivalent to
A
[_H +V(r)—(E+ m)} Fl(x; E) = —id'63(x)
t

with
Qs
V(’f') = _CF_'[.‘—.

—— FYk; E)Cp

(11)

Ao,
—lk PR (12)
(13)
(14)
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The solution to Eq. (13) can be written formally as

e Y — 50§~ Yn()9n(x)
F(X,E)—"‘ax,lzn:E—En'FiPt

)
x/=0

(15)

where 9, (x)’s are the solutions to the homogeneous Schrédinger equation

A
[_E + V(r):I % = E, Yn.

(16)

Equation (15) clearly shows that only P-wave states contribute to F'(x; E), just as we expected in Sec. II.
Thus, we find the axial-vector vertex, when sandwiched between ¢ and  propagators near the threshold, is given by

1+9° 1—4° i\ =
Sr(a/2 + p) Af(q,p) Sr(—q/2 +p) ~ ( 27 o s 27 ) (~mL) FY(p; E)
t
X ( 1 + 1 17
Bt 0 —p2ami v ity 2 T BEa—p0 —p?am ¥ iTy/2 ) (7
[
where F!(p;E) can be obtained by first solving the Flix: E) = img f(r) [z
Schrédinger equation (13) in the coordinate space to de- (x; E) = ar r \7 )’ (19)
termine F'(x; E), and then taking its Fourier transform: &2 9
] | [ + B+ in -Vl - 5] f0) =0, (20)
Fl(p; E) = / PxeP*Fl(x; E). (18) r r
which satisfies the boundary conditions
At this stage one comment may be in order. Since we
have restricted ourselves within the nonrelativistic regime f(r)— 0 as T — 00, (21)
?n the lopp integration in. E:q.'(2), one may quder .if the Fr) > 1 +... as r—o0. (22)
integration over the relativistic regime would give rise to T

the corrections of the same order of magnitude. It can be
shown that the axial-vector vertex A% (g, p) in general has
such a spinor structure that it will be suppressed by 3
when sandwiched between nearly on-shell ¢ and £ prop-
agators, just as in Eq. (7). Then, after appropriately
renormalizing the ultraviolet divergences, loop integra-
tions over the relativistic regime will further give sup-
pression factors (a;)™. These in turn are not accompa-
nied by the singularities ~ (1/8)", so that the relativistic
corrections are only higher order corrections to (17).

In the remaining part of this section, we give a brief
sketch of the method for evaluating the above Green’s
functions.

Let us first see how to evaluate the Green’s function in
the coordinate space. It can be shown that the P-wave
contribution to F!(x; E) is given in terms of f(r), the so-
lution to the one-dimensional homogeneous Schrédinger
equation, as

q/2 -;\

FIG. 3. The self-consistent equation satisfied by the axial-
vector vertex AL (q,p).

This particular solution f(r) may be obtained as the lin-
ear combination of (arbitrary) two independent solutions
fi1(r) and fa(r) to the same homogeneous equation (20).
If we write

f(r) = A[fi(r) + B fa(r)], (23)

the coefficients A and B are readily determined from the -
boundary conditions (21) and (22) as

- — iy 217
B=- fa(r)’ 24
-1
A= (lim rlfi(r) + BAO]) - (25)

Thus, F!(x; E) can be obtained by numerically solving
the homogeneous differential equation (20).

The Green’s function in the momentum space is ex-
pressed as the Fourier integral of f(r). Defining the scalar
function F(p; E) by

FY(p; E) = p' F(p; E), (26)
we find
= _me 0 sin pr — pr cospr
FoiB) =2t [ arrsr) (REZEEE) (o)
with p = |p|.

IV. CROSS SECTIONS

In this section we present the formulas of the differen-
tial cross sections for the process ete™ — tf — bW bW~
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including the axial-vector coupling contribution. The
axial-vector coupling gives rise to the tf distribution pro-
portional to cos 8, which leads to the forward-backward
(FB) asymmetry of the cross section. The FB asymmetry
below threshold (at the resonance peak) increases from
0 to ~ 7% as m; is raised from 100 GeV to 200 GeV.
It also grows as the c.m. energy increases, and exceeds
10% in the continuum region. The Green’s functions are
evaluated using the two-loop improved QCD potential
given in Ref. [4] for V(r) in the Schrédinger equations.
The QCD potential incorporates the running of the cou-
|

2mt

Se(p) 7S (-p) — (B2

in order to incorporate the threshold singularities due to
multiple exchanges of gluons between ¢ and . Here, t and
t four-momenta are set as p; = (p%, p) and p; = (99, —p),
respectively, with p¢ + 5) = 2m; + E so that E is related
to the c.m. energy as E = /s — 2m;. D(p) represents
the nonrelativistic top-quark propagator without spinor
structure:

1
D(p) = p® —my — p2/2my + iy /2"

(29)

The factor (1 — 8a,/3m) takes into account the order
a, correction coming from the loop integration over the
relativistic region [11]. This gives formally the same order
correction as the axial-vector-coupling contribution. The
J

1440 g 1—4°

SF(Pt)’Yk’YSSF(—ﬁt)—’( 3 Qo

Bt p 2B ) (1 2a,) Glpi B) (D) + D)

) <—%) F(p; E) [D(p) + D(5)),

pling constant o, which is also the inclusion of higher
order corrections. We note that all the analyses in this
section do not include the effect of the initial-state radi-
ation. We also neglect the bottom-quark mass (mp = 0)
for simplicity.

Near tt threshold, the leading QCD enhancement is
contained in the tfV vector vertex in the diagram shown
in Fig. 1. According to Refs. [3,4], we should replace the
vector vertex together with ¢ and # propagators in the
pure electroweak process by

(28)

[
coupling constant in this factor is evaluated at the top-
quark mass scale, a; = ag(my).

The resonance structure is contained in the S-wave
Green’s function G(p;E). It is given by the Fourier
transform of G(x; F) satisfying the Schrédinger equation
in the coordinate space:

[——A— FV() - (B + m)] G(x;E) = 63(x), (30)
me
&(p; E) = / PBx e~ % G(x; E). (31)

The discussion in the previous section shows that the
QCD enhancement effect to the axial-vector vertex can
be taken in by a similar replacement:

(32)

where F'(p; E) is given in (27). This gives rise to the order 3 correction to the leading vector-coupling contribution

(28).

We may obtain the differential cross section near threshold using the vector vertex (28) and the axial-vector vertex
(32). After integrating the bW +bW ™~ phase space with the momentum constraint p; = py + pw+ and p; = py + pw-,

one finds the momentum distribution of ¢t and ¢ as

do — 3m2a?

T?|D(p:) + D(Bt)|? (To + Ty cos ) (2m)*6* (ps + Pt — q)

d*p: dp,
(2m)* (2m)*

(33)

Here, 6 represents the polar angle of the top-quark three-momentum measured from the electron beam direction.
To includes the contributions from S-wave resonance states, whereas T stems from the interference of S-wave and

P-wave resonance states:

2
7= (1- 320 {(—% +xabay) + x2<gz>2<gtv>2] G )P, (34)

2 =~ %
T = (—5 X 9494 + 2ng“kgig€/92) 2 % Re [G(p; E) F*(p; E)] :

The vector and axial-vector couplings associated with
e~etZ and ttZ vertices are given by
1

1 .
g%, = ——5 + 2811’12 0W7 gi = §’ (36)

(35)

[
4

1 1
g = 5 §s1n20W,

ng = DK (37)

while the ratio of photon and Z propagators with an
appropriate normalization factor is defined as
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1 s
X = . .
4sin? By cos? By s —m%, smdm?

(38)

We neglected terms which are suppressed by 42 in (33).

Flgrtltermore, the time component integration
S %};—%’%(2#)6(])2 + p? — ¢°) may be performed, and one
may obtain the three-momentum distribution of the top
quark as

do . 3a2I‘t
d|p|dcos ~ 2m}

Ip|2(To + T cos 6). (39)

Using the above differential cross section formula, we
may calculate the FB asymmetry. However, [d|p| in-
tegration of T is logarithmically divergent, due to the
factor |p|/m: in Eq. (35) typical to the P-wave ampli-
tude. In this region, the nonrelativistic approximation

|

AfpB =

Otot

Substituting (39) into the above equation, we find

A A
Aps = /0 dp| |p*T; / 2 / dp| pPTo.

In the following, we discuss the dependences of the FB
asymmetry App and the tf differential cross sections on
the various physical parameters.

The energy dependences of Agp together with the total
cross sections are shown in Figs. 4, 5, and 6 for m; = 100,
150, and 200 GeV, respectively. In each figure, three
curves correspond to as;(mz) = 0.10, 0.12, and 0.14.

(42)

A 1 0 do
— d —_—
/0 d|p| [/0 dcos@ /_1 cosé?] dipldcosd

breaks down, and higher order terms in 8 become more
and more significant. It has been discussed that higher
order corrections would suppress the cross section in the
high |p| region, since available phase space of ¢t and  de-
creases in this domain [4,12]. We thus restrict the |p|
integration within |p| < A, where the cutoff A is taken
as

L

2 2 2 2
= Tom? (9mg — miy)(mg — miyy).

(40)
For |p| > A, there would be no allowed kinematical con-
figuration such that either one of ¢ or £ remains on shell
and that the other has an invariant mass larger than
m%;,, simultaneously. The phase space virtually vanishes
in this region for /s ~ 2m;. We therefore define the FB
asymmetry as [13]

(41)

One sees that the FB asymmetry below threshold (at the
peak) almost vanishes for m; = 100 GeV, and increases
for larger m;. This is because the top-quark width I';
grows rapidly with m; so that the overlap of S-wave and
P-wave resonance states becomes more significant. In
each figure, App grows as F increases from the lowest
lying resonance. This is because the interference among
the resonances becomes more severe in higher energies
[1, 8], since the resonance levels appear closer to one an-
other.

A fairly complex energy dependence of Apg for m; =
100 GeV, as well as milder behaviors for m; = 150 GeV
and m; = 200 GeV, can be understood if we note
the analytic structure of the cross sections in the com-
plex E plane. In Fig. 7, we plot the position of poles
of 1 < Re|G(p; E)F*(p; E)] together with App for

3.0

0.2

20 [—

© ay(mg)=0.10
ay(my)=0.12
— — — —  ay(my)=0.14

-0.2

Arpowwidse g4

2.0

B m,=100GeV
10—

Total Cross Section [pb]

E [GeV]

FIG. 4. The total cross section o(e*e™ — tf) and the
forward-backward asymmetry Arp Vs c.m. energy, taking
m; = 100 GeV, for as;(mz) = 0.10, 0.12, and 0.14. The
energy is measured from twice the top-quark mass: E =
/s — 2m;. The left axis stands for the total cross section,
and the right axis is for the forward-backward asymmetry.
The dotted line shows the position of zero for the forward-
backward asymmetry.

Total Cross Section [pb]

FIG. 5.

0.5

0.0

ay(mg)=0.12

N — — — = a,(my)=0.14

-
ay(mz)=0.10 ]
1

m,=150GeV

L

The total cross section o(ete~

—-0.4

Anyowwifse g4

— tf) and the

forward-backward asymmetry Arp vs c.m. energy, with m; =
150 GeV. The notation is the same as in Fig. 4.
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-
o
s}

<)

2

o
I

o
o
o
I
\

_.-.=1-02

Arjswrwifse gy

- - = - a,mz)=0.10

Total Cross Section [pb]
8

——— a,(my)=0.12 |
- ‘ — = — . aymy=0.14 |

SO N I B B RV
-8 -4 -2 0 2

-0.4

FIG. 6. The total cross section o(ete™ — tf) and the
forward-backward asymmetry Arg vs c.m. energy, with m; =
200 GeV. The notation is the same as in Fig. 4.

ms = 100 GeV and a,s(mz) = 0.12; see Egs. (35) and
(42). The squares represent the S-wave resonance states
(18, 2S,...), while the crosses represent the P-wave states
(1P, 2P,...) [14]. P-wave states lie slightly below the
corresponding S-wave states due to the running effect of
strong coupling constant. P-wave states “see” the long
distance behavior of the QCD potential as compared to
S-wave states [15], and thus gain larger binding energies.
The dense spectra above threshold (E > 0) give quasi-
continuum cross sections [8].

Let us increase the energy F along the real axis from
below the lowest lying resonance. As F is increased, T}
changes sign each time E crosses over above the pole.
Therefore, Arp oscillates as E is increased. However,

2» L S B L B LR B 0.2
r m=100GeV
= a=0.12
11— 4
M |- tﬂ
% L -
IS 1 &
— e <
= 0 I o X0 X0 >0 X0 X0 XKTKKEERRK] » 3
£ I 10z 2
s L —-0.2 e
L 7 <
1 O S—wave Resonance State i
i X P—wave Resonance State b
L — -0.4
N R N B B
-3 -2 -1 0 1
Re E [GeV]

FIG. 7. The positions of poles of 71 in the complex energy
plane, together with the forward-backward asymmetry as a
function of energy, taking m:; = 100 GeV and as(mz) =
0.12. The boxes represent S-wave resonances, and the crosses
represent P-wave resonances. The energy is measured from
twice the top-quark mass: E = /5 — 2m;. The right axis is
for the forward-backward asymmetry.

when the energy differences of resonance levels become
small as compared to I';, many levels begin to contribute,
and Tp tends to be shifted in the positive direction. In-
deed, the FB asymmetry at some resonance peak behaves

as
T, \?2
ArB x (KE) forI't < AFE, (43)
and
Iy
App x E forT'y > AE, (44)
t

where AFE represents the energy difference of the reso-
nance levels. Equation (43) shows that App increases
as I'? for small m;. Meanwhile, Eq. (44) implies that
asymptotically Arp will grow proportionally to m;, since
Ty x m$ for my > mw [2].

In Fig. 8, we show the m; dependence of App evalu-
ated at the c.m. energies corresponding to the position
of the lowest lying peak that appears in the total cross
section. The three curves are for a,(mz)=0.10, 0.12, and
0.14. Curves in the dotted lines show that there no longer
appear the peaks in the total cross sections for large m;.
In this region, App is evaluated at E = —1.4, —2.5, and
—4.1 GeV for as(mz) = 0.10,0.12, and 0.14, respectively,
which roughly correspond to the energies where Apg is
minimal, or, at the “shoulders” of the cross sections. (See
Fig. 6.)

One sees that App grows from nearly zero to 6-8%
as m; is increased from 100 GeV to 200 GeV. This is
because the top-quark width grows rapidly in this m; re-
gion (I';=0.095 GeV for m;=100 GeV, and I';=2.5 GeV
for m:=200 GeV), so that the S-wave state and the P-
wave state start to overlap, which gives rise to the inter-
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FIG. 8. The forward-backward asymmetry Arg, evalu-
ated at the first peak of total cross section, vs top-quark mass,
for as(mz) = 0.10, 0.12, and 0.14. The dotted curves show
that there no longer appear the peaks in the cross section for
large m;. In this region, Arp is evaluated at E = —1.4, —2.5,
and —4.1 GeV, respectively, for a,(mz) = 0.10, 0.12, and
0.14.
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ference term proportional to cos 6 in Eq. (33). Therefore,
App is enhanced for larger m;, and is more feasible to
be measured in experiments, while the total cross section
decreases like ~ 1/m?2, as well as the peak cross section
decreasing due to the large top-quark width.

The FB asymmetry at the peak is also dependent on

as(mz): App decreases as a; increases. This is because
the resonance levels spread apart from one another for
larger o, and thus the overlap of the S-wave and P-
wave states decreases. Although cross sections are more
enhanced for larger a,, the enhancements tend to can-
cel in the denominator and numerator for the FB asym-
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FIG. 9. The comparison of the coefficients of the ¢f differential cross section as a function of top-quark momentum |p|, with
ms = 100 GeV and a,(mz) = 0.12. The solid curve shows the coefficient for the spherical distribution (|p|?Ts), and the dashed
curve for the cos@ distribution (|p|*T1). The dotted line shows the position of zero. In each figure, the energy (E = /s — 2m)
is taken as (a) E = —2.12 GeV (at the first resonance peak), (b) E = —1.14 GeV (at the second resonance peak), and (c)

E = +1 GeV (above threshold).
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metry (41). The noticeable feature here is that the a,
dependence of App is magnified for a heavier top quark.
[According to Eq. (44), Arp would become independent
of s asymptotically as m; — co. Nevertheless one sees
that the sensitivity to o, remains for m, < 200 GeV ]
We are also concerned with the tf distributions, which
can be investigated by using the differential cross sec-
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tion formulas given by (33) and (39). tf distribution
is spherical in the leading order, since only S-wave
states contribute. The inclusion of axial-vector cou-
pling gives rise to the cos@ term at order 3. We show
in Fig. 9 the |p| dependences of |p|?Ty and |p|27; for
m: = 100 GeV. Three figures correspond to the ener-
gies (a) at the first peak (E = —2.12 GeV), (b) at the
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second peak (E = —1.14 GeV), and (c) above thresh-
old (E =1 GeV). At E = —2.12 GeV, T} almost van-
ishes. Tp exhibits the shape of the absolute square of
the 1S resonance state wave function in the momentum
space. At E = —1.14 GeV, T shows the square of the
2S5 state wave function, while T shows the product of
the 25 state wave function and the 2P state wave func-
tion. At E = 1 GeV, where a number of resonance
states contribute, the structure of the tf distribution
is quite smeared, and T3 is more enhanced. The peak
of the distribution is shifted to higher |p| compared to
E = —2.12 GeV and E = —1.14 GeV, since the kinetic
energy of t(f) is larger.

Similarly, the |p| dependences of |p|?Tp and |p|?T} for
ms = 150 GeV are shown in Fig. 10, at the enregies (a)
E = —2.52 GeV (first peak), (b) E = —1 GeV, and (c)
E = 1 GeV. The structures of the tf distributions are
smeared out compared to those of m; = 100 GeV due to
the larger top-quark width.

Thus, Figs. 9 and 10 show that the effect of axial-
vector coupling modifies the tf distribution significantly
for large m, and at the higher c.m. energies.

In summary, the FB asymmetry below threshold (at
the lowest lying peak of the total cross section for
m; S 150 GeV) “measures” the degree of overlap of S-
wave states and P-wave states. It is essentially deter-
mined by the relative magnitude of the widths and the
energy differences of the resonance levels, while it is in-
sensitive to the normalization of the cross sections. This
suggests that App would be a stable quantity to the
smearing effect by the initial-state radiation. Quite gen-
erally, App increases as the resonance widths increase
or the binding energy decreases, provided that the FB
asymmetry stems solely from the interference of S-wave
and P-wave states. The FB asymmetry is more enhanced
for larger m;. In particular, its dependence on «; is
magnified for 150 GeV < m; < 200 GeV. This sensitivity
may help the determination of a; for a relatively heavy
top quark, since much of the resonance structures are
smeared out in the total cross section.

V. CONCLUSION AND DISCUSSION

We have investigated the axial-vector-coupling contri-
bution to the tf pair production cross section near the
threshold. This contribution is a part of the order-3 cor-
rections to the ete™ — tf — bW bW ™ process. The
large top-quark width allows the interference between S-
wave resonance states produced by the vector coupling
and P-wave states produced by axial-vector coupling,
giving rise to the FB asymmetry already at the thresh-
old. As m; is varied from 100 GeV to 200 GeV, the FB
asymmetry at the resonance peak increases from 0% to
~ 7%, allowing its experimental study. We also studied
the a, dependence of the asymmetry. A careful study
of the FB asymmetry at future ete™ colliders allows an
efficient cross-check to the measurement of oz, which will
be done by the total cross section and bW invariant-mass
distribution [4].

We may address the possible role of the FB asymmetry
for a relatively heavy top quark (m; 2 150 GeV) as fol-

lows. The main defect in the measurement of the thresh-
old total cross section for a heavy top quark is that the
resonance structures are quite smeared, and that it is dif-
ficult to tell whether m; is small or a; is large. One of the
candidates to resolve such correlation in the measurement
of ay and m; is to measure the differential cross sections
at the threshold [4]. Here, we demonstrated that the FB
asymmetry measured at the first peak (or, at the shoul-
der) of the total cross section may be used in measuring
a;. In spite of the smearing of the resonance structures,
there still exist the resonance poles in the amplitude. It is
seen that the FB asymmetry can measure the level split-
tings, while it is insensitive to the normalization of the
cross sections. Since the level structure is among the ba-
sic quantities of QCD in the threshold region, it is worth
emphasizing that a part of the structure is measurable
even with the large resonance widths.

We have made a cross-check on our results by compar-
ing them to the tree-level FB asymmetry calculated in
the continuum region. We evaluated the FB asymmetry
with the Coulomb potential for the small coupling con-
stant a; = 0.01, which approximates the tree-level calcu-
lation with a small enhancement near threshold. The FB
asymmetry with the realistic potential is larger. These
features match well with those that are expected from the
analysis on the total cross sections in Ref. [8]. We have
also checked that our analysis is insensitive to the long-
range part of the QCD potential. We varied the long-
range linear rising behavior of the potential, and con-
firmed that the effect on the FB asymmetry is insignif-
icant. This confirms the original observation by Fadin
and Khoze [1].

Although our results should be enough to convince the
readers that the top-quark threshold physics is rich in
phenomenology, some cautions should be made on the
analysis presented in this paper.

Here, we studied the FB asymmetry due to the in-
terference between S-wave and P-wave resonance states.
However, there is another type of higher order correction
which may become the source of FB asymmetry near
threshold at order 8. It is found that the one-soft-gluon
exchange between ¢ and b (£ and b), and between b and b,
would give rise to the order-3 correction to the threshold
cross sections, where b and b are the decay products of
tt pair produced via tV vector coupling. (See Fig. 11.)
Because the decay t — bW occurs via the V-A inter-

FIG.11. The diagrams which also contribute to the order-
B corrections to the leading threshold singularities. These
involve one-soft-gluon exchange between t and b (£ and b),
and between b and b.
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action, it may also contribute to the FB asymmetry af-
ter exchanging gluons. However, these corrections come
purely from the t£V vector coupling, and hence contribu-
tions come only from the S- and D-wave states. Thus,
they can be treated independently from our results on the
interference between S- and P-wave resonance states. A
full study including all the order-3 (= order-a;) correc-
tions requires the summation over all diagrams contribut-
ing at the order a?*1/3". Such a study is now underway
[7]. Thus, the study we presented in this paper should
be regarded as an intermediate report.

It should be noted that the FB asymmetry is already
an order-3 quantity, always of the order 10%, and there
will be order-3? corrections which will appear as a the-
oretical uncertainty of the order 1%. This uncertainty
persists even after studying the full order-3 corrections,
and requires some of the order-32? calculations in order
to establish the reliable theoretical prediction of the FB
asymmetry. We believe such calculations will be attained
in due time.

To study the physics sensitivity at the future ete~ col-

liders, we also have to take the initial-state radiation as
well as the bremsstrahlung effects into account. However,
we expect that their effects on the FB asymmetry will be
small. For a relatively light top quark m; ~ 100 GeV,
the resonance peaks appear quite distinct. In this case,
the FB asymmetry on the second peak will not suffer
smearing due to the contributions of other higher level
peaks, since they have much lower peak heights and are
far apart from the second peak. For a relatively heavy
top quark m; 2150 GeV, the FB asymmetry is a smooth
function of the energy, and integration over the electron
luminosity functions will not give large deviations from
the integrands.
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