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~Received 13 July 2000; accepted 29 August 2000!

We have developed an efficient grid method that can accurately deal with the electronic wave packet
dynamics of two-electron systems in three-dimensional~3D! space. By using the dual
transformation technique, we remove the numerical difficulties arising from the singularity of the
attractive Coulomb potential. Electron–electron repulsion is incorporated into the wave packet
propagation scheme without introducing any approximations. The exact electronic dynamics of H2

is simulated for the first time. At small internuclear distances~e.g.,R54 a.u.!, an ionic component
characterized by the structure H1H2 is created in an intense laser fieldE(t) ~intensity
.1013W/cm2 andl'720 nm! because an electron is transferred from the nucleus around which the
dipole interaction energy for the electron becomes higher with increasinguE(t)u. The localized ionic
structure is identified with the H2 anion at the nucleus around which the dipole interaction energy
becomes lower. Tunneling ionization proceeds via the formation of such a localized ionic structure,
and direct ionization from the covalent structure is much smaller; the localized ionic structure plays
the dominant doorway state to ionization of H2. © 2000 American Institute of Physics.
@S0021-9606~00!00544-4#
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I. INTRODUCTION

The development of high-power lasers has opened u
research field of new nonperturbative phenomena in inte
fields such as above-threshold ionization and higher-o
harmonic generation of emission.1–3 In the high-intensity and
low-frequency regime~intensity I .1013W/cm2 and wave-
length l'800 nm!, the Coulomb potential distorted by th
laser electric field forms a ‘‘quasistatic’’ barrier~or barriers!
through which an electron can tunnel.4 For the case of atoms
such nonperturbative phenomena can be understood in t
of quasistatic plasma physics models.5 A novel nonperturba-
tive phenomenon peculiar to molecules, known as enhan
ionization, has also been discovered. Recent accurate
merical simulations of ionization for one-electron syste
such as H2

1 and H3
12 have shown that the ionization rate h

the maximum at a critical internuclear distanceRc and far
exceeds that of the neutral fragment H.6–8 Maxima in the
ionization rate with respect to the internuclear distanceR
have also been found for two-electron model systems suc
H2 and H4

12 in one-dimensional~1D! space.9 In the calcula-
tions, the two electrons are allowed to move only along
molecular axis. Although the calculation of the ionizatio
rate is limited to these one- or two-electron systems,
hanced ionization has been experimentally observed for v
ous molecules10 such as CO2.

11

As described in the next two paragraphs, it has b
revealed that the enhanced ionization in H2

1 is due to the
suppression of electron transfer between the nuclei~called
charge resonance enhanced ionization6,8!. For the case of
two-electron molecules, however, different mechanisms

a!Electronic mail: kono@mcl.chem.tohoku.ac.jp
8950021-9606/2000/113(20)/8953/8/$17.00
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be expected because the two electrons are forced to mov
a correlative way by the laser field. In a previous paper,12 we
analyzed the ionization process for a 1D H2 in an intense,
low-frequency laser field~intensity I>1014W/cm2 and l
51064 nm! by numerically solving the time-depende
Schrödinger equation. According to the 1D model calcul
tion, the laser field forces the two electrons to stay nea
nucleus for a half cycle, and resultant transient ionic str
tures such as H2H1 and H1H2 are the main doorway state
to tunneling ionization. In this paper, we present the res
of calculation of electronic wave packet dynamics of H2 in a
three-dimensionalspace to show that the formation of loca
ized ionic states is real and that ionization mainly occ
therefrom.

The system H2
1 is regarded as a prototype of odd

electron diatomic molecules. The electronic dynamics of2
1

prior to tunneling ionization is determined by the radiati
coupling between the highest occupied molecular orb
~HOMO! and the lowest unoccupied molecular orbit
~LUMO!, 1sg and 1su , respectively.6,7,13 The transition
moment between them, parallel to the molecular axis,
creases asR/2. This large transition moment is characteris
of a charge resonance transition between a bonding an
corresponding antibonding molecular orbital, which w
originally pointed out by Mulliken.14 The strong radiative
coupling of the charge resonance transition changes the
tential surfaces of 1sg and 1su to ‘‘field-following’’ time-
dependent adiabatic surfaces, i.e.,E7(R)'I p~H!
7E(t)R/2,13 whereE(t) is the laser electric field at timet
and I p~H! is the ionization potential of H.

The instantaneous electrostatic potential for the elect
in H2

1 has two wells around the nuclei. The dipole interacti
3 © 2000 American Institute of Physics
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energy for an electron isE(t)R/2 at the right nucleus and
2E(t)R/2 at the left nucleus. AsE(t) increases from zero
the potential well formed around the right nucleus asce
and the well formed around the left nucleus descend13

Therefore, the ascending and descending wells yield
adiabatic energiesE1 andE2 , respectively. There exist bar
riers between the two wells and outside the descending w
While E2 is usually below the barrier heights,E1 can be
higher than the barrier heights in the rangeRc57 to 8 a.u.15

In this critical range ofR, the upper adiabatic stateu1& is
easier to ionize than isu2&. TheseRc values are consisten
with the numerical simulations of ionization.6,7 After one-
electron ionization from H2, the bond distance of the resul
ant H2

1 stretches on theE2 laser-induced dissociative poten
tial ~bond softening due to the laser field!16–18 and then the
ionization proceeds via theu1& state which is nonadiabati
cally created aroundRc from u2& when the fieldE(t) changes
its sign. This mechanism of enhanced ionization has b
directly proved by monitoring the populations of field
following adiabatic states such asu1& and u2&.13,15 A non-
adiabatic transition betweenu1& and u2& corresponds to the
spatial localization of the electron near a nucleus. The e
degree of freedom arising from nuclear motion necessit
the use of new concepts such as avoided potential cross
in a laser field. Field-induced nonadiabatic transitio
through crossing points, as well as nuclear-motion indu
ones, are essential for describing the electronic and nuc
dynamics in intense fields.13,19,20

We expect that the mechanism of enhanced ionizatio
two-electron diatomic molecules differs from that in the on
electron case: The excited ionic state H2H1 expected as the
dominant doorway state to ionization can cross the cova
ground state H•H in field-following adiabatic energy. Ac-
cording to the results of 1D H2 calculation,12 asR decreases
the population of the localized ionic structure created
creases. On the other hand, with decreases inR, the ioniza-
tion rate from a pure H2H1 structure decreases owing to th
stronger attraction by the distant nucleus. As a result, the
has a peak at the critical distanceRc'6 a.u.

In the 1D model, the Coulomb potentials are regulariz
the two parametersren and ree are introduced to soften th
electron–nucleus Coulomb potentials and the electro
electron repulsion potential, respectively.9 The 1D calculated
surfaces qualitatively agree with the experimental resu
except that the 1D potentials are all shifted down. T
transition moment between the 1D exact grou
1sg

2(X 1Sg
1) and first excited 1sg1su (B 1Su

1) states in-
creases asR/A2 up toR'3 a.u.~known as an electron trans
fer transition14! and converges toA23(atomic value). This
is consistent with accurate calculations for 3D H2.

21 Such
large transition moments play the decisive role in the inte
field case. Although these features validate the 1D model,
calculation is indispensable for quantitative discussio
Generally speaking, exact 3D calculation and 1D regulari
model give different populations of H2H1 and different ion-
ization rates from the pure H2H1. The localized ionic H2H1

structure geometrically has more different forms in 3D th
in 1D. To understand the ionization processes of tw
electron systems in detail, the 3D spatial configuration of
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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two electrons prior to ionization should be determined.
Electronic wave packet calculation for two-electro

systems in 3D has, however, not yet been establish
despite its pressing need.22 To our knowledge, no wave
packet calculations have been reported for two-elect
molecules. Conventional time evolution methods using g
representations,23 such as split operator techniques combin
with fast Fourier transform,24,25 have been successfully ap
plied to the propagation of nuclear wave packets on adiab
or diabatic potential surfaces. The success is attributed to
nonsingularity that internuclear potentials are usually
pressed in terms of analytic functions of internuclear d
tances. On the other hand, for electronic dynamics, one m
cope with the awkward Coulomb potential characterized
its long range and its singularity at the origin~e.g., at the
nucleus for electron–nucleus interaction!. The grid boundary
in coordinate space must be chosen to be far from the or
to accommodate the wave function. For an attractive C
lomb potential, grid spacings must be small to reprodu
high momentum components generated near the origin.
cause of these difficulties, the performance of the conv
tional grid methods is very poor for Coulomb systems.

Recently, we have been developing an efficient g
method, the ‘‘dual transformation’’ method,26,27 to propagate
the electronic wave packet of a system accurately. In
method, we transform both the wave function and Ham
tonian consistently to overcome the numerical difficulti
arising from the nature of the Coulomb potentials. The tra
formed wave function is required to be analytic so that
finite difference method works well. We have applied t
method to one-electron systems such as H and H2

1.13,26,27In
this paper, we introduce the idea of dual transformation
deal with two-electron dynamics. The electron–electron
teraction is fully taken into account.

The rest of this paper is organized as follows. Derivati
of an H2 Hamiltonian suitable for calculating the wav
packet dynamics in an intense laser field is presented in
II. In Sec. III, the dual transformation technique is applied
the time-dependent Schro¨dinger equation for the H2 Hamil-
tonian derived in Sec. II. We describe the procedure for so
ing the transformed Schro¨dinger equation which the trans
formed wave function obeys. In Sec. IV, we demonstrate t
in H2 a localized ionic structure is created in an intense fi
and acts as the dominant doorway state to ionization. The
spatial configuration of the localized ionic structure is an
lyzed. Finally, in Sec. V, concluding remarks together with
brief summary of the present work is given.

II. DERIVATION OF A HAMILTONIAN OF H 2

We will describe the derivation of an H2 Hamiltonian
suitable for calculating the electronic wave packet dynam
in an intense laser field. The position of each electron
designated by cylindrical coordinates~r, z, andw!, as shown
in Fig. 1. Thez axis is parallel to the molecular axis. Her
we assume that the two nuclei are fixed in space at a g
internuclear distanceR and that the molecule is aligned by
linearly polarized laser electric fieldE(t) ~the z axis is thus
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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8955J. Chem. Phys., Vol. 113, No. 20, 22 November 2000 Wave packet dynamics of H2
parallel to the polarization direction!.28,29 We first define a
one-electron HamiltonianĤ j for the j th electron

Ĥ j52
1

2 S ]2

]r j
2 1

1

r j

]

]r j
1

]2

]zj
2D 1V~r j ,zj !1zjE~ t !, ~1!

where the last term is the dipole interaction of thej th elec-
tron with the fieldE(t), and V(r j ,zj ) represents the Cou
lomb attraction between thej th electron and the nuclei:

V~r,z!52
1

Ar21~z2R/2!2
2

1

Ar21~z1R/2!2
. ~2!

Throughout this paper, atomic units are used unless ot
wise noted.

If the kinetic energy associated with thez component of

the angular momentum,2( 1
2 r j

2)]2/]w j
2, is added toĤ j , we

obtain the Hamiltonian ofH2
1 .13 Thus, the total Hamiltonian

of H2 can be expressed as

Ĥ5(
j 51

2

Ĥ j1F2S (
j 51

2
1

2r j
2

]2

]w j
2D

1V12~$r j%,$zj%,$w j%!G , ~3!

whereV12 is the electron–electron repulsion

V12~$r j%,$zj%,$w j%!

5
1

Ar1
21r2

222r1r2 cos~w12w2!1~z12z2!2
. ~4!

The Hamiltonian for He is obtained by settingR to zero.
Introducing the relative anglef between the two electrons

f5w12w2 , ~5!

and the averagex,

x5~w11w2!/2, ~6!

we can rewrite the two-electron part@¯# in Eq. ~3! as

FIG. 1. Cylindrical coordinates~r1 , z1 , andw1! and~r2 , z2 , andw2! of the
two electrons, 1 and 2, in H2. The molecular axis is assumed to be paral
to the polarization direction of the laser electric field schematically ill
trated with a sinusoidal line.
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
r-

Ĥ1252
1

2 S 1

r1
2 1

1

r2
2D S ]2

]f2 1
]2

4]x2D
2

1

2 S 1

r1
22

1

r2
2D ]

]x

]

]f
1V12~$r j%,$zj%,f!. ~7!

Since the molecular axis component of the total angu
momentum is conserved, the wave function takes the prod
form of eil x and a functionF($r j%,$zj%,f), wherel is the
quantum number for thez component of the total angula
momentum. The range ofx is between 0 and 2p: The al-
lowed values arel 50,61,62,... . We denote the tota
Hamiltonian forF($r j%,$zj%,f) by Ĥ( l )

Ĥ~ l !5Ĥ12~ l !1(
j 51

2

Ĥ j , ~8!

where the two-electron partĤ12( l ) is

Ĥ12~ l !52
1

2 S 1

r1
2 1

1

r2
2D S ]2

]f22
l 2

4 D
2

i l

2 S 1

r1
22

1

r2
2D ]

]f
1V12~$r j%,$zj%,f!. ~9!

The Hamiltonian Ĥ( l ) does not contain differentials
with x but has the quantum numberl . When the state
is a singlet, the wave function has the exchan
symmetry F(r1 ,r2 ,z1 ,z2 ,f)5F(r2 ,r1 ,z2 ,z1 ,2f)
@5F(r1 ,r2 ,z1 ,z2 ,2f) for l 50#.

III. DUAL TRANSFORMATION FOR WAVE PACKET
PROPAGATION

Recently, we have been developing an efficient g
method for accurate propagation of an electronic wa
packet.26,27 In this method, called dual transformation, th
following three requirements are introduced to treat an
tractive Coulomb potential which is characterized by its lo
range and its singularity at the nucleus. The first one is
follows: ~i! The wave function is transformed so that it
zero at the Coulomb singular points~which ensures that the
numerical difficulties concerning singularity are avoided!.
The choice of new scaled coordinates is also crucial:~ii !
Near the nuclei, the equally spaced intervals in the n
~scaled! coordinates must generate small grid spacings in
linear scaled~cylindrical! coordinates~to cope with the ex-
tremely high momentum components near the nuclei!; in the
weak potential region where the distance from the nucle
larger, the corresponding intervals in the linear scaled~cylin-
drical! coordinates are chosen to be relatively large a
nearly constant. The transformed Schro¨dinger equation
which the transformed wave function obeys is discretized
space with the help of finite difference formulas, and it
integrated in time by the alternating-direction implic
method~ADI !.30–32To that end, the transformed wave fun
tion must be analytic around the nuclei:~iii ! The differential
operators contained in the transformed Hamiltonian can
evaluated well by the finite difference method even near
Coulomb singular points.

-

P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



-

if
fo
i

s
h

ol

te

ca
a

e
a
n

ll
n-

en
th
in
ns
-

bi

a

ar-

ct

s of

two
he
on

or
–
f

he

.

8956 J. Chem. Phys., Vol. 113, No. 20, 22 November 2000 Harumiya et al.
We have applied the method to H and H2
1 ~including

molecular vibration!,26,27 where the unscaled cylindrical co
ordinater is transformed tor5 f (j) so that the functionf is
chosen to satisfy the three requirements~i!–~iii ! given above.
In the case of a cylindrical coordinate system, the finite d
ference method does not provide sufficient accuracy
evaluating the differential operators contained in the Ham
tonian. Scaling can be extended to the unscaledz coordinate
asz5g(z). The introduction of these transformations dra
tically reduces the required numbers of grid points. T
propagation scheme obtained is numerically stable.

We apply the dual transformation technique to the f
lowing Schrödinger equation:

i
]

]t
F~$r j%,$zj%,f!5Ĥ~ l !F~$r j%,$zj%,f!. ~10!

As in previous papers,13,27 we transform the Hamiltonian
Ĥ( l ) by introducing the generalized cylindrical coordina
system as

r j5 f ~j j !; zj5g~z j !, ~11!

wheref andg are functions of scaled coordinatesj j and z j

@f (j j )5j j andg(z j )5z j lead to ordinary cylindrical coordi-
nates#.

In addition to the variable transformation inĤ( l ), we
have to transform the wave function to avoid the numeri
difficulties concerning Coulomb singularities. The origin
wave functionF($r j%,$zj%,f) which is in general finite at
the nuclei must be transformed to a functionC($j j%,$z j%,f)
that is zero at the nuclei. This demand on the transform
wave function, i.e., requirement~i!, must be satisfied under
normalization condition. The original wave functio
F($r j%,$zj%,f) is normalized as

E
0

`

dr1E
0

`

dr2E
2`

`

dz1E
2`

`

dz2E
0

2p

dfr1r2

3uF~$r j%,$zj%,f!u251. ~12!

When the finite difference method is used, it is genera
difficult to conserve the norm of the wave function. For i
stance, the finite difference representation of~1/r!]/]r in Eq.
~1! is asymmetric, i.e., it is no longer Hermitian. It has be
shown26 that to make a time evolution scheme based on
finite difference method stable and accurate, the follow
normalization condition should be imposed on the tra
formed wave functionC($j j%,$z j%,f) used in the actual nu
merical calculation

E
0

`

dj1E
0

`

dj2E
2`

`

dz1E
2`

`

dz2E
0

2p

df

3uC~$j j%,$z j%,f!u251. ~13!

Note that the scale factor for each coordinate or the Jaco
is formally unity.

The transformed wave function that satisfies the norm
ization condition, Eq.~13!, is uniquely determined as

C~$j j%,$z j%,f!5@P j 51
2 f ~j j ! f 8~j j !g8~z j !#

1/2

3F~$ f ~j j !%,$g~z j !%,f!, ~14!
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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where a prime denotes the derivative with respect to the
gument of the function. Inserting Eq.~14! into Eq. ~10!, we
obtain the following transformed Schro¨dinger equation:

i
]C~$j j%,$z j%,f!

]t
5ĤT~ l !C~$j j%,$z j%,f!, ~15!

where the transformed HamiltonianĤT( l ) is expressed, in
terms of the transformed ones,Ĥ1

T andĤ2
T for Ĥ1 andĤ2 , as

ĤT~ l !5Ĥ12~ l !1(
j 51

2

Ĥ j
T . ~16!

The explicit form ofĤ j
T is

Ĥ j
T5Kj j

1Kz j
1V~ f ~j j !,g~z j !!1g~z j !E~ t !, ~17!

whereKj andKz , i.e., the kinetic-energy parts with respe
to coordinatesj andz, are given by

Kj52
1

2 f 82~j! F ]2

]j22
2 f 9~j!

f 8~j!

]

]j G
1

1

4 f 84~j! F5

2
f 92~j!2 f 8~j! f-~j!G2

1

8 f 2~j!
, ~18!

Kz52
1

4 F 1

g82~z!

]2

]z2 1
]2

]z2

1

g82~z!G
1

1

4g84~z! F7

2
g92~z!2g8~z!g-~z!G . ~19!

It has been shown that the finite difference representation
Kj and Kz are nearly Hermitian.27 The norm is practically
conserved. The dual transformation is named after the
transformations, i.e., the variable transformation of t
Hamiltonian and the transformation of the wave functi
with the normalization constraint Eq.~13!.

The time evolution operator forC($j j%,$z j%,f) can be
approximated as

exp@2 iDtĤT~ l !#'@11 iDtĤ12~ l !/2#21U~Ĥ1
T!U~Ĥ2

T!

3@12 iDtĤ12~ l !/2#, ~20!

whereU(Ĥ j
T) is an approximate time evolution operator f

Ĥ j
T . As in previous papers,26,27 we employ the Peaceman

Rachford formula,33,34which is a two-dimensional version o
the ADI method

U~Ĥ j
T!5

1

~11 iA jDt/2!

~12 iB jDt/2!

~11 iB jDt/2!
~12 iA jDt/2!,

~21!

where

Aj5Kz j
1V~ f ~j j !,g~z j !!/21g~z j !E~ t !, ~22!

Bj5Kj j
1V~ f ~j j !,g~z j !!/2. ~23!

The time evolution operators Eqs.~20! and~21! are accurate
up to the order ofDt2.

To fulfill the above three requirements, we employ t
following form for f (j), f (j)5jAj/(j1a), where param-
etera is chosen so thatf (j)'j in the weak potential region
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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8957J. Chem. Phys., Vol. 113, No. 20, 22 November 2000 Wave packet dynamics of H2
In this paper,z1 and z2 are unscaled:z15z1 and z25z2 .
Around the singular points~located alongj50!, the prefac-
tor Af f 8g8 in the transformed wave function Eq.~14!
changes as'jA3/2a, which meets requirements~i! and
~iii !. Inverting equally spaced points inj onto r, one finds
that the grid spacing inr is proportional tof 8. As j in-

creases,f 8 changes from (32)Aj/a to 1. Whena is much
larger than the grid spacingDj and the attractive potentia
V( f (j),g(z)) is nearly flat in the region wherer. f (a)
5a/&, requirement~ii ! is met. Then, the grid spacing alon
the r-direction decreases as the grid point approaches
singular points.

In addition to the dual transformation technique, we
troduce a staggered point coordinate system forz1 andz2 to
avoid the numerical divergence at the electron–electron c
lescence. The coordinatesz1 andz2 are unscaled but the gri
points for the two coordinates are staggered;z15nDz, (n
11)Dz,..., andz25(n1 1

2)Dz, (n1 3
2)Dz,... ~wheren is an

integer!. In this way, the distance between the two electro
is kept from being zero. The grid representation ofĤ12( l )
does not include an infinite value and causes no nume
difficulties.

All of the operators are converted to grid representati
by the finite difference method. The operation of Eq.~20! on
the wave functionC($j j%,$z j%,f) is as follows. After the
explicit application of 12 iDtĤ12( l )/2 in Eq. ~20!, we apply
the Peaceman–Rachford implicit scheme to Eq.~21!. The
operation of U(Ĥ j

T) on the wave functionC(tn)5@1
2 iDtĤ12( l )/2#C($j j%,$z j%,f) is separated into two step
by introducing an ‘‘artificial’’ intermediate stateCn11/2: (1
1 iB jDt/2)Cn11/25(12 iA jDt/2)C(tn) and (11 iA jDt/2)
3@U(Ĥ j

T)C(t)n#5(12 iB jDt/2)Cn11/2. The wave function
U(Ĥ j

T)C(tn) can be obtained by solving the two equatio
in order. Applying finite difference formulas to the two equ
tions, we obtain two sets of systems of simultaneous lin
algebraic equations for the unknownCn11/2 and
U(Ĥ j

T)C(tn). The systems of equations are tridiagonal
the three-point finite difference representation and pent
agonal for the five-point finite difference representation. T
operation of@11 iDtĤ12( l )/2#21 in the final stage can be
calculated by the Cranck–Nicholson implicit scheme.30,35

IV. RESULTS AND DISCUSSION

We present an example of 3D wave packet dynamic
R54 a.u., which is larger than the equilibrium internucle
distance. We assume that the initial state is the sin
ground state which hasl 50. The ‘‘exact’’ ground state can
be obtained by operating a Hanning spectral filte24

W(uĤT( l 50)2E0u) on an approximate ground-stateFA

W~ uĤT~ l 50!2E0u!5E
0

t

@11cos~pt/t!#

3exp$ i t @ĤT~ l 50!2E0#%dt,
~24!

where E(t) in ĤT( l 50) is set to zero. The filterW is a
monotonically decreasing function and the width in energy
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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proportional to 1/t. Using the trapezoidal rule for the abov
integration, the operation ofW on FA is reduced to opera
tions of the propagator Eq.~20!.36 WhenE0 is chosen to be
near the exact ground-state energy, the operation ofW on FA

diminishes the excited components inFA . The energy of the
wave functionWFA in the grid representation,E08 , is gen-
erally different from the initial guessE0 . The operation ofW
is repeated untilE08 is sufficiently close toE0 ~after each
operation ofW, E0 is replaced withE08!. The wave function
obtained after convergence is the ground state of the
cretized Hamiltonian. In this paper, we employ the followin
function asFA :

FA~1,2!}a~1!b~2!1b~1!a~2!, ~25!

wherea andb denote the 1s atomic orbitals on the left pro-
ton a and the right protonb, respectively, and 1 and 2 rep
resent the coordinates of the two electrons.

We use a528.3 a.u. for the variable transformatio
f (j). Around this value~610 a.u.!, the results are insensitiv
to a.27 In the region wherer. f (a)528.3/& a.u., the Cou-
lomb attractive potential is nearly flat. The grid spacin
used areDj50.328 a.u.~which must be much smaller tha
a!, Dz5Dz50.4 a.u., andDf50.0982. The grid end points
are chosen asjmax59.84 a.u.~the corresponding grid end in
r is rmax55 a.u.! and zmax'2zmin'10 a.u. At the grid
boundaries, we setC($j j%,$z j%,f)50. The time step used is
Dt50.02–0.05 a.u. We use five-point finite difference rep
sentation. The energy of the ground state obtained by
operation of the energy filter Eq.~24! is 21.015 48 a.u.,
while the exact one is21.016 37 a.u.37 The obtained energy
converges at the exact one asDz andDr decrease under th
condition thatDz>Dr. On this condition the change in th
wave function along ther-coordinate is sufficiently smooth
even near the electron–electron coalescence~i.e., the stag-
gered coordinate system works well! and the numerical
scheme is hence stable.

Electron transfer in H2 can be characterized by the re
duced density

P̄~z1 ,z2!5E
0

`

dr1E
0

`

dr2E
0

2p

dfr1r2

3uF~r1 ,r2 ,z1 ,z2 ,f!u2. ~26!

The covalent component (H•H) around z152z256R/2
and the ionic components~H2H1 and H1H2! around z1

5z256R/2 can be distinguished by using the representat
Eq. ~26!. The fieldE(t) that the H2 interacts with is assumed
to be f (t)sin(vt), wherev is the frequency and the puls
envelopef (t) is linearly ramped with timet so that after one
cycle f (t) attains its maximumE0 . The field parameters use
are as follows: E050.12 a.u. ~intensity I 55.04
31014W/cm2! andv50.06 a.u. (l5760 nm). Snapshots o
P̄(z1 ,z2) are drawn in Fig. 2:~a! t50; ~b! t5p/2v
526.2 a.u. (1 a.u.50.0242 fs); ~c! t5p/v; ~d! t53p/2v.
For a singlet state, the exchange symmetryP̄(z1 ,z2)
5 P̄(z2 ,z1) is maintained. The instantaneous field strength
E(t)50.03 a.u. (I 53.1531013W/cm2) at t5p/2v; at t
53p/2v, E(t)520.09 a.u. (I 52.8431014W/cm2).
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A comparison of Figs. 2~a! and 2~b! shows that the ionic
component around the left nucleus, wherez15z252R/2,
increases as the field approaches the first local maximu
t5p/2v. The ionic component created near the descend
well @wherezE(t),0# is a result of the laser-induced ele
tron transfer from the ascending well. A quarter cycle lat
the field returns to zero. The packet att5p/v in Fig. 2~c! is
nearly identical with the initial one in Fig. 2~a!, indicating
that the response to the field is still adiabatic.13,38 In Fig.
2~d!, the density aroundz15z25R/2 becomes very high be
cause of the stronger field strength att53p/2v. To quantify
the localized ionic component created, we define the lo
ized ionic structureuH1H2& and uH2H1& as the bound
state H2 ions located at z56R/2, respectively. At
t50, u^FuH1H2&u25u^FuH2H1&u250.19. The ionic
character increases as the field strength increases;t
53p/2v, the ionic character is as large asu^FuH1H2&u2

50.54. For the 1D regularized model with the conventio
ally used values of the softening parameters, i.e., forren

5ree51 a.u.,9 u^FuH1H2&u25u^FuH2H1&u250.32 at t50
and u^FuH1H2&u250.64 att53p/2v.

FIG. 2. Snapshots of the wave packet of the 3D H2 in an intense field. The

probability P̄(z1 ,z2) defined by Eq.~26! is drawn at quarter cycle interval
(v50.06 a.u.): ~a! t50; ~b! t5p/2v526.2 a.u.; ~c! t5p/v; ~d! t
53p/2v. The contour intervals are the same for the four panels. The
stantaneous field strength isE(t)50.03 a.u. at t5p/2v and E(t)
520.09 a.u. att53p/2v. The wave packet can be characterized by
covalent component aroundz152z256R/2 and the ionic components
aroundz15z256R/2. An ionic component of the structure H2H1 or H1H2

is created near the descending well@where zE(t),0, i.e., the descending
well is formed around the left nucleus whenE(t).0#. The ionic component
at the left nucleus increases as the field approaches the first local max
at t5p/2v, as shown in~b!. A quarter cycle later, the field returns to zer
The packet att5p/v in ~c! is nearly identical to the initial one in~a!. In ~d!,
the density around the ionic configurationz15z25R/2 becomes very high
because of the stronger field strength att53p/2v. As indicated by the
broken line in~d!, an electron is ejected from the localized ionic structu
The direct ionization route from the covalent structure H•H is denoted by
the dotted line in~d!, but the ionization current along the dotted line
relatively small.
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The field strength necessary for creating a localized io
state,Et , is estimated as follows. The energy of the initi
covalent state is roughly given by22I p(H). The energy of
the localized ionic state in the descending well at the fi
E(t), E(H1H2), is

E~H1H2!'2I p~H!2I p~H2!21/R2uE~ t !uR, ~27!

whereI p (H2)50.027 a.u. is the ionization potential of H2,
21/R is the energy of the Coulomb attraction between H2

and H1, and2uE(t)uR is the dipole interaction energy of th
two charges in the descending well. A necessary condi
for the formation of a localized ionic state is then given
E(H1H2)'22I p(H). We thus have the critical intensityEt

as12

Et5@ I p~H!2I p~H2!21/R#/R'@0.521/R#/R. ~28!

For R54 a.u., Et'0.06 a.u. The dramatic increase in th
population of H2 shown in Fig. 2~d! can be explained by the
fact thatuE(t)u at t53p/2v is greater thanEt'0.06 a.u.

As indicated by the broken line in Fig. 2~d!, an electron
is ejected from the localized ionic structure. The ionic stru
ture has a very low ionization potential asI p (H2) and is
hence regarded as a doorway state to ionization. The d
ionization route from the covalent structure H•H is denoted
by the dotted line in Fig. 2~d!, but the ionization current
along the dotted line is relatively small. AtR54 a.u., the
population of the localized ionic structure is more than 0
and the rate of ionization from thepure ionic state is greater
than that from thepure covalent state. AsR increases, the
difference in the rate is expected to further increase beca
of the less attractive force of the distant nucleus. Howev
the population of the ionic component will decrease w
increases inR.

We next examine the spatial configuration of the ion
structure att53p/2v. The spatial configuration of the two
electrons atz15z25R/2 is given by

P~r1 ,r2 ,f!5r1r2uF~r1 ,r2 ,z15R/2,z25R/2,f!u2.
~29!

We show two typical cases of the configuration. One is
opposition configuration in which the two electrons are o
posite to each other with respect to the right nucleus; i
f5p. The other is the case in which the two electrons
one sided; i.e.,f50. The two quantitiesP(r1 ,r2 ,f5p)
andP(r1 ,r2 ,f50) are plotted as functions ofr1 andr2 in
Figs. 3~a! and 3~b!, respectively. The peak in Fig. 3~a! indi-
cates a dominant configuration in which the two electrons
opposition to each other are;0.8 a.u. away from the
nucleus. As shown in Fig. 3~b!, in the one-sided configura
tion, one electron is only 0.4 a.u. away from the nucleus a
the other one is far away from the nucleus. The configurat
of the unequal distances from the nucleus reduces
electron–electron repulsion energy. We also show the an
dependence of the two-electron configuration atz15z2

5R/2

P̄~f!5E
0

`

dr1E
0

`

dr2r1r2uF~r1 ,r2 ,z15R/2,

z25R/2,f)u2. ~30!
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The results of analysis of the wave function att53p/2v are
plotted in Fig. 4. Because of the weaker electron–elect
repulsion in the opposition configuration (f5p), P̄(f
5p) is twice as large as the value in the one-sided confi
ration (f50).

The geometrical structure of the created ionic sta
which is shown in Figs. 3 and 4, is nearly identical to that
the pure H2 at the nucleus, which is consistent with the lar
overlap ofF with H2. The calculation for the bound state o
H2 is performed with the same method described in t
paper~by settingR50 and unifying the two nuclei into one
proton!. In conclusion, in a smallR ~e.g.,;4 a.u.! region, the
doorway state to ionization is the structure of the H2 ion at
the nucleus where the dipole interaction energy for the e
trons becomes lower with increasinguE(t)u.

V. SUMMARY

We have developed an efficient grid method that c
accurately deal with two-electron systems. Electron–elec
repulsion is incorporated into the wave packet propaga
scheme, in principle, without introducing any approxim

FIG. 3. Geometrical configuration of the localized ionic structure at
53p/2v. The spatial configuration of the two electrons atz15z25R/2
defined by Eq.~29! is plotted as a function ofr1 andr2 for two cases:~a!
the two electrons being opposite to each other with respect to the
nucleus~i.e., f5p! and~b! the two electrons being one-sided~i.e., f50!.
The peak in~a! indicates a dominant configuration in which the two ele
trons in opposition to each other are;0.8 a.u. away from the nucleus. A
shown in ~b!, in the one-sided configuration, one electron is only 0.4 a
away from the nucleus as and the other one is far away from the nuc
The contour lines in~a! and ~b! are plotted at the same intervals.

FIG. 4. Angle dependence of the two-electron configuration atz15z2

5R/2 for the wave function att53p/2v. The probabilityP̄(f) is defined
by Eq.~30!. The opposition configuration (f5p) takes a value that is twice
as large as the one-sided configuration (f50).
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tions. The positions of the two electrons, 1 and 2, are de
nated in terms of cylindrical coordinates (r1 ,z1 ,w1) and
(r2 ,z2 ,w2). When thez component of the total angular mo
mentum is conserved, the averagex5(w11w2)/2 can be
practically eliminated from the Hamiltonian. This is the ca
for the H2 molecule aligned in the polarization direction o
the laser electric field. Then, the Hamiltonian contains fi
degrees of freedom (r1 ,r2 ,z1 ,z2 ,f5w12w2). By using
the dual transformation technique, we have treated the a
ward attractive Coulomb potentials and removed the num
cal difficulties arising from their singular points.

An example of the wave packet dynamics of H2 at R
54 a.u. has been presented. An ionic component chara
ized by the structure H1H2 is created near the descendin
well because of the laser-induced electron transfer from
ascending well~i.e., from the nucleus of the higher potenti
for the electron!. Ionization proceeds via the formation of
localized ionic component in thedescendingwell, in contrast
to the H2

1 case where the electron is ejected from theascend-
ing well. For the case ofR54 a.u., one of the two electron
near a nucleus is transferred to the other nucleus when
field changes its sign. The return to the covalent state
accelerated by the electron–electron repulsion which
added to the attraction of the distant nucleus. As a res
nonadiabatic transitions of the electron pair from the d
scending well to the ascending well hardly occur. The dir
ionization from the covalent state is much smaller than t
from the ionic state created in the descending well. From
analysis of the spatial configuration of the two electrons,
identified the ionic structure with the H2 ion at the nucleus
of the lower potential. On the basis of the results of 3
simulation, we conclude that the localized ionic structu
characterized by H2 plays the role of dominant doorwa
state to ionization in the ‘‘real’’ H2. In a future study, we
will try to determine through what spatial configuration
the two electrons the ionization proceeds.

According to the 1D results in Ref. 12, the enhanc
ionization is determined by the population of the main do
way state to ionization, H2H1, and the ionization probability
from H2H1. As R increases, the population of the localize
ionic structure created becomes smaller. At large internuc
distances (R.10 a.u.), ionization occurs from the covale
component~the ionization rate from the pure covalent stru
ture is nearly independent ofR!, but the ionization rate is
much smaller than a pure localized ionic structure. We
currently performing 3D calculations at different values ofR
to clarify the ionization mechanism in 3D two-electron sy
tems and the possibility of two-electron simultaneous ioni
tion. The work in progress will be reported elsewhere.
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