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We have developed an efficient grid method that can accurately deal with the electronic wave packet
dynamics of two-electron systems in three-dimensio@D) space. By using the dual
transformation technique, we remove the numerical difficulties arising from the singularity of the
attractive Coulomb potential. Electron—electron repulsion is incorporated into the wave packet
propagation scheme without introducing any approximations. The exact electronic dynamics of H
is simulated for the first time. At small internuclear distan@sg.,R=4 a.u), an ionic component
characterized by the structure *H™ is created in an intense laser fielf(t) (intensity
>10"W/cm? and\ ~ 720 nm because an electron is transferred from the nucleus around which the
dipole interaction energy for the electron becomes higher with incre&&itld. The localized ionic
structure is identified with the Hanion at the nucleus around which the dipole interaction energy
becomes lower. Tunneling ionization proceeds via the formation of such a localized ionic structure,
and direct ionization from the covalent structure is much smaller; the localized ionic structure plays
the dominant doorway state to ionization 0f.H© 2000 American Institute of Physics.
[S0021-9606)0)00544-4

I. INTRODUCTION be expected because the two electrons are forced to move in
The development of high-power lasers has opened up %correlative V\{ay_by fche laser field. In a previous pa“ﬁeve
. . . analyzed the ionization process for a 1B iH an intense,

research field of new nonperturbative phenomena in mtensle y | fieldi itv 1= 10%W/en? and
fields such as above-threshold ionization and higher—ordePW requency flaser fie c(mtensr[)_/ - e an A
harmonic generation of emissior® In the high-intensity and  _ 1064 nm Dby numerically solving the time-dependent
low-frequency regime(intensity 1 >10"3Wi/cn? and wave- S_chrcdmger equ_atlon. According to the 1D model calcula-
length A ~800 nn), the Coulomb potential distorted by the tion, the laser field forces the two electrons_ to gtay near a
laser electric field forms a “quasistatic” barriéor barriers nucleus for a half cycle, and resultant tr_anS|ent ionic struc-
through which an electron can tunfiefor the case of atoms, tures such as FH" and H'H™ are the main doorway states
such nonperturbative phenomena can be understood in terr tunneling ionization. In this paper, we present the results
of quasistatic plasma physics modela.novel nonperturba-  Of calculation of electronic wave packet dynamics gfifia
tive phenomenon peculiar to molecules, known as enhancd@iree-dimensionaspace to show that the formation of local-
ionization, has also been discovered. Recent accurate nized ionic states is real and that ionization mainly occurs
merical simulations of ionization for one-electron systemstherefrom.
such as H and Hj2 have shown that the ionization rate has ~ The system H is regarded as a prototype of odd-
the maximum at a critical internuclear distanRe and far  electron diatomic molecules. The electronic dynamics 9f H
exceeds that of the neutral fragment®.Maxima in the  prior to tunneling ionization is determined by the radiative
ionization rate with respect to the internuclear distaifte coupling between the highest occupied molecular orbital
have also been found for two-electron model systems such a86ilOMO) and the lowest unoccupied molecular orbital
H, and Hj % in one-dimensional1D) spacé€’ In the calcula-  (LUMO), 1oy and lo,, respectively’:”** The transition
tions, the two electrons are allowed to move only along thanoment between them, parallel to the molecular axis, in-
molecular axis. Although the calculation of the ionization creases aR/2. This large transition moment is characteristic
rate is limited to these one- or two-electron systems, enef a charge resonance transition between a bonding and a
hanced ionization has been experimentally observed for vargorresponding antibonding molecular orbital, which was
ous molecule¥ such as CQ** originally pointed out by Mullikert The strong radiative

As described in the next two paragraphs, it has beegoupling of the charge resonance transition changes the po-
revealed _that the enhanced ionization i§ i due to the tential surfaces of &, and 1o, to “field-following” time-
suppression of electron transfer between the nudelled dependent  adiabatic ~ surfaces, i.e.E:(R)~I,(H)
charge resonance enhanced ioniz&tfonFor the case of 5 g(t)R/2,13 where £(t) is the laser electric field at time
two-electron molecules, however, different mechanisms Caﬁndlp(H) is the ionization potential of H.
The instantaneous electrostatic potential for the electron
3Electronic mail: kono@mcl.chem.tohoku.ac.jp in H2+ has two wells around the nuclei. The dipole interaction
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energy for an electron i§(t)R/2 at the right nucleus and two electrons prior to ionization should be determined.
—&(t)R/2 at the left nucleus. Ag(t) increases from zero, Electronic wave packet calculation for two-electron
the potential well formed around the right nucleus ascendsystems in 3D has, however, not yet been established,
and the well formed around the left nucleus descéfds. despite its pressing neéti.To our knowledge, no wave
Therefore, the ascending and descending wells yield theacket calculations have been reported for two-electron
adiabatic energie&, andE_ , respectively. There exist bar- molecules. Conventional time evolution methods using grid
riers between the two wells and outside the descending wellepresentations; such as split operator techniques combined
While E_ is usually below the barrier height&, can be With fast Fourier transforr}** have been successfully ap-
higher than the barrier heights in the rarige=7 to 8 a.u*® plied to the propagation of nuclear wave packets on adiabatic
In this critical range ofR, the upper adiabatic state-) is ~ Or diabatic potential surfaces. The success is attributed to the
easier to ionize than is-). TheseR, values are consistent Nonsingularity that internuclear potentials are usually ex-
with the numerical simulations of ionizatiérl. After one-  Pressed in terms of analytic functions of internuclear dis-
electron ionization from ki the bond distance of the result- tances. On the other hand, for electronic dynamics, one must
ant Hj stretches on th& _ laser-induced dissociative poten- COP€ with the awkward Coulomb potential characterized by
tial (bond softening due to the laser figfi*®and then the itS long range and its singularity at the origie.g., at the
ionization proceeds via ther) state which is nonadiabati- Nucleus for electron—nucleus interactioihe grid boundary
cally created aroun®, from |—) when the fieldS(t) changes N coordinate space must be cho;en to be far from t_he origin
its sign. This mechanism of enhanced ionization has beelp accommodate the wave function. For an attractive Cou-
directly proved by monitoring the populations of field- |omb potential, grid spacings must be small to reproduce
following adiabatic states such &s) and|—).13!5 A non- high momentum c.:o.mpqnents generated near the origin. Be-
adiabatic transition betwedr) and|—) corresponds to the €ause o_f these dlfflc_:ultles, the performance of the conven-
spatial localization of the electron near a nucleus. The extr§onal grid methods is very poor for Coulomb systems.
degree of freedom arising from nuclear motion necessitates R€cently, we have been developing 2N efficient grid
the use of new concepts such as avoided potential crossing;éethc’d’ the “dual transformation” methdt?’to propagate ,
in a laser field. Field-induced nonadiabatic transitionse €lectronic wave packet of a system accurately. In this
through crossing points, as well as nuclear-motion induced€thod, we transform both the wave function and Hamil-
ones, are essential for describing the electronic and nucle&Pnian consistently to overcome the numerical difficulties
dynamics in intense fieldg:1%.2° arising from the nature of the Coulomb potentials. The trans-

We expect that the mechanism of enhanced ionization iflP'med wave function is required to be analytic so that the
two-electron diatomic molecules differs from that in the one-1nit¢ difference method works well. We have apg!;sd the
electron case: The excited ionic stateHi” expected as the Method to one-electron systems such as H apd H°7in
dominant doorway state to ionization can cross the covaleri{!iS Paper, we introduce the idea of dual transformation to
ground state HH in field-following adiabatic energy. Ac- deal with two-electron dynamics. The electron—electron in-

cording to the results of 1D jtalculation'? asR decreases, teraction is fully t_aken Into account. -
the population of the localized ionic structure created in- | N€ rest of this paper is organized as follows. Derivation

creases. On the other hand, with decreaseR, ithe ioniza- of an H, Hamiltonian suitable for calculating the wave
tion rate from a pure HH™ structure decreases owing to the packet dynamics in an intense laser field is presented in Sec.

stronger attraction by the distant nucleus. As a result, the ratg N S€c. Ill, the dual transformation technique is applied to
has a peak at the critical distanBe~6 a.u. the time-dependent Schitimger equation for the JHHamil-

In the 1D model, the Coulomb potentials are regularized,mnian derived in Sec. Il. We describe the procedure for solv-

the two parameterp,, and p.. are introduced to soften the ing the transformed Schdinger equation which the trans-

electron—nucleus Coulomb potentials and the electronfformed wave function obeys. In Sec. IV, we demonstrate that

electron repulsion potential, respectivélfhe 1D calculated in H, a localized ionic structure is created in an intense field

surfaces qualitatively agree with the experimental results2nd acts as the dominant doorway state to ionization. The 3D

except that the 1D potentials are all shifted down. TheSPatial configuration of the localized ionic structure is ana-

transiton moment between the 1D exact groundlyz_ed' Finally, in Sec. V, concluding'remarks together with a
105()( 12;r) and first excited irylo, (B IS +) states in- brief summary of the present work is given.

creases aB/+/2 up toR~3 a.u.(known as an electron trans-

fer transitiot?) and converges tq/2 X (atomic value). This

IS conS|ste_n_t with accurate calculatlo_n'_s for 3@21;' SUCh Il. DERIVATION OF A HAMILTONIAN OF H 5

large transition moments play the decisive role in the intense

field case. Although these features validate the 1D model, 3D We will describe the derivation of an,HHamiltonian
calculation is indispensable for quantitative discussionssuitable for calculating the electronic wave packet dynamics
Generally speaking, exact 3D calculation and 1D regularizeih an intense laser field. The position of each electron is
model give different populations of HH* and different ion-  designated by cylindrical coordinatgs z, and¢), as shown
ization rates from the pure HH*. The localized ionic HH* in Fig. 1. Thez axis is parallel to the molecular axis. Here,
structure geometrically has more different forms in 3D tharnwe assume that the two nuclei are fixed in space at a given
in 1D. To understand the ionization processes of two-4nternuclear distancB and that the molecule is aligned by a
electron systems in detail, the 3D spatial configuration of thdinearly polarized laser electric fielé(t) (the z axis is thus
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Z . 1/1 . 1 ( 92 92 )
=5l 2t 2|7zt
electric field &(t) ! 2\p7 p3/\d¢ 4
electron 1
1/1 1)\ 0 Y 7
22 52)ax r?¢ 2{pih Az}, b). (7)

Since the molecular axis component of the total angular
momentum is conserved, the wave function takes the product
form of e'X and a function®({p;},{z;},#), wherel is the
quantum number for the component of the total angular
momentum. The range of is between 0 and2 The al-
lowed values arel=0,+1,+2,... We denote the total

Hamiltonian for®({p;},{z;},¢) by H(I)
electron 1 |

H(h=Hy(H+ > H;, 8
FIG. 1. Cylindrical coordinate&;, z;, ande,) and(p,, z,, andg,) of the 9 1) Zl ! ®
two electrons, 1 and 2, in - The molecular axis is assumed to be parallel

to the polarization direction of the laser electric field schematically illus- where the two-electron paH (1) is

trated with a sinusoidal line.
Boil)= 1(1+1>(52 |2)
v 21p1 py)\0¢* 4

parallel to the polarization directipA®2° We first define a il 1\ g
one-electron Hamiltoniaki; for the jth electron - E(Pl )t9¢ +Vil{pih iz} &) €)
. 1/ 1 9 & I o :
Hi=—5|-=2+———+ | +V(p;.z) +zE1), (1)  The Hamiltonian H(l) does not contain differentials

2\dpj  pjdp; 0z with y but has the quantum numbér When the state
where the last term is the dipole interaction of fitle elec- 1S @ singlet, the wave function has the exchange
tron with the field&(t), andV(p;,z;) represents the Cou- Symmetry D(p1,p2:21,22,9)=P(p2,p1.22,21,~ )
lomb attraction between thigh electron and the nuclei: [=®(p1,p2,21,25,— ¢) for =0].

V(p,2)= - - 2
D o oR2? Jrr2? 2 Il DUAL TRANSFORMATION FOR WAVE PACKET

_ o PROPAGATION
Throughout this paper, atomic units are used unless other-

wise noted. Recently, we have been developing an efficient grid
If the kinetic energy associated with taeomponent of method for accurate propagation of an electronic wave
the angular momentumr(zp %)l 9¢?, is added td; , we packet?®?” In this method, called dual transformation, the

obtain the Hamiltonian off; .13 Thus the total Hamlltoman following three requirements are introduced to treat an at-

of H, can be expressed as tractive Coulomb potential which is characterized by its long
5 5 , range an_d its singularity at the_ nucleus. The first one is as
|:|=E a4l — 2 iﬁ_) follows: (i) The wave funcnon is tran_sformed so that it is
=) [ 2Pj2 (9<sz zero at the Coulomb singular pointhich ensures that the
numerical difficulties concerning singularity are avoigled
The choice of new scaled coordinates is also crudial:
+Valipihdzih e |, 3 Near the nuclei, the equally spaced intervals in the new
_ _ (scaled coordinates must generate small grid spacings in the
whereV, is the electron—electron repulsion linear scaledcylindrical) coordinatesto cope with the ex-
Vaid{pit izt o)) tremely high momentum components near the nycieithe
weak potential region where the distance from the nuclei is
1 larger, the corresponding intervals in the linear scatstin-
\/ 7. 7 — " 4) drical) coordinates are chosen to be "relatively large and
P1t P2 2p1p2 COSP1— ¢2) +(21~2)) nearly constant. The transformed Safinger equation

The Hamiltonian for He is obtained by settifiRjto zero.  Which the transformed wave function obeys is discretized in

Introducing the relative anglé between the two electrons, Space with the help of finite difference formulas, and it is
integrated in time by the alternating-direction implicit

¢=e1= 92, ) method(ADI).2-%To that end, the transformed wave func-
and the averagg, tion must be analytic around the nucléii) The differential
operators contained in the transformed Hamiltonian can be
X= (o1t @2)/2, ) evaluated well by the finite difference method even near the
we can rewrite the two-electron pdrt-] in Eq. (3) as Coulomb singular points.
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We have applied the method to H and Hincluding  where a prime denotes the derivative with respect to the ar-
molecular vibration?®?” where the unscaled cylindrical co- gument of the function. Inserting E¢l4) into Eq. (10), we
ordinatep is transformed tp=f(£) so that the functioriis  obtain the following transformed Schtinger equation:
chosen to satisfy the three requiremefs(iii ) given above. {ENLLY &)

In the case of a cylindrical coordinate system, the finite dif- j —~ 211" 77
ference method does not provide sufficient accuracy for at
evaluating the differential operators contained in the Hamil+
tonian. Scaling can be extended to the unscaledordinate

asz=g({). The introduction of these transformations dras-
tically reduces the required numbers of grid points. The

HT(HW {10 ), (15

‘wWhere the transformed HamlltonlaﬁT(I) is expressed in
terms of the transformed ond4; andH for H; andH,, as
2

propagation scheme obtained is numerically stable. HT()=H (1) + 21 H . (16)
We apply the dual transformation technique to the fol- =
lowing Schralinger equation: The explicit form oﬂ:|jT is
d - AT—K,. +K, + A N4 q( 7
| @{ph iz d) =AO o))z} b). (10 Hj=Kg t K+ o))+ atgpem, @

) _ pu whereK; andK,, i.e., the kinetic-energy parts with respect
As in previous papers?’ we transform the Hamiltonian to coordinatest and ¢, are given by

H(l) by introducing the generalized cylindrical coordinate

2 "
system as K.=— 12 ‘92 21(¢) i}
_ £2f% 9l 119 ¢

pi=1(&); z=a()), (11 .
wheref andg are functions of scaled coordinatésand ¢; —— [ fr2(g)—f’ (g)f"’(g)} —, (18
[f(&)=¢; andg(¢;)=¢; lead to ordinary cylindrical coordi- T AT |2 8f4(¢)
nates. 11 1 2 8 1

In addition to the variable transformation f(l), we K¢ Z[m a—§2+ a2 m}
have to transform the wave function to avoid the numerical
difficulties concerning Coulomb singularities. The original 1 47 , om
wave function®({p;},{z;},¢) which is in general finite at + 49'%(0) 29 (0)=9'(0)g"(D) |- (19

the nuclei must be transformed to a functi{ &;},{¢;}, ¢)
that is zero at the nuclei. This demand on the transforme
wave function, i.e., requiremefit, must be satisfied under a
normalization condition. The original wave function
D({p;}.1z;}.#) is normalized as

has been shown that the finite difference representations of
¢ andK, are nearly HermitiaR’ The norm is practically
conserved. The dual transformation is nhamed after the two
transformations, i.e., the variable transformation of the
Hamiltonian and the transformation of the wave function
* * * * 2a with the normalization constraint E(L3).
fo dplfo dpzf_mdzlf_wdzzfo dépip2 The time evolution operator fo¥ ({&},{¢;},#) can be
approximated as

X|® ez} =1 (42 iAtAT()]~[1+iAtA (/2] *U(RDU(A]
_ ~ +
When the finite difference method is used, it is generally ex (N]~[1+1AtHD/2]U(H)UH2)
difficult to conserve the norm of the wave function. For in- X[1—iAtH(1)/2], (20)

stance, the finite difference representatiorildp)d/dp in Eq.
(1) is asymmetric, i.e., it is no longer Hermitian. It has beenWhereUU'| 1) is an approximate time evolution operator for
showrf® that to make a time evolution scheme based on thde-lT As in previous papers:?’ we employ the Peaceman—
finite difference method stable and accurate, the followmg?achford formulg>**which is a two-dimensional version of
normalization condition should be imposed on the transthe ADI method
formed wave functionV ({;},{¢;},¢) used in the actual nu-

merical calculation U(AT ! (1-1B;At/2) iA At/2
()= 1+iA at2) (1718, At/2)( IAAL2),
o0 el o s 2 (21)
déy | dé | dgy| di| dé
0 0 - — 0 where
X[ W{&}{¢) )P=1. (13) A=K +V(F(£).9(5)12+9(5)E), (22)
Note that the scale factor for each coordinate or the Jacobian _ _ _
is formally unity. Bj=Ky+V(T(£)),9({))/2. (23
The transformed wave function that satisfies the normalThe time evolution operators EqR0) and(21) are accurate
ization condition, Eq(13), is uniquely determined as up to the order ofAt?.
sy STTI2 . f(ENVF (£)a' (£:)]Y2 To fulfill the above three requirements, we employ the
G $) = f (6T (£)9"(2))] following form for f(£),f(&)=&\Jél(é+ a), where param-
XO{T(&)}A9(L)}é), (14)  eterais chosen so thdt(£)~ ¢ in the weak potential region.
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In this paper,z; and z, are unscaledz;=¢; and z,={,. proportional to 1f. Using the trapezoidal rule for the above
Around the singular pointfocated alongc=0), the prefac- integration, the operation oV on ®, is reduced to opera-
tor Jff’g’ in the transformed wave function Eq14) tions of the propagator Eq20).%® WhenE, is chosen to be
changes as=£\3/2a, which meets requirement§) and  near the exact ground-state energy, the operatia ofl O 5
(ii ). Inverting equally spaced points ionto p, one finds diminishes the excited componentsdr), . The energy of the
that the grid spacing ip is proportional tof’. As £ in-  wave functionW® , in the grid representatiork;, is gen-
creasesf’ changes from §)V&a to 1. Whena is much  erally different from the initial guesS,. The operation otV
larger than the grid spacingé and the attractive potential iS repeated untiE; is sufficiently close toE, (after each
V(f(£),9(0)) is nearly flat in the region wherp>f(a)  OPeration ofW, E, is replaced withE(). The wave function
= alv2, requirementii) is met. Then, the grid spacing along Obtained after convergence is the ground state of the dis-
the p-direction decreases as the grid point approaches theretized Hamiltonian. In this paper, we employ the following
singular points. function as®:

In addition to the dual transformation technique, we in-
troduce a staggered point coordinate systenzfaandz, to Pa(1,2>a(1)b(2) +b(1)a(2), (25

avoid the numerical divergence at the electron—electron cogynerea andb denote the & atomic orbitals on the left pro-
lescence. The coordinatesandz, are unscaled but the grid 51 5 and the right protorb, respectively, and 1 and 2 rep-

points for the two coordinates are staggeregi-nAz, (0 resent the coordinates of the two electrons.
+1)Az,..., a.ndzzz(n+%).Az, (n+3)Az,... (whereniis an We use «=28.3a.u. for the variable transformation
integey. In this way, the distance between the two electrons; (&) Around this valug=10 a.u), the results are insensitive
is kept from being zero. The grid representationtbf(I)  to a.?’ In the region where>f(a)=28.342 a.u., the Cou-
does not include an infinite value and causes no numericgdmb attractive potentia| is near|y flat. The grid spacings
difficulties. used areA ¢=0.328 a.u(which must be much smaller than
All of the operators are converted to grid representationsy), Az=A/=0.4a.u., and\ ¢=0.0982. The grid end points
by the finite difference method. The operation of E2) on  are chosen a,,,,=9.84 a.u.(the corresponding grid end in
the wave functionW ({£;},{;},¢) is as follows. After the , is p,,=5a.u) and z,,~—zZn,~10a.u. At the grid
explicit application of 1-iAtH,(1)/2 in Eq.(20), we apply  boundaries, we se¥ ({£},{{;}, ¢)=0. The time step used is
the Peaceman—Rachford implicit scheme to E2i). The = At=0.02-0.05a.u. We use five-point finite difference repre-
operation of U(I:ijT) on the wave functionW(t,)=[1 sentation. The energy of the ground state obtained by the

—iAtAL(1)/21W({&}.{¢}.4) is separated into two steps OPeration of the energy filter Eq24) is ~1.01548 a.u,,
by introducing an “artificial” intermediate stat@"* 2 (1 while the exact one is-1.016 37 a.{’ The obtained energy

FiBAU2)WN V2= (1—iA At/2)W(t,) and (1+iAAt/2)  converges at the exact one &% andAp decrease under the
X[UJ(FI'_I')\I,(t) ]=(1—iB»]At/2)\If”+;’2 The wave ft]mction condition thatAz=Ap. On this condition the change in the
J n J '

AT i Wi H ~wave function along the-coordinate is suffif:iently smooth
U(Hj)¥(t,) can be obtained by solving the two equationsg, e near the electron—electron coalescelee, the stag-
in order. Apply'mg finite difference formulag to the two equa- gered coordinate system works weknd the numerical
tions, we obtain two sets of systems of simultaneous lineal.hame is hence stable.

i i +1/2
algebraic  equations for the unknowny” and Electron transfer in kican be characterized by the re-
U(HjT)\If(tn). The systems of equations are tridiagonal forguced density

the three-point finite difference representation and pentadi-
agonal for the five-point finite difference representation. The
operation of[1+iAtH,(1)/2]* in the final stage can be
calculated by the Cranck—Nicholson implicit scheify&

_ 0 o 2T
P(z,,2,)= fo dplfo dpzjo dépips

X|q)(plvp21211221¢)|2- (26)

IV. RESULTS AND DISCUSSION The covalent component (H) around z;=—z,= +R/2

We present an example of 3D wave packet dynamics &"d the ionic componenttH H™ and 'H*H ) aroundz;
R=4 a.u., which is larger than the equilibrium internuclear ~ %2~ +R/2 can be dlStlngUIShEd_by using the representation
distance. We assume that the initial state is the singleEd-(26)- The field&(t) that the H interacts with is assumed
ground state which has=0. The “exact” ground state can (© be f(t)sin(f), where v is the frequency and the pulse
be obtained by operating a Hanning spectral fifter envlel?(pt;;f(g IS I|r_1tearly rfam;:;d Vf’lf:]h tlljn:jso that atfter oned

N . cyclef(t) attains its maximung,. The field parameters use
W([H(1=0)~Eql) on an approximate ground-state, are as follows: &=0.12a.u. (intensity |=5.04

X 10"W/cn?) and w=0.06 a.u. § =760 nm). Snapshots of
P(z;,2,) are drawn in Fig. 2:(@ t=0; (b) t=7/2w
~ =26.2a.u. (1a..=0.02421s);(c) t=7/w; (d) t=37/2w.
X exp{it[H'(1=0)—Eq]}dt, For a singlet state, the exchange symme®yz;,z,)
(24) =5(zz,zl) is maintained. The instantaneous field strength is
where &(t) in HT(1=0) is set to zero. The filteW is a  &(t)=0.03a.u. (=3.15x108W/cn?) at t==/2w; at t
monotonically decreasing function and the width in energy is=37/2w, £(t)=—0.09 a.u. (=2.84x 10"W/cn?).

W(HT(1=0)—E|) = foT[l—i- cogmt/7)]
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The field strength necessary for creating a localized ionic
state,&;, is estimated as follows. The energy of the initial
covalent state is roughly given by2l,(H). The energy of
the localized ionic state in the descending well at the field
E(t), E(HH), is

E(H'H)=—1p(H) = 1,(H)-1R-[EDIR,  (27)

zy(a.u)
T
z,(a.u)

5]

wherel, (H7)=0.027 a.u. is the ionization potential of H
—1/R is the energy of the Coulomb attraction between H
and H", and—|&(t)|R is the dipole interaction energy of the
two charges in the descending well. A necessary condition
for the formation of a localized ionic state is then given by
ES(1I;|+H‘)% —2l,(H). We thus have the critical intensity

a

&=[1,(H)—1,(H)—1LRI/R~[0.5-1RJ/R. (28

For R=4 a.u., &~0.06 a.u. The dramatic increase in the
——— = population of H shown in Fig. 2d) can be explained by the
5 0 5 0 5 10 fact that|&(t)| att=3m/2w is greater thart;~0.06 a.u.
z(a.u) z(a.u) As indicated by the broken line in Fig(®, an electron
) ) ) is ejected from the localized ionic structure. The ionic struc-

FIG. 2.”Sn3pshots of the wave packet. of the 3PirHan intense fle.ld. The ture has a very low ionization potential 31§(H_) and is
probability P(z; ,z,) defined by Eq(26) is drawn at quarter cycle intervals hence regarded as a doorway state to ionization. The direct
(w=0.06a.u.): (@ t=0; (b) t=w/2w=26.2a.u.; (c) t=m/w; (d) t ST )
=37/20. The contour intervals are the same for the four panels. The indOnization route from the covalent structurehiis denoted
stantaneous field strength i€(t)=0.03a.u. att=m/20 and &(t) by the dotted line in Fig. @), but the ionization current
=-0.09a.u. at=37/20. The wave packet can be characterized by the glong the dotted line is relatively small. R=4 a.u., the

covalent component aroung,=—2z,==R/2 and the ionic components 1 |ation of the localized ionic structure is more than 0.5
aroundz, =z,= *=R/2. An ionic component of the structure H" or H'H

is created near the descending wellhere z&(t) <0, i.e., the descending and the rate of ionization from tf'pﬂJI’EIOI’lIC state Is greater

well is formed around the left nucleus whé(t)>0]. The ionic component ~ than that from thepure covalent state. AR increases, the

at the left nucleus increases as the field approaches the first local maximugiifference in the rate is expected to further increase because
att=m/2w, as shown irb). A quarter cycle later, the field returns to zero. f the |ess attractive force of the distant nucleus. However,

The packet at= 7/ w in (c) is nearly identical to the initial one if@). In (d), . . . .
the density around the ionic configuratiap=z,=R/2 becomes very high the population of the ionic component will decrease with

because of the stronger field strengthtat3m/2w. As indicated by the ~ INCreases irR. . . _ _ o
broken line in(d), an electron is ejected from the localized ionic structure. We next examine the spatial configuration of the ionic

The direct ionization route from the covalent structureHHs denoted by  structure at=37/2w. The spatial configuration of the two
the dotted line in(d), but the ionization current along the dotted line is electrons at,=z,=R/2 is given by

relatively small.
P(p1,p2,¢)=p1p2| ®(p1,p2,21=RI2,2,= R/2,¢)|2&29)

z4(a.u.)
<
1
zy(a.u.)

A comparison of Figs. n hows that the ioni . . . .
compgr?en?aar?)%ng thegsle%) r?ucjeit;) Swﬁarlsec Za_ eR(/)z ¢ We show two typical cases of the configuration. One is the
, 27— y . . . . . _

increases as the field approaches the first local maximum gpp_osmon conﬂguraﬂoq in which the two glectrons are. op
t=m/2w. The ionic component created near the descendinf}’o"s"te to each other with res'pect .to the right nucleus; i.e.,
well [wherez&(t)<0] is a result of the laser-induced elec- ¢=m. The other is the case in which the two electrons are

tron transfer from the ascending well. A quarter cycle Iater,gzg PS ided; "e'f{’g Oérl-helo:g(c)i g:?ﬂgggg:](sp 1];‘) ;r’zj’: 7|Tr)1
the field returns to zero. The packettat 7/ w in Fig. 2(c) is (p1,p2,4=0) P 4 andp,

nearly identical with the initial one in Fig.(d), indicating E;%:.s:{alazjs:"nqngg%crsr?? ec:;i%' _Ihehpfhalt‘hg‘ tFlg(:I)eI:t?lo-ns in
that the response to the field is still adiabafié® In Fig. ! 'guration in wh W :

2(d), the density around; =z,=R/2 becomes very high be- opp|03|t|or'l\ 0 heach. och_er Bargo.ﬁ a.u. a.v(\j/ai; frorp the

cause of the stronger field strengtht &3 7/2w. To quantify nucleus. ls shown in | 'gd(4)’ n the onfe-S| eh con Ilgura— q
the localized ionic component created, we define the Iocalyon’ one e ect'ron Is only 0.4 a.u. away from the nuclieus an
ized ionic structure]H"H™) and |[H"H") as the bound the other one is far'away from the nucleus. The configuration
state H ions located atz=+R/2, respectively. At of the unequal dlstanc_es from the nucleus reduces the
t=0, |<(I>|H*H’)|2=|<<IJ|H’H*>|2=C,).19. The ionic electron—electron repulsion energy. We also show the angle

character increases as the field strength increaseg; atdependence of the two-electron configuration zt=z,

=37/2w, the ionic character is as large HzP|H H)|? =RI2

=0.54. For the 1D regularized model with the convention-  _— ® o

ally used values of the softening parameters, i.e., dgr P(d’):fo dpljo dp2p1p2| P(p1.p2,21=RI2,
=pee=lau.? (®HH)|?=|(®|H H")|?=0.32 att=0

and|[(®|H"H™)|?=0.64 att=37/20. z,=RI2,$)|?. (30
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tions. The positions of the two electrons, 1 and 2, are desig-
nated in terms of cylindrical coordinateg(,z;,¢4,) and
(p2.,22,95). When thez component of the total angular mo-
mentum is conserved, the average (¢1+ ¢5)/2 can be
practically eliminated from the Hamiltonian. This is the case
for the H, molecule aligned in the polarization direction of
the laser electric field. Then, the Hamiltonian contains five
degrees of freedomp(,p,,21,22,6=¢1— ¢,). By using

the dual transformation technique, we have treated the awk-
ward attractive Coulomb potentials and removed the numeri-

(a.u.) (a.u.) arar e e 3
P2 P2 cal difficulties arising from their singular points.
FIG. 3. Geometrical configuration of the localized ionic structuret at An example of the wave packet dynamics of &t R
=3m/2w. The spatial configuration of the two electronszat=z,=R/2 =4 a.u. has been presented. An ionic component character-

defined by Eq(29) is plotted as a function g, andp, for two cases(a) : — ;
the two electrons being opposite to each other with respect to the righ&Zed by the structure FH" is created near the descendmg

nucleus(i.e., ¢=m) and (b) the two electrons being one-sidéice., s=0).  Well because of the laser-induced electron transfer from the
The peak in(a) indicates a dominant configuration in which the two elec- ascending well(i.e., from the nucleus of the higher potential
trﬁnsri“i:&r))oisrilﬁ?h”etgn‘zagg :éhgcr) ﬁg téi‘c-)l;- szzyeE%’tTr‘ot:eisngsl'eU&?u for the electron lonization proceeds via the formation of a
ZWC;V)\/I from the nucleus as and the gther on,e is far away from tr):e ﬁucléu!pcahzed lonic component in tmaas.cen.dlngvell, In contrast
The contour lines i@ and (b) are plotted at the same intervals. to the H; case where the electron is ejected fromaiseend-

ing well. For the case oR=4 a.u., one of the two electrons

near a nucleus is transferred to the other nucleus when the
The results of analysis of the wave functiontat3w/2w are  field changes its sign. The return to the covalent state is
plotted in Fig. 4. Because of the weaker electron—electronccelerated by the electron—electron repulsion which is
repulsion in the opposition configurationg& ), P(¢  added to the attraction of the distant nucleus. As a result,
=) is twice as large as the value in the one-sided configunonadiabatic transitions of the electron pair from the de-
ration (¢=0). scending well to the ascending well hardly occur. The direct

The geometrical structure of the created ionic statejonization from the covalent state is much smaller than that

which is shown in Figs. 3 and 4, is nearly identical to that offrom the ionic state created in the descending well. From 3D
the pure H at the nucleus, which is consistent with the largeanalysis of the spatial configuration of the two electrons, we
overlap of® with H™. The calculation for the bound state of jdentified the ionic structure with the Hion at the nucleus
H™ is performed with the same method described in thisof the lower potential. On the basis of the results of 3D
paper(by settingR=0 and unifying the two nuclei into one sjmulation, we conclude that the localized ionic structure
proton. In conclusion, in a smaR (e.g.,~4 a.u) region, the  characterized by H plays the role of dominant doorway
doorway state to ionization is the structure of the idn at  state to ionization in the “real” H In a future study, we

the nucleus where the dipole interaction energy for the elecyjill try to determine through what spatial configuration of

trons becomes lower with increasifg(t)|. the two electrons the ionization proceeds.
According to the 1D results in Ref. 12, the enhanced
V. SUMMARY ionization is determined by the population of the main door-

We have developed an efficient grid method that carfvay state to ionization, FH™, and the ionization probability
- . . .
accurately deal with two-electron systems. Electron—electroffom H H™. As Rincreases, the population of the localized
repulsion is incorporated into the wave packet propagatiofnic structure created becomes smaller. At large internuclear

scheme, in principle, without introducing any approxima-distances R>10a.u.), ionization occurs from the covalent
componen{the ionization rate from the pure covalent struc-

ture is nearly independent df), but the ionization rate is

25x107 much smaller than a pure localized ionic structure. We are
20 currently performing 3D calculations at different valuesof
. to clarify the ionization mechanism in 3D two-electron sys-
= 154 tems and the possibility of two-electron simultaneous ioniza-
g 10. tion. The work in progress will be reported elsewhere.
o
54
0 T 1
0 /2 i
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