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A dual transformation technique that can deal with awkward Coulomb potentials is developed for
electronic wave packet dynamics. The technique consists of the variable transformation of the
Hamiltonian and the transformation of the wave function with a normalization constraint. The time
evolution is carried out by the alternating-direction implicit method. The operation of the
transformed Hamiltonian on the wave function is implemented by using three- and five-point finite
difference formulas. We apply it to the H atom and a realistic three-dimeng@bamodel of H; .

The cylindrical coordinatep and z are transformed ag=f(¢) andz=g(¢), where¢ and { are
scaled cylindrical coordinates. Efficient time evolution schemes are provided by imposing the
variable transformations on the following requirements: The transformed wave function is zero and
analytic at the nuclei; the equal spacings in the scaled coordinates correspond to grid spacings in the
cylindrical coordinates that are small near the nuctei cope with relatively high momentum
components near the nudleind are large at larger distances thereafter. No modifications of the
Coulomb potentials are introduced. We propose the fioé =& £"/(£"+ a")]”. The parametet
designates thp-range where the Coulomb potentials are steep. & andv= 3 transformation
provides most accurate results when the grid spagifigs sufficiently small or the number of grid
points,N¢, is large enough. For small,, then=3 andv=1 transformation is superior to the

=1 andv=3 one. The two transformations are also applied to the dissociation dynamics in the 3D
model of H, . For then=3 and »=1 transformation, the main features of the dynamics are well
simulated even with moderate numbers of grid points. The validity of the two transformations is also
enforced by the fact that the missing volume in phase space decreases with de&éasidgl999
American Institute of Physic§S0021-960699)30145-§

I. INTRODUCTION rium internuclear distance and those of dissociative frag-
ments, and ionization to higher charge states occurs when the
Femtosecond technology has opened up a new field aiuclei pass through the critical ranfe?® The fact that ion-
study as to coherent electronic motions such as electropation is enhanced at critical internuclear distances suggests
transfer between nuclei in molecul€s The intensity can be  that strong correlation between the electronic motion and the
so high to induce tunneling ionization. In the high-intensity nuclear configuration/motion exists in intense laser fields.
and low-frequency range, the Coulomb potential distorted by Although various numerical methods for electronic dy-
the laser electric field forms a “quasi-static” barrier through namics in laser fields have been propo%&? it is not an
which an electron can tunn&t® Special attention has been easy task to simulate, e.g., large amplitude motions of an
paid to new nonlinear optical processes such as abovesectronic wave packet. It is even harder to include the
threshold ionizatioH)_lzand high—order harmonic generation quantum-mechanica| motion of nuclei. There exist two ap-
of emission:*~** High-order harmonics are generated whenproaches to simulate electronic dynamics in intense fields.
the ejected electron circles back to the vicinity of the nucleupne is the expansion using spatially delocalized bases. In
(rescattering® Electronic dynamics in intense fields involves this approach, the time-dependent wave function is expanded
such large amplitude motions like rescattering. For molin terms of state-specific states, i.e., bound, autoionizing, and
ecules, nuclear motion is also involved in the dynamics ofscattering states of the field-free HamiltoniEn3® The time-
the system. Recent experiments and theories in a strong |as@épendent Schdinger equation describing the interaction
field case t10"'W/cn?) have underscored the combined yith a laser pulse is transformed into a system of coupled
process of photodissociation and photoionization. It has beefyst-order differential equations for time-dependent coeffi-
experimentally revealed that the kinetic energies of fragtients. This technique has been successfully applied to atoms
ments are consistent with Coulomb explosions at specifignqt applied to molecules yetalthough the number of
internuclear distances in the range of 7-10%4:4"An ex-  coupled equations usually exceeds tens of thousands. For the
planation for this finding is as follows: lonization rates at the \otion of a spatially localized wave packet induced by an
critical internuclear distances exceed those near the equiligptense laser pulse, however, the delocalization of state-
specific states leads to poor convergence.
3Electronic mail: kono@mcl.chem.tohoku.ac.jp The grid representation is complementary to the state-
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specific expansion approatf.3® Conventional time evolu- the transformations are examined in different ranges of grid
tion methods using grid representatidfié! such as split op- spacingsAé and A¢, by comparing the wave packet calcu-
erator techniques combined with fast Fourier transfétfi, lated by the dual transformation technique with the exact
have been successfully applied to the nuclear wave packene. Another method for determining the transformation ef-
dynamics in molecular physics. The success is attributed téiciency is the classical phase space anaf§siased on the
the nonsingularity that internucledadiabatic/diabaticpo-  fact that wave packets decay exponentially in classically for-
tentials are usually expressed in terms of analytic functiondidden regions of phase space. To that end, the transformed
of internuclear distances. On the other hand, for electronitiamiltonian is divided into a kinetic energy and a potential;
dynamics, one must cope with the awkward Coulomb potenthen, the classical phase space covered by the grid represen-
tial characterized by its long range and its singularity at theation is estimated.
origin (at the nucleus for electron—nucleus interactiofhe The rest of this paper is organized as follows. The gen-
grid boundary in coordinate space must be chosen to be f&ral framework of dual transformation is given in Sec. Il. In
from the origin to accommodate the wave function and gridSec. Ill, some bench mark tests are carried out for H and the
spacings must be small to reproduce high momentum con8D model of H . Various transformations are tested; the
ponents generated near the origin. Because of those difficuivave packets computed by our method are compared with
ties, the performance of the conventional grid methods ighe exact ones. The phase space analysis is also used to en-
very poor for Coulomb systems. force the validity of efficient transformations. Finally, in Sec.
Recently, we have been developing an efficient gridlV, concluding remarks are given with a brief summary of
method to simulate electronic dynamics accuratélfhe  the present work.
choice of coordinate systems is crucial. In Ref. 44, the fol-
lowing three requirements are imposed on the coordinate
system to be employedi) The wave function is transformed ||, METHODOLOGY
so that it is zero at the Coulomb singular poiathich en- ,
sures that the numerical difficulties concerning the singularia" Dual transformation
ity are avoidedt (i) the differential operators can be well In this work, we apply the dual transformation technique
evaluated by the finite difference method even near the Couo H and the 3D model of H employed in Ref. 35. In the
lomb singular points;(iii) the equal spacings in the new model, the following assumptions are made: The electric
(scaled coordinates correspond to grid spacings in the cylinfield of the applied laser is linearly polarized along #eis;
drical coordinates that are small near the nugteicope with  the nuclear motion is restricted to the polarization direction.
relatively high momentum components near the ni@ded  Because of the cylindrical symmetry, taeomponent of the
are large at larger distances therefrom. The transformedlectronic angular momenturm#, is conserved; the elec-
Schralinger equation is discretized in space with the help oftronic degrees of freedom to be considered are two cylindri-
finite difference formulas, and is integrated in time by thecal coordinateg and p.
alternating-direction implicit method ADI).**~*" Among The center-of-mass motion of this three-body system can
various propagation methods, the ADI method is found to bée separated from internal coordinates such asdz. Here,
the most accurate for steep attractive potentials, at least fgrandz are measured with respect to the center of mass of the
the one-dimensional Coulomb potential. We have applied théwo nuclei*® The Hamiltonian for the internal motions is
method to H** The cylindrical coordinate for the electron  written as(throughout this paper atomic units are used

is transformed ap= &%, where ¢ is a scaled coordinate.

This transformation satisfies the above three requirements 1 ¢ 1 (¢ 149 & m’ 1

and drastically reduces the required number of grid points. T m, aR? 2u\dp? + pdp Tzt 2p? TR
We have also succeeded in including nuclear motion for

a realistic 3D model of Bl .1 Although the nuclear motion +V(p.ZR)+V(z0), 2.9)

is restricted to the polarization directiarof the laser electric  whereR is the internuclear distance, andm, are electron
field (perpendicular top), the electron moves in three- and nuclear masses, and

dimensional space. The two electronic coordinaesd p

and the internuclear distan&eare treated quantum mechani- 2mpme

cally without using the Born—Oppenheimer approximation.  #~ m 2.2
We have investigated effects of the nuclear motion on en- ) ] ]
hanced ionization and on electron transfer between the tw§ne potentiaV(p,z,R) is the sum of the Coulomb interac-
nuclei. Correlations between the electronic and nuclear moions

tions are extracted from the full dynamical calculation. 1 1

In this paper, we generalize the “dual transformation” V(p,z,R)=— - ,
technique, i.e., the method of consistently transforming both Vp*+(z=RI2)? \p®+(z+Ri2)?
of the wave function and the Hamiltonian for wave packet 2.3

dynamics. The transformation op is expressed a9 andV¢(z,t) is the dipole interaction between the molecule
=f(§), where the function is chosen to satisfy the threeand the electric field(t) of a laser pulse
requirementsi)—(iii ) described above. Scaling is extended to

the unscaled coordinate az=g(¢). Various functions of Ve(z,t)=2zE&(1). (2.9
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If the finite masses of protons are taken into acconét) Y€ LR .

should be multiplied by * m./(2m,+ms). For the H atom, P = =H¥(ELR), (2.10
the R-degree of freedom is eliminated from E@.1), and .

Eq. (2.3 is replaced with—1/\/p?+7% (u is the reduced where the transformed Hamiltonia# is given by

mass of H. m?
We would like to spatially discretize the Hamiltonian to H=Kg+ Kt K+ 52 +V+V;. (2.11
p

solve the time-dependent Schinger equation
The kinetic-energy parts with respect to coordinates and,
R i.e.,K¢, K¢, andKg are expressed as

— 7 fr!Z ! £ 1
The finite difference method is chosen to evaluate the differ ¢~ '¢* 4,738 | 2 (&)= (DT |~ 8ufi(€)’

ential operators contained in the Hamiltonian. It should, (2.123
however, be noted that the Coulomb potential is character-

J
iﬁ(}/’(PaZaR):HCﬁ(P:Z'R)- (25)

ized by.its §ingu|arity gt the nucleus and its_ ang range. Fok =T+ 4—,4)|:;g//2(§)_g/(§)g///(é’)}’ (2.128
the cylindrical coordinate system, the finite difference ©g (&
method does not give sufficient accuracy. We propose here 1 52
the generalized cylindrical coordinate system as R~ JRZ’ (2.129
P

p=1(&), z=9(0), (2.6)  where
wheref and g are functions of scaled coordinatésand ¢ 1 1 # ¢ 1
[f(&)=¢ and g({)=/¢ lead to qrdinary cy!indrical coordi- T§__ﬂ f/2(&) (9_52+ IE2 2| (2.133
nateg. It has been known that in electronic structure calcu- 5 )
lations variable transformationéscaling, mapping proce- 11 T 1 (2.130
dures efficiently reduce the number of representation E 4p(g'A() ar 9t g'A)) '

points#8°0-¢ variable transformation has been also intro-

> The dual transformation is named after the two transforma-
duced to calculate electronic wave packet dynarffics.

tions, i.e., the variable transformation of the Hamiltonian and

_In addition to the variable transformauon_ of the Ha_1m|l- the transformation of the wave function with the normaliza-
tonian, we have to transform the wave function to avoid the[ion constraint Eq(2.8)

numerical difficulties concerning the Coulomb singularity.
The original wave functiors(f(¢),9(¢),R) which is in gen- B. Time evolution with the alternating-direction
eral finite at the nuclei must be transformed to a functionyyjicit method

P(&,¢,R) that is zero at the nuclei. This demand on the

transformed wave function, i.e., the requireméntn Sec. I, The formal solution of Eq(2.10 is expressed as
must be satisfied under a normalization condition. The origi- . (ths1a
nal wave functiong(p,z,R) is normalized as l//(tn+1)=T9XF{ =i ft H(t")dt" | ¢(tn)
f “dr f “dp f " dzpld(pzR)P=1. 2.7 =ex —iAtH(th. 1) J¥(ty) + O(ALY), (2.9
0 0 —

wherey(t,) is the wave function at time,=nAt+t, andT
When the finite difference method is used, it is generallyis the time ordering operator. The Hamiltonian in the second
difficult to conserve the norm of the wave function. It hasversion of Eq.(2.14) is that at the midpoint of the time step,
been knowft that to make stable and accurate the time evot,,, ,,,=t,+ At/2. If the time stepAt is sufficiently small, the

lution scheme, based on the finite difference method, thgropagator exp-iAtA(t,.1,,)] can be replaced with an ap-
following normalization condition should be imposed on theproximate propagator that is accurate up to a certain order of

transformed wave functiog(¢,{,R) At. The wave function at the desired time is obtained by
operating such a short time propagator on the wave function

dR| dé| d¢lu(é ¢ R)P=1. 0g lteratively. o

fo fo ff_m fyeLR 29 It has been known that the alternating-direction implicit

N method (ADI) provides short time propagators of which

Notg that the volume element for normalizatiordig o dZ quality is characterized by the second-order accuracy in time
not like £ dR & d¢. . - and the stability for various potentials. In addition to these
. .The tran;formed wave funpt|on that sat|§f|es the normali:)oints, as will be demonstrated, the ADI is amenable to vari-
ization condition Eq(2.8) is uniquely determined as able transformations. The ADI embodies the powerful idea

- - of operator splitting and time splitting. In the following, we
P&, LRI=VIET(E)F'(£) ¢(T(£),9(0).R), (2.9 briefly review a 3D version of the ADI. Let us assume that

where a function with a prime denotes the derivative withH(t, ;) is decomposed into three operatoA§t,, 1),
respect to its argument. Inserting E8.9) into Eq.(2.5), one  B(t,. 1), and C(t,. ). According to the ADI, the time
obtains the following Schidinger equation: evolution operator eXp-i(A+B+C)At] is expressed as
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1 1 1—iCAt/2 C. Explicit forms for variable transformation

1+iAAt/2 1+iBAt/2 1+iCAt/2 We are now in a position to explicitly determifi@ndg
. . functions of scaled coordinatésand . To fulfill the three
_ _ 3
X (1-iBAU2)(1-1AAL2)+O(AL). requirements(i)—(iii) in Sec. I, we choose the following
(2.15 forms:

e I(A+B+C)At

The actual operation on the wave function is separated into

n v
three steps by introducing “artificial” intermediate states  f(g)=¢ _& , (2.183
Y13 and yn+ 2 E+a"
(1+iCAt/2)y" P=(1—iCAt/2)(1—iBAt/2) 9(0)=[1—(1— B)exp — 21¥?)]¢, (2.18b
X(1—iAAt/2) (), 2.16 .

( )¥(ta) ( 3 where the parametes and y are widths ofp- and zranges
(L+iBAL/2) Y +2B=yn+ 13 (2.16b where the potentidV is relatively deep, ang@ is the param-
eter to shorterd-grid spacings neaz=0. Around the singu-

(L+iIAAL2) h(t, 1) =y" 2" (2.160 lar points (located along ¢=0), the prefactor \ff'g’

changes as~\(1+nv)B 2" V24" The requirement

which is known as the D'yakonov scherffeThe wave func- (ii) that the transformed wave function must be analytic, de-
tion y(t,.1) can be obtained by solving Eq$2.169—  mands that the order of the power §f(2nv+1)/2, must be
(2.169 in order. As shown below, the dynamics of the elec-3 natural number. The number must be chosen out of half
tronic and nuclear wave packet can be pursued Withouydd numbers. Then, the transformed wave function given by
invoking any approximations such as the Borm-gq. (2.9) is zero at the nuclei; the requiremeit is auto-
Oppenheimer separation of electronic and nuclear degrees ﬁfatica”y fulfilled.
freedom. Inverting equally spaced points thand £ onto p andz,

When the differential operators involved &y B, andC  gne finds that the grid spacingsgrandz are proportional to
are chosen to be those of different degrees of freedom, Egq- andg’, respectively. Ast increasesf’ changes from (1
(2.16 can be reduced to three sets of one-dimensional im- nv)(&a)™ to 1; as¢ increasesg’ changes fromg to 1.
plicit problems such as the Cranck—Nicholson schénié. When B<1 anda>Aé, the requirementiii) is met. Then,
For H, , the three operatori§,, K, andKg in the Hamil-  grid spacings along- andz-directions decrease as approach-
tonian Eq.(2.11) must be confined i, B, andC separately. jng to the singular points. When the cylindrical coordinate
We furthermore divided the Coulomb interactions intosystem(a=0 andB=1) is employed, the split operator time
nucleus—nucleus interactionRLand electron—nucleus inter- ayolution technique together with the use of F@dst Fou-
actionV(p,z,R). The most reasonable way of separation isrier transform is applicable to the transformed Hamiltonian
as follows: (because the prefactors of the differentials in the transformed
Hamiltonian are independent of the coordinatésit the ef-

- 1
A=K+ V(p.2R) +Ve(Ztns 1), (2173 ficiency as a numerical method is very low. Poor perfor-
1 m2 mance of the cylindrical coordinate system originates from
B=K+ EV(p,Z, R)+ 27 (2.17p  the fact that the requiremen(s) and (iii) are not satisfied.

For the cylindrical coordinate system, the transformed wave
1 function is not analytic around the nuclei because g’
C= KR+§- (2.179 ~ \/E The Fourier series expansion of the transformed wave
function converges very slowly.
In Eq. (2.133, the symmetrized product form of/9&>
and 1f'2(£) is adopted as well as in E€R.13D. If symmet-
ric difference formulas are applicable 1@, the grid repre-
sentation of the symmetrized product form is symmetric: The
grid representation df, is then still Hermitian. The norm is,
hence, strictly conservedwithout numerical roundoff er-
rors). However, the grid representation of

In the above equationy/ is divided into halves so thaty
andB ¢ vanish at the nuclei. This ensures that not an(y,,)
but also intermediateg" "% and """ are zero at the nu-
clei.

We apply the finite difference method to evaluate the
differential operators. For instance, E®.163 is then re-
duced to a set of systems of simultaneous linear algebrai
equations for the unknowny""3 Equations (2.163— )
(2.160 can be reduced to three sets of systems of simulta- (9_ (L, ER)
neous equations. The systems of equations are tridiagonal for 9&> f'(¢) °
the three-point finite difference scheme and pentadiagonal
for the five-point finite difference scheme. Suppose that that the pointé=A ¢ next to the lineé=0 requires evaluating
numbers of grid points fog, £, andRareN;, N, andNg,  ¢(£,{,R)/f'2(§)x 1722 gt ¢=0, which is generally
respectively. For Eq.2.163, we obtainN,/N, band diagonal nonzero. It is not allowed to simply put the boundary condi-
systems of simultaneous equations; each band diagonal sysen (£=0,{,R)=0 into the element. To avoid this diffi-
tem hasNg unknowns. The band diagonal systems of equaculty in the actual numerical scheme, we use an asymmetric
tions can be solved efficiently by usindg) decomposition.  form
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K- 1 21§ o initial wave function l/ljls(O) includes excited-state compo-
T 2ut2E) 082 T(&) ¢ nents{ 5, ¥3,...+ Of Hg, i.e.,¢§5(0)=Ecj(O)¢j’ , Wherej

runs from Is (c,s is dominant. As the discretized form is
1 §f”2(§)—f’(§)f’”(§) 1 better approximated to the Hamiltoni&11), the norm and
Auf'4(€)|2 8uf?(¢) overlap at=0 are closer to unity and the difference between
(219 Visand ! (0) becomes smallerc(s~1).

) S N o The time evolution ofy! calculated by our method is
This form is still Hermitian, but the finite difference repre- expressed as

sentation is only approximately symmetric except whena
linear function of¢ (cylindrical coordinatep). We will show =S et o exnl —itE’ 3.1
that the loss of population due to the asymmetry is negligible Y15V 2 (9 expl i) @D

when the transformation functiorisandg are chosen prop- hereE! ) | @’ and dtob
erly. The quality of this representation will be discussed in"WheTeE; are eigenvalues dfl, andc;(t) are expected to be
Sec. Il slowly varying functions of time. The norm and overlap

Here the differential operators in Eq€.19 and(2.12h ch?nge }N'th tlme* as<’ﬂfls(t)|’ﬂflls(t,)>:2|cj(t)!2 and
are evaluated using three- or five-point finite difference for- U15(0)¥15(1)) =2 (O)c;(t)exp(-itE)), respectively. If
mulas. Accordingly, appropriate boundary conditions muslthe time evolutlop scheme generatgs no errors, the coeffi-
be imposed on the transformed wave functigfé,¢,R). At~ Cients ¢;(t) are time-independent, i.ec;(t)=c;(0). The
the grid end Pointsma, Zmax R @0 Roas ¢ EmmidsR) time dependence afj(t) originates from the inaccuracy of

=& LR = MEL i) = MELRn) = D=0 LRI=0 11 fime evolltion scheme.
(from the nature of the transformed wave funcjion n this subsection, we use=2o. ".8_ < andy=oe.
Chelkowskiet al® have solved Eq(2.5) with the help Around these values, the results are insensitive,t@, and

of the Bessel—Fourier expansion in thevariable. This al- - We test transformations by chaﬂgirlg and v in Eq.
lows one to eliminate the singularities in the Laplacian ano(z'lsa' As §hown in Sec. IIC, neag=0, th(ezntyr??)?zformed

in the potential and to use a split operator propagatiof’@ve function changes as-y(1+nv)B§ la™.
method together with FFT iz andR. In the dual transfor- Since we apply the finite difference method, the transformed

mation approach, the transformed Sainger Eq.(2.10 is ~ Wave function must change linearly or quadratically with
solved by empIO);ing the ADI method. &nv must beg or 2. No further constraint on or v is found.

In what follows, we numerically test two cases for= 3

— 3
IIl. RESULTS AND DISCUSSION and then=1 and»=> case.

A. App||cat|on to H en and v 3 transformation

i ) ) Shown in Fig. 1 are norms and overlaps for the three-

We first apply our method to the time evolution of a gint finite difference scheme. The norms are denoted by
hydrogen atom in the case where no laser field is tumned 0B |ines and the absolute values of overlaps are denoted by
and the atom is initiallyatt=0) in the ground stated We i |ines. Two cases of different grid spacings are com-
designate the field-free transformed Hamiltonianl:a)s It pared: Casga) A¢£=0.26 andA/=0.26 (lines with open
should be pointed out that the time evolution & & the  circleg; Case(b) A¢=0.13 andA¢=0.13(solid lines. The
worst case in applying the present method. As the average @frid boundaries are chosen &s,,=65.0(the grid end irp is
the radial coordinate becomes larger, the steep fall of th€4.3 and ¢,,,,=55 (the corresponding grid ends inare
Coulomb potential around the nucleus damages the accuragys2.9. For Casea), N,=250 andN,=423. The time step
less severely. Since only two variablgand{ are involved,  ysed to evolve the wave functionAg = 0.05 throughout this
we use the Peaceman—Rachford methdtwhich is a two-  paper. The initial wave functios!, (0) in the grid represen-
dimensional version of the ADI method. The time evo-tation contains other states tha#),. As shown in Fig. 1, the
lution for At is then separated into two steps:{IBAt/ interference betweery;, and the main contaminanty in-
2)y" 2= (1-iAAL2)y(t,) and (1+iAAt2)i(th,1)=(1  duces an oscillation in the absolute value of the overlap.
—iBAt/2)y" 12, The discretized ground staf . is obtained by operating

We demonstrate how much the norm and overlap of theyn energy filter Omﬂfls(o) and eliminating the excited
1s state calculated by our method decrease or change Wi“&bmponenté? The norm (i}4(t)|¥}«(t)) and the overlap
time. The norm and overlap are defined (a8 (t)] ¥14(t)) |(14(0)|9<(t))| do not change up to 6 or 7 digits. This
and (y14(0)|¢/14(1)), respectively, where;(0) is the dis-  proves that the coefficients(t) in Eq. (3.1) are nearly time-
cretized wave function whose amplitudes at the grid pomtﬁndependent, i.ec;(t)=c;(0). Thesource of phase errors
are identical with the analyticsltransformed wave function arising in the time evolution of the wave function is, there-
U= 2 T(E) T ()9’ (2) expVIZ(E) +0%({))., andyi(t)  fore, only the inaccuracy of eigenvalues of the discretized
denotes the time evolution gf;¢(0) for thediscretizedorm  yamiltonianfi. For the ground state 61}, the virial theo-
of the field-free transformed HamiltoniaH, . The integrals  rem holds well; the ratio of the potential energy to the kinetic
with respect tog and { are performed by using the trapezoi- energy is—1.990 for Caséa) and —1.997 for Caséb).
dal rule. Excepta=0 (or n¥=0), the finite difference represen-

It should be noted thay] (0) is not identical with the tation of Eq.(2.19 on the grid pointstj=jA¢ (j=1 toNy)
ground state of theliscretizedHamiltonian H{,¢;s. The is not symmetric, as mentioned in Sec. II C.
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FIG. 1. Norms and overlaps of thes lstate calculated by the three-point FIG. 2. 1s norms and overlaps calculated by the five-point finite difference

finite difference scheme for=1 andv=3. The norms are denoted by bold Scheme. The two Cas¢a) and (b) are the same as in Fig. 1.

lines and the absolute values of overlaps are denoted by thin lines. The

parameters for variable transformations are as follows:28.3, 3=0.2,

and y=32. Two cases of different grid spacings are compared: Case This means that,5(t)~1 andc;(t)~0 for j# 1s. The gen-

A£=0.26 andA¢=0.26 (lines with open circles Case(b) A{=0.13 and  oratign of excited states dli/, is negligible as well as the
A¢=0.13 (solid lineg. The grid boundaries are chosen &g, =55 (the Ieakage in norm 0 99

corresponding grid ends inare £52.9 and¢,,,=65.0(the grid end irp is R
54.3. For Casda), N;= 250 andN,=423. The time step used to evolve the For the five-point representation, the eigenvalue$i pf

wave function isAt=0.05. are highly accurate; the ground-state energy @499 43 for
Case(a) and —0.499 71 for Caséb). The virial theorem is
also fulfilled to very high accuracy; for the ground state of
I3|(’,, the ratio of the potential energy to the kinetic energy is
}, (3.29 —1.9974 for Caséa) and —1.9998 for Caséb).
The solutions of the three- and five-point schemes con-
verge to that of the Schdinger equation by reducingé,
A, and At; that is, both schemes are consistent with the
Schralinger equation. For the parameters chosen in Figs. 1
(3.2b  and 2, the error does not grow exponentially with time. Prac-

In what follows, we abbreviate matrix elemen(igKj’)  tically, the method of ther=1 andv=; transformation is
between point§ andj’ asK; ;. The ratioK;,1;/K;; is unconditionally stable. For the cylindrical coordinate system,

about? for j =1 (the next point to thé=0) and about 28/27 the accuracy is hardly improved by u;ing higher order finite

for j=2. However, except these few points near0, the differences nor by using sma.ller spacings. For Gasethe '

asymmetry is negligible. A\¢ decreases, the leakage in absolute valu_e of the overlap is abOL_Jt 0.87 for the three-point

norm decreases. The grid representation of E419 is scheme and is 0.88 for the five-point scheme; for Gase

hence virtually symmetric for typical values of grid spacings.the values go up by 0.02 to 0.03.

For excited states such &, whether stationary or not, the

leakage in norm is much smaller than that in thechse(at 2. The n=1 and v= 3 transformation

least by a factor of JI which reflects the fact that the asym- Next we test the transformation of=1 and v=23/2.

metric part becomes negligible at largeThe simplest way A result for the five-point scheme is shown in Fig. 3. All

to avoid the leakage in norm is to start from the ground statéhe parameters are the same as used in GaseThe

of the discretized Hamiltoniaﬁl(’). norm is denoted by a dotted line and the overlap is denoted
While the three-point finite difference formulas for the by a solid line. Since the relationy(y;(t)]¥;4(t))

first and second derivatives are accurate up to the orders ef|(y! (0)|4!(t))| again holds, the rapid oscillations are

A¢, and A¢, the five-point versions are accurate up to theattributed to the change in;s(t). Comparing Caséa) in

orders ofA&3 andA 3. The norm and overlap for the five- Fig. 2, one finds that the accuracy is a little worse for the

point scheme are plotted in Fig. 2. The two ca&@snd(b)  present transformation than for tine=1 andv= 3 transfor-

are the same as in Fig. 1. Comparing Figs. 1 and 2, one findsation. While the % transformed wave function fany= 3%

that the quality of the numerical scheme is drastically im-increases linearly witlf around the nucleus, it increases qua-

proved by the use of the five-point finite difference schemedratically for nv=3. For both cases, the initial norm &t

As shown in Fig. 2\l ()] #l(t))=~|(41(0)|4i(t))|. =0 isaccurate up to 7 or 8 digits. The difference in accuracy

o 1 AEF"(£))
<J|K§|J+1>__ZMAngIZ(fj){l_ fr(é_—])

AEF" (€541
f'(&11)

1
2pAEF(E )

(11K j)=
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0.99996 . . , : |
0 20 40 60 8 100
Time (a.u.) 0.92 T T T T

0 20 40 60 80 100
FIG. 3. 1s norm and overlap calculated by the five-point finite difference Time (a.u.)

scheme fon=1 andv= % All the parameters are the same as used in Case

(@). The norm is denoted by a dotted line and the overlap is denoted by &IG. 4. Comparison between two transformations of= % The grid spac-

solid line. ings used here are much larger than in C@eN,=63 andN,= 107 (the
other parameters are the same as befdree bold and thin lines, without

marks, denote the norm and overlap for me% andv=1, respectively; the
i ; bold and thin lines, with open squares, denote the norm and overlap for the
comes from the f_act that the asymmetry qf the flr_nte (_jlffer- IR pen sq p
ence representation of E(2.19 on grid pointséj=jA¢is N7 A=z
severer for the present transformation than forrikel and
v=1 transformation. Using Eq(3.1), we can compare the

— 1 H
two cases for the three-point scheme. For the present trans=1 andv=73 one. The reason is as follows. For large spac-
formation, the ratick;, 1;/K; ;1 is about—% for j=1 and ~ IN9S. while the accuracy of the finite difference method in

evaluating the differentials is nearly the same for both trans-
formations, the asymmetry in the grid representatiork of
nearé=0 is much smaller for th@=3% and v=1 transfor-
mation than for thenv=1 andv= 3 one. When the spacings
are as small as in Caga), while the asymmetry is the same

about §)? for j=2. The deviation ofK; ;/K; ;. from
unity is large in comparison with the=1 and v=13 case.
This is due to the fact that(£) changes steeper for the
present transformation than time=1 and »= 3 transforma-

ion. . ST

tio for both transformations, the accuracy of the finite difference
method is higher for the=1 andv= 3 transformation than

3. The n=14 and v=1 transformation for then=3 andv=1 one.

Among those we have tested, the 1 andv=1/2 trans-
formation provides most accurate results wieris as small
as in Case(a). For low bound states, the accuracy is im-
proved by increasing. Extremely larger, however, should As shown in this paper, variable transformation together
not be used when higher excited/continuum states are ifwith the consistent transformation of the wave function is
volved in the dynamics of the wave packet because the grithdispensable for the wave packet dynamics in Coulomb sys-
spacing inp space increases aspxf’'~(1+nv)(&a)™  tems. In the following, using the phase space anaffaise
until & reachese. In the range where the potential is nearly €xamine why the efficiency of the grid representation is en-

B. Phase space analysis in terms of a quasi-potential

flat, the grid spacingp must be constant. For E(.183, f’ hanced by the variable transformations tested in Sec. Il A. In
becomes constant whege> . Different transformations of ~general, wave packets decay exponentially in classically for-
Eq. (2.183 should be compared for a fixed bidden regions of phase space. The representation efficiency

When computational ability is limited or large grids are can therefore be optimized by minimizing the missing phase
required to propagate the wave packet, we recommend to us@ace, i.e., the classically allowed phase space that cannot be
another transformation ofiv=3, i.e., then=% and r=1 covered by the grid representation or by minimizing the
case. This transformation is compared in Fig. 4 with the Wwasted phase space area relative to the phase space covered
=1 andv= 1 case. The same=28.3 is used. The grid spac- by the grid representatio(Fattal et al*® have applied the
ings used here are much larger than in C@eN,=63 and ~method to the '%‘ eigenvalue problejn The maximum mo-

N, =107 (the other parameters are the same as bpfdlee ~ mentum with¢ in the grid representation is given 8 max
bold and thin lines without marks denote the norm and over=7/A& The functionf(¢) should be chosen so that the
lap for then=3 and v=1, respectively; the bold and thin phase space betweenP may and P, may covers the classi-
lines with open squares denote the norm and overlap for theally allowed phase space as well as possible.

n=1 andv= 3. For the present grid points, as shown in Fig. The definition of the classically forbidden region for the
4, then=1} and v=1 transformation is superior to the transformed Hamiltoniafi2.11), H is, however, rather arbi-
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®) |

FIG. 5. Quasi-potentials andstransformed wave functionga) Cylindrical coordinatest=0 andg=1; (b) v= % andn=1; (c) v= % andn=1. For(b) and

(c), the following parameters are used as beferez28.3, 3=0.2, andy=32. The quasi-potentials are drawn by thin contour lines. The energy intervals
between thin lines are 0.1. The energies in the black-painted region &kefg which appears ita) and (b), are below—5. The Is transformed wave
functions for the three cases are drawn by bold broken contour lines.

trary. To define it, we must interprét as a classical Hamil- from the nucleus relative to the whole shape. The spatial
tonian. We first recaddl into diffuseness of the transformed wave function in céseor
A (c) is due to its lighter effective masses near the origin. The
H=Kg+ T+ T+ Vguasi (3.3 success of thev= 3 transformation can be attributed to the
fact that the transformed wave function increases to the peak
more slowly than that for the cylindrical coordinate system.
1 7 o , " Although thenv= 3 transformation is not the best one as
Auf'i() 2O -T(OT(E)| = 8uf2(¢) long as the ADI is employed, it has an interesting feature:
The quasi-potential is repulsive near the origin. As shown in
n 1 zg”z(g“)—g’(z)g”’(g)} Fig. 5(c), the potential minimum exists off the origi@at &
4pg’* () |2 ~5 and{=0); the peak of the & transformed wave function
m2 is located near the potential minimum. The amplitude pen-
+ >+ V+Ve. (3.4) etrates the repulsive potential because the effective mass
2p wf'2(£) becomes smaller with decreasisg
Here we replace the differential operatorsTip and T§

where

unas(grg) =

We then interpret the operatorsthas follows. The Hermit- ] : > 5
ian operatorsT, and T, with “effective masses”uf’?(£) with czlasszlcal moment&; and P, asP;=—d°/9¢” and P}
andug'?(¢) can be regarded as the kinetic energies forthe = —9719¢°. To obsgrve the representathn efficiency in the
and ¢ degrees of freedom in the transformed representatiorftP Phase space, different cuts are required. The 2B
Then,V quasiis regarded as the “quasi-potential.” cut is taken fozr the ,v;/orst case whefe 0 andP,=0. Qon.-
Quasi-potentials for the hydrogen atom case are showfPur maps oPe/2uf’“+Vqa(€,{=0) are presented in Fig.
in Fig. 5 by thin contour lines(a) Cylindrical coordinates ©- The energies in the shaded areas are below shenérgy
(=0 andB=1); (b) n=1 andv=3; (c) n=1 andv=3.  ~ o . o
For (b) and(c), the following parameters are used as before: For the cylindrical coordinate 'system, as shown in Fig.
a=28.3,8=0.2, andy=32. For the cylindrical coordinate 6(@, the shaded area above a given maximum momentum
P: ma{=71A¢) decreases slowly with increasiiy nax: The

system

Y 5 high momentum part cannot be fully covered by any grid
Vquas( é,{=0)=—1/é— 1/8ué”. (358 gpacing. On the other hand, in Fig(b the shaded area

For the generalized cylindrical coordinate system, the quasRPOVeP; maxdecreases faster with increasiRg max. To dis-

potential takes cuss the representation efficiency quantitatively, we define

5 the missing volume in phase space as
" a"(2nv+1)(2nv—1)

unas[§,§=0)~— §1+nv+ 8M§2(nv+l)(nv+ 1)2

(3.5 V iss= 2 f &dPy, (3.9
in the region wheré<a. When the cylindrical coordinate mas
system or thenv=; transformations are employe¥g..siis  whereP, is the required momentum for enerygiven as a
negative infinity até=¢=0; for thenv=23 transformation,  function of ¢ as
Vquasi IS positiveinfinity at the originé= {=0.

An eigenfunct.ion o_iﬂ is the _transformed representation Pe=f"(E){2u[E—Vquas £ {=0) T} (3.7)
of the corresponding eigenfunction idf The 1s transformed
wave functions for the three cases are drawn in Fig. 5 byror the cylindrical coordinate system, one finds from Egs.
bold broken contour lines. As the case goes fr@nto (c), (3.53 and (3.7) that nearé=0 the required momentum in-
the peak of the 4 transformed wave function is more distant creases with decreasirigas
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P.=¢ 12, 3.8 t+T
et 38 €(t)=sin¥sinw(t+T)
For nv=3, in the range wheré<a, we have
for —T<t<0, otherwise&(t)=0, (3.12
Pe=3Vul2a"% 1 (3.9  whereT is the pulse duration. The frequency usedais

For Egs.(3.8) and(3.9), we obtain

Vmiss= @ (logarithmic divergence

for the cylindrical coordinate system,(3.103

3

27u?
Sl for nv=3.

T 2a

2

(3.100

The nv= 3 transformations are validated by the fact that the,
missing volume decreases with decreashiy

For nv=3/2, Vquas(£,{=0)=40325u& near £é=0.
The momentum required does not divergeg=att=0. Even
with finite sized of A¢, the whole area of the classically
allowed phase space can be efficiently covered by a rectang
with sides of[ 0,&a,] @and[0,77/A&]. Although the present
finite difference schemes do not fully take this advantage a
mentioned in Sec. Il A, the development of efficient numeri-
cal schemes utilizing thev= 3 transformation remains as a
future possibility.

The quality of the form ofg(¢) in Eq. (2.18D is the
same as the function proposed by Fagtbbl*®

r=Q-—aarctaribQ), (3.11)

wherer is the unscaled coordinate afiis the scaled coor-
dinate. ForQ<b™ !, dr/dQ=1—ab; for Q>b™ !, dr/dQ
=1.

+

C. 3D packet simulation of H 3

The two transformations afv= 3 are also tested for the

3D H;. The dissociative process is taken as the example. Tg

that end, first, the exact ground st&bé the vibrational quan-
tum number =0 in 1o,) of the 3D full system is prepared

by operating an energy filter on an approximate ground Stath

to eliminate the excited componerifsNext, the molecule is

excited by a weak ultrashort pump pulse from the ground

state onto &r,. The pump field is assumed as

=0.43 (105 nm which corresponds to the energy gap be-
tween loy and lo, at the equilibrium internuclear distance
R=2.0 and the pulse duration i5=100 (2.5 f9. The pump
field is put into the dipole interaction EqR.4). A perturba-
tive iteration schenm@ with respect to the dipole interaction

is used to simulate the excitation process of the 3D packet in
the weak field limit. To perform the time evolution of the
packet required in the scheme, we solve the transformed
Schralinger Eq.(2.10 by using the ADI method. At the end

of the pump process€0), the electronically excited com-
ponent of the packethe first-order component with respect
to the dipole interactionis normalized to unity. Aftet=0,

the dissociative motion is pursued; the excited component is
propagated without an external field.

To illustrate the packet dynamics, we integrate the 3D
H’acket over p. Snapshots of the probability|4(R,p,
7)|?pdp are shown in Fig. 7. The grid ends are chosen as
Bmax=8.83 and z,,=10. We choosea=28.3 and AR
=0.05. In Fig. Ta), n=1 andv=3. The numbers of grid
points are enough large, although no transformation is used
for z coordinateN,= 151 andN,=207(A§=0.1,A{=0.1).

The excitation and dissociation dynamics in Figa)7s re-
garded as the exact one. As known from the existence of the
nodal line atz=0, the packet prepared by the pump pulse is
electronically r,. The errors in electronic phases attached
to the wave function are small enough to simulate the exci-
tation process; the vibrational phases are also accurate
enough to simulate dissociation process. In Fidp),7the n

=1 and v=1 transformation is used. The numbers of grid
points are reduced t,= 19 andN,=57. The main features

of the dynamics are well simulated even with the parameter
set used in Fig. (b), except that the wave packet trails the
kirt of low density and the relative nuclear velocity is a little
larger than the exact one.

. SUMMARY AND CONCLUSIONS

We established the dual transformation technique for

wave packet dynamics. The technique contains both the vari-

FIG. 6. Contour maps dPE/ZILLf,Z‘FunaS(f,g:O) in the 2D ¢,P,) phase space faf=0 andP,=0. The energy intervals are 0.2 and the energies in the
shaded areas are below the dnergy—0.5. The notations and parameters fay, (b), and(c) are the same as in Fig. 5.
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fies the virial theorem. As mentioned in Sec. Il A, when the

- 1 t=1396 variable transformation functions and the grid spacings are
g 124 properly chosen in the dual transformation, the virial theo-
% 104 rem is fulfilled to very high accuracy. For the dual transfor-
§ mation, the singularity is removed without violating the
B 87 Schralinger equation and any variational procedure is un-
g 6 necessary.

2 A The explicit form Eq.(2.18a for f(£) proposed in this

2 " paper has three parametersn, andv. We have tested trans-

E 24 formations of differentn and v for the time evolution of a

t=0 (a) field-free H atom in the & state; the norm and overlap of the

' ' 1s state calculated by our method are compared with exact
ones. Then=1 andv= 3 transformation provides most ac-
curate results wheA¢ is as small as in Cas@) in Sec. lll.
For large spacings, the=3 and v=1 transformation is su-
perior to then=1 andv=3 one. We have also applied the
two transformations ofiv= 3 to the dissociation dynamics in
the 3D model of H . For then= 3 andv=1 transformation,
the main features of the dynamics are well simulated even
with moderate numbers of grid points. Larger systems such
as H, should be handled by using time= and v=1 trans-

Internuclear Distance R (a.u.)

— formation.
0 t=0 (o) The transformed Hamiltonian is divided into a kinetic
10 '5 (') é 10 energy and a potential; the phase space covered by the grid
- = B . . . - 1
Electronic Coordinate z (a.u.) representation is estimated. The validity of the= 3 trans-

formations is also enforced by the fact that the missing vol-
FIG. 7. Contour maps of the time-dependent probabjlit$(p,z,R)|?pdp ume in phase space decreases with decreasidon the
obtained by integrating the 3D packet with respectploA sequence of o hang for the cylindrical coordinate system, the missing

snapshots shows that the packet pumped @prhoves toward larger inter- L .
nuclear distance. The origin=0 in time is the end of the pump pulse. The Volume is infinity. We have also tested the transformation of

grid ends are chosen @s,,,=8.83 andzm,,=10. In Fig. 7a), n=1 andv n=1 andv=3. Although the accuracy in tha=1 andv

=3. The numbers of grid points are large enoubh=151 andN,=207 =3 case is a little worse than in the=1 andv= 73 case, all
(AR=0.05). In Fig. Tb), then=1 and»= 3 transformation is used. The the phase space can be fully coveredrby=3 transforma-
numbers of grid points are reducedNg=19 andN,=57 (AR=0.05). tions even for finite sizes ohé and AZ. This advantage of

nv= 23 transformations may be utilized in future studies.

In this paper, the wave functions are expanded in cylin-
drical coordinates. Another choice is to use spherical coordi-
natesr, 6, and ¢. The wave function can be expanded in
Spherical harmonics &%t

able transformation of the Hamiltonian and the transforma
tion of the wave function with a normalization constraint.
We applied it to Coulomb systems, i.e., the H atom and th
3D model of H . The cylindrical coordinates are trans-
formed asp=f(&) andz=g(¢), where¢ and ¢ are scaled Z H(1)Yim(0,0).
cylindrical coordinates. The functiorfsand g must possess
the following features under the normalization constraint Eq.The dual transformation technique is in principle applicable
(2.8): The transformed wave function is zero and analytic ato any coordinate systems. For a variable transformation
the nuclei; the equal spacings in the new coordinates corre=h(#7), the original radial wave functionss,(r)} need to
spond to grid spacings in the cylindrical coordinates that arde converted as
small near the nuclei and are large at larger distances there- _ Ty
from. The time evolution is carried out by the ADI. The ) =GV (7) 4i(h(7)).
operation of the Hamiltonian on the wave function, which isThen, one can obtain the coupled equations for the trans-
required in the ADI scheme, is implemented by using finiteformed wave functiond,(#)}. If the field-free potential
difference formulas. V(r,8,¢) is spherically symmetric as in hydrogenlike atoms
In existing methods, the shape of the Coulomb potentialthis is not the case for }), the time propagation for
has been frequently modified by a variety of means. An ex{ (%)} in the presence of a linearly polarized field can be
ample is the softened Coulombic form(r?+ %)~ Y2 with  efficiently carried out using the Peaceman—Rachford
an ambiguous softening parame@mwhich eliminates the method® The functionh(#) should be chosen so that the
singularity at the nucleus=05° Another example is to transformed wave functions satisfy the three requirements in
spread the positive nuclear charge uniformly over an are¢he dual transformation. Generally speaking, the procedure in
equal to about one grid spacif®® This introduces an ad- solving a given problem is to choose the best coordinate
ditional potential at the =0 boundary. The radius can be system for describing the dynamics and then to apply the
varied so that the ground-state wave function obtained satigtual transformation.
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In conclusion, the dual transformation is a solid tech-2?8T. Seideman, M. Yu. lvanov, and P. B. Corkum, Phys. Rev. [7&t2819
nique that provides efficient time evolution schemes for Cou- (1995; M. Ivanov, T. Seideman, and P. Corkum, Phys. Re\64\1541

lomb systems. The accuracy and stability reach the level usys

ally required for wave packet dynamics.
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