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A dual transformation technique that can deal with awkward Coulomb potentials is developed for
electronic wave packet dynamics. The technique consists of the variable transformation of the
Hamiltonian and the transformation of the wave function with a normalization constraint. The time
evolution is carried out by the alternating-direction implicit method. The operation of the
transformed Hamiltonian on the wave function is implemented by using three- and five-point finite
difference formulas. We apply it to the H atom and a realistic three-dimensional~3D! model of H2

1 .
The cylindrical coordinatesr and z are transformed asr5 f (j) and z5g(z), wherej and z are
scaled cylindrical coordinates. Efficient time evolution schemes are provided by imposing the
variable transformations on the following requirements: The transformed wave function is zero and
analytic at the nuclei; the equal spacings in the scaled coordinates correspond to grid spacings in the
cylindrical coordinates that are small near the nuclei~to cope with relatively high momentum
components near the nuclei! and are large at larger distances thereafter. No modifications of the
Coulomb potentials are introduced. We propose the formf (j)5j@jn/(jn1an)#n. The parametera
designates ther-range where the Coulomb potentials are steep. Then51 andn5 1

2 transformation
provides most accurate results when the grid spacingDj is sufficiently small or the number of grid
points,Nj , is large enough. For smallNj , the n5 1

2 andn51 transformation is superior to then
51 andn5 1

2 one. The two transformations are also applied to the dissociation dynamics in the 3D
model of H2

1 . For then5 1
2 andn51 transformation, the main features of the dynamics are well

simulated even with moderate numbers of grid points. The validity of the two transformations is also
enforced by the fact that the missing volume in phase space decreases with decreasingDj. © 1999
American Institute of Physics.@S0021-9606~99!30145-8#
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I. INTRODUCTION

Femtosecond technology has opened up a new fiel
study as to coherent electronic motions such as elec
transfer between nuclei in molecules.1–3 The intensity can be
so high to induce tunneling ionization. In the high-intens
and low-frequency range, the Coulomb potential distorted
the laser electric field forms a ‘‘quasi-static’’ barrier throug
which an electron can tunnel.4–9 Special attention has bee
paid to new nonlinear optical processes such as ab
threshold ionization10–12and high-order harmonic generatio
of emission.13–19 High-order harmonics are generated wh
the ejected electron circles back to the vicinity of the nucle
~rescattering!.9 Electronic dynamics in intense fields involve
such large amplitude motions like rescattering. For m
ecules, nuclear motion is also involved in the dynamics
the system. Recent experiments and theories in a strong
field case (.1011W/cm2) have underscored the combine
process of photodissociation and photoionization. It has b
experimentally revealed that the kinetic energies of fr
ments are consistent with Coulomb explosions at spec
internuclear distances in the range of 7–10 a.u.20–24 An ex-
planation for this finding is as follows: Ionization rates at t
critical internuclear distances exceed those near the equ

a!Electronic mail: kono@mcl.chem.tohoku.ac.jp
9490021-9606/99/111(21)/9498/11/$15.00
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rium internuclear distance and those of dissociative fr
ments, and ionization to higher charge states occurs when
nuclei pass through the critical range.25–29 The fact that ion-
ization is enhanced at critical internuclear distances sugg
that strong correlation between the electronic motion and
nuclear configuration/motion exists in intense laser fields

Although various numerical methods for electronic d
namics in laser fields have been proposed,30–39 it is not an
easy task to simulate, e.g., large amplitude motions of
electronic wave packet. It is even harder to include
quantum-mechanical motion of nuclei. There exist two a
proaches to simulate electronic dynamics in intense fie
One is the expansion using spatially delocalized bases
this approach, the time-dependent wave function is expan
in terms of state-specific states, i.e., bound, autoionizing,
scattering states of the field-free Hamiltonian.37–39The time-
dependent Schro¨dinger equation describing the interactio
with a laser pulse is transformed into a system of coup
first-order differential equations for time-dependent coe
cients. This technique has been successfully applied to at
~not applied to molecules yet!, although the number o
coupled equations usually exceeds tens of thousands. Fo
motion of a spatially localized wave packet induced by
intense laser pulse, however, the delocalization of st
specific states leads to poor convergence.

The grid representation is complementary to the sta
8 © 1999 American Institute of Physics
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9499J. Chem. Phys., Vol. 111, No. 21, 1 December 1999 Wave packet dynamics
specific expansion approach.32–36 Conventional time evolu-
tion methods using grid representations,40,41such as split op-
erator techniques combined with fast Fourier transform,42,43

have been successfully applied to the nuclear wave pa
dynamics in molecular physics. The success is attribute
the nonsingularity that internuclear~adiabatic/diabatic! po-
tentials are usually expressed in terms of analytic functi
of internuclear distances. On the other hand, for electro
dynamics, one must cope with the awkward Coulomb pot
tial characterized by its long range and its singularity at
origin ~at the nucleus for electron–nucleus interaction!. The
grid boundary in coordinate space must be chosen to be
from the origin to accommodate the wave function and g
spacings must be small to reproduce high momentum c
ponents generated near the origin. Because of those diffi
ties, the performance of the conventional grid methods
very poor for Coulomb systems.

Recently, we have been developing an efficient g
method to simulate electronic dynamics accurately.44 The
choice of coordinate systems is crucial. In Ref. 44, the f
lowing three requirements are imposed on the coordin
system to be employed:~i! The wave function is transforme
so that it is zero at the Coulomb singular point~which en-
sures that the numerical difficulties concerning the singu
ity are avoided!; ~ii ! the differential operators can be we
evaluated by the finite difference method even near the C
lomb singular points;~iii ! the equal spacings in the ne
~scaled! coordinates correspond to grid spacings in the cy
drical coordinates that are small near the nuclei~to cope with
relatively high momentum components near the nuclei! and
are large at larger distances therefrom. The transform
Schrödinger equation is discretized in space with the help
finite difference formulas, and is integrated in time by t
alternating-direction implicit method~ADI !.45–47 Among
various propagation methods, the ADI method is found to
the most accurate for steep attractive potentials, at leas
the one-dimensional Coulomb potential. We have applied
method to H.44 The cylindrical coordinater for the electron
is transformed asr5j3/2, where j is a scaled coordinate
This transformation satisfies the above three requirem
and drastically reduces the required number of grid poin

We have also succeeded in including nuclear motion
a realistic 3D model of H2

1 .1,2 Although the nuclear motion
is restricted to the polarization directionz of the laser electric
field ~perpendicular tor!, the electron moves in three
dimensional space. The two electronic coordinatesz and r
and the internuclear distanceR are treated quantum mechan
cally without using the Born–Oppenheimer approximatio
We have investigated effects of the nuclear motion on
hanced ionization and on electron transfer between the
nuclei. Correlations between the electronic and nuclear
tions are extracted from the full dynamical calculation.

In this paper, we generalize the ‘‘dual transformation
technique, i.e., the method of consistently transforming b
of the wave function and the Hamiltonian for wave pack
dynamics. The transformation ofr is expressed asr
5 f (j), where the function is chosen to satisfy the thr
requirements~i!–~iii ! described above. Scaling is extended
the unscaledz coordinate asz5g(z). Various functions of
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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the transformations are examined in different ranges of g
spacingsDj and Dj, by comparing the wave packet calcu
lated by the dual transformation technique with the ex
one. Another method for determining the transformation
ficiency is the classical phase space analysis48 based on the
fact that wave packets decay exponentially in classically f
bidden regions of phase space. To that end, the transfor
Hamiltonian is divided into a kinetic energy and a potenti
then, the classical phase space covered by the grid repre
tation is estimated.

The rest of this paper is organized as follows. The g
eral framework of dual transformation is given in Sec. II.
Sec. III, some bench mark tests are carried out for H and
3D model of H2

1 . Various transformations are tested; th
wave packets computed by our method are compared
the exact ones. The phase space analysis is also used t
force the validity of efficient transformations. Finally, in Se
IV, concluding remarks are given with a brief summary
the present work.

II. METHODOLOGY

A. Dual transformation

In this work, we apply the dual transformation techniq
to H and the 3D model of H2

1 employed in Ref. 35. In the
model, the following assumptions are made: The elec
field of the applied laser is linearly polarized along thez axis;
the nuclear motion is restricted to the polarization directio
Because of the cylindrical symmetry, thez component of the
electronic angular momentum,m\, is conserved; the elec
tronic degrees of freedom to be considered are two cylin
cal coordinatesz andr.

The center-of-mass motion of this three-body system
be separated from internal coordinates such asr andz. Here,
r andz are measured with respect to the center of mass of
two nuclei.49 The Hamiltonian for the internal motions i
written as~throughout this paper atomic units are used!

H52
1

mp

]2

]R22
1

2m S ]2

]r2 1
1

r

]

]r
1

]2

]z2D1
m2

2r2 1
1

R

1V~r,z,R!1VE~z,t !, ~2.1!

whereR is the internuclear distance,me andmp are electron
and nuclear masses, and

m5
2mpme

2mp1me
. ~2.2!

The potentialV(r,z,R) is the sum of the Coulomb interac
tions

V~r,z,R!52
1

Ar21~z2R/2!2
2

1

Ar21~z1R/2!2
,

~2.3!

and VE(z,t) is the dipole interaction between the molecu
and the electric fieldE(t) of a laser pulse

VE~z,t !5zE~ t !. ~2.4!
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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9500 J. Chem. Phys., Vol. 111, No. 21, 1 December 1999 I. Kawata and H. Kono
If the finite masses of protons are taken into account,zE(t)
should be multiplied by 11me /(2mp1me). For the H atom,
the R-degree of freedom is eliminated from Eq.~2.1!, and
Eq. ~2.3! is replaced with21/Ar21z2 ~m is the reduced
mass of H!.

We would like to spatially discretize the Hamiltonian
solve the time-dependent Schro¨dinger equation

i
]

]t
f~r,z,R!5Hf~r,z,R!. ~2.5!

The finite difference method is chosen to evaluate the dif
ential operators contained in the Hamiltonian. It shou
however, be noted that the Coulomb potential is charac
ized by its singularity at the nucleus and its long range.
the cylindrical coordinate system, the finite differen
method does not give sufficient accuracy. We propose h
the generalized cylindrical coordinate system as

r5 f ~j!, z5g~z!, ~2.6!

where f and g are functions of scaled coordinatesj and z
@ f (j)5j and g(z)5z lead to ordinary cylindrical coordi-
nates#. It has been known that in electronic structure calc
lations variable transformations~scaling, mapping proce
dures! efficiently reduce the number of representati
points.48,50–56 Variable transformation has been also intr
duced to calculate electronic wave packet dynamics.32

In addition to the variable transformation of the Ham
tonian, we have to transform the wave function to avoid
numerical difficulties concerning the Coulomb singulari
The original wave functionf( f (j),g(z),R) which is in gen-
eral finite at the nuclei must be transformed to a funct
c(j,z,R) that is zero at the nuclei. This demand on t
transformed wave function, i.e., the requirement~i! in Sec. I,
must be satisfied under a normalization condition. The or
nal wave functionf(r,z,R) is normalized as

E
0

`

dRE
0

`

drE
2`

`

dzruf~r,z,R!u251. ~2.7!

When the finite difference method is used, it is genera
difficult to conserve the norm of the wave function. It h
been known44 that to make stable and accurate the time e
lution scheme, based on the finite difference method,
following normalization condition should be imposed on t
transformed wave functionc(j,z,R)

E
0

`

dRE
0

`

djE
2`

`

dzuc~j,z,R!u251. ~2.8!

Note that the volume element for normalization isdR dj dz
not like j dR dj dz.

The transformed wave function that satisfies the norm
ization condition Eq.~2.8! is uniquely determined as

c~j,z,R!5Af ~j! f 8~j!g8~z!f~ f ~j!,g~z!,R!, ~2.9!

where a function with a prime denotes the derivative w
respect to its argument. Inserting Eq.~2.9! into Eq.~2.5!, one
obtains the following Schro¨dinger equation:
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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]c~j,z,R!

]t
5Ĥc~j,z,R!, ~2.10!

where the transformed HamiltonianĤ is given by

Ĥ5KR1Kj1Kz1
m2

2r2 1V1VE . ~2.11!

The kinetic-energy parts with respect to coordinatesj, z, and,
R, i.e., Kj , Kz , andKR are expressed as

Kj5Tj1
1

4m f 84~j! F7

2
f 92~j!2 f 8~j! f-~j!G2

1

8m f 2~j!
,

~2.12a!

Kz5Tz1
1

4mg84~z! F7

2
g92~z!2g8~z!g-~z!G , ~2.12b!

KR52
1

mp

]2

]R2 , ~2.12c!

where

Tj52
1

4m F 1

f 82~j!

]2

]j2 1
]2

]j2

1

f 82~j!G , ~2.13a!

Tz52
1

4m F 1

g82~z!

]2

]z2 1
]2

]z2

1

g82~z!G . ~2.13b!

The dual transformation is named after the two transform
tions, i.e., the variable transformation of the Hamiltonian a
the transformation of the wave function with the normaliz
tion constraint Eq.~2.8!.

B. Time evolution with the alternating-direction
implicit method

The formal solution of Eq.~2.10! is expressed as

c~ tn11!5T̂ expF2 i E
tn

tn11
Ĥ~ t8!dt8Gc~ tn!

5exp@2 iDtĤ~ tn11/2!#c~ tn!1O~Dt3!, ~2.14!

wherec(tn) is the wave function at timetn5nDt1t0 andT̂
is the time ordering operator. The Hamiltonian in the seco
version of Eq.~2.14! is that at the midpoint of the time step
tn11/25tn1Dt/2. If the time stepDt is sufficiently small, the
propagator exp@2iDtĤ(tn11/2)# can be replaced with an ap
proximate propagator that is accurate up to a certain orde
Dt. The wave function at the desired time is obtained
operating such a short time propagator on the wave func
iteratively.

It has been known that the alternating-direction impli
method ~ADI ! provides short time propagators of whic
quality is characterized by the second-order accuracy in t
and the stability for various potentials. In addition to the
points, as will be demonstrated, the ADI is amenable to v
able transformations. The ADI embodies the powerful id
of operator splitting and time splitting. In the following, w
briefly review a 3D version of the ADI. Let us assume th
Ĥ(tn11/2) is decomposed into three operatorsA(tn11/2),
B(tn11/2), and C(tn11/2). According to the ADI, the time
evolution operator exp@2i(A1B1C)Dt# is expressed as
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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e2 i ~A1B1C!Dt5
1

11 iADt/2

1

11 iBDt/2

12 iCDt/2

11 iCDt/2

3~12 iBDt/2!~12 iADt/2!1O~Dt3!.

~2.15!

The actual operation on the wave function is separated
three steps by introducing ‘‘artificial’’ intermediate stat
cn11/3 andcn12/3

~11 iCDt/2!cn11/35~12 iCDt/2!~12 iBDt/2!

3~12 iADt/2!c~ tn!, ~2.16a!

~11 iBDt/2!cn12/35cn11/3, ~2.16b!

~11 iADt/2!c~ tn11!5cn12/3, ~2.16c!

which is known as the D’yakonov scheme.46 The wave func-
tion c(tn11) can be obtained by solving Eqs.~2.16a!–
~2.16c! in order. As shown below, the dynamics of the ele
tronic and nuclear wave packet can be pursued with
invoking any approximations such as the Born
Oppenheimer separation of electronic and nuclear degree
freedom.

When the differential operators involved inA, B, andC
are chosen to be those of different degrees of freedom,
~2.16! can be reduced to three sets of one-dimensional
plicit problems such as the Cranck–Nicholson scheme.45,46

For H2
1 , the three operatorsKz , Kz , andKR in the Hamil-

tonian Eq.~2.11! must be confined inA, B, andC separately.
We furthermore divided the Coulomb interactions in
nucleus–nucleus interaction 1/R and electron–nucleus inter
actionV(r,z,R). The most reasonable way of separation
as follows:

A5Kz1 1
2V~r,z,R!1VE~z,tn11/2!, ~2.17a!

B5Kj1
1

2
V~r,z,R!1

m2

2r2 , ~2.17b!

C5KR1
1

R
. ~2.17c!

In the above equations,V is divided into halves so thatAc
andBc vanish at the nuclei. This ensures that not onlyc(tn)
but also intermediatescn11/3 andcn12/3 are zero at the nu
clei.

We apply the finite difference method to evaluate t
differential operators. For instance, Eq.~2.16a! is then re-
duced to a set of systems of simultaneous linear algeb
equations for the unknowncn11/3: Equations ~2.16a!–
~2.16c! can be reduced to three sets of systems of simu
neous equations. The systems of equations are tridiagona
the three-point finite difference scheme and pentadiago
for the five-point finite difference scheme. Suppose that
numbers of grid points forj, z, andR areNj , Nz , andNR ,
respectively. For Eq.~2.16a!, we obtainNzNj band diagonal
systems of simultaneous equations; each band diagonal
tem hasNR unknowns. The band diagonal systems of eq
tions can be solved efficiently by usingLU decomposition.
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C. Explicit forms for variable transformation

We are now in a position to explicitly determinef andg
functions of scaled coordinatesj and z. To fulfill the three
requirements~i!–~iii ! in Sec. I, we choose the following
forms:

f ~j!5jS jn

jn1anD n

, ~2.18a!

g~z!5@12~12b!exp~2z2/g2!#z, ~2.18b!

where the parametersa andg are widths ofr- andz-ranges
where the potentialV is relatively deep, andb is the param-
eter to shortenz-grid spacings nearz50. Around the singu-
lar points ~located along j50!, the prefactor Af f 8g8
changes as'A(11nn)b j (2nn11)/2/ann. The requirement
~ii ! that the transformed wave function must be analytic,
mands that the order of the power ofj, (2nn11)/2, must be
a natural number. The numbernn must be chosen out of hal
odd numbers. Then, the transformed wave function given
Eq. ~2.9! is zero at the nuclei; the requirement~i! is auto-
matically fulfilled.

Inverting equally spaced points inj andz onto r andz,
one finds that the grid spacings inr andz are proportional to
f 8 andg8, respectively. Asj increases,f 8 changes from (1
1nn)(j/a)nn to 1; asz increases,g8 changes fromb to 1.
Whenb,1 anda@Dj, the requirement~iii ! is met. Then,
grid spacings alongr- andz-directions decrease as approac
ing to the singular points. When the cylindrical coordina
system~a50 andb51! is employed, the split operator tim
evolution technique together with the use of FFT~fast Fou-
rier transform! is applicable to the transformed Hamiltonia
~because the prefactors of the differentials in the transform
Hamiltonian are independent of the coordinates!, but the ef-
ficiency as a numerical method is very low. Poor perfo
mance of the cylindrical coordinate system originates fr
the fact that the requirements~ii ! and ~iii ! are not satisfied.
For the cylindrical coordinate system, the transformed wa
function is not analytic around the nuclei becauseAf f 8g8
'Ar. The Fourier series expansion of the transformed w
function converges very slowly.

In Eq. ~2.13a!, the symmetrized product form of]2/]j2

and 1/f 82(j) is adopted as well as in Eq.~2.13b!. If symmet-
ric difference formulas are applicable toTj , the grid repre-
sentation of the symmetrized product form is symmetric: T
grid representation ofKj is then still Hermitian. The norm is
hence, strictly conserved~without numerical roundoff er-
rors!. However, the grid representation of

]2

]j2

c~z,j,R!

f 82~j!
,

at the pointj5Dj next to the linej50 requires evaluating
c(j,z,R)/ f 82(j)}j (122nn)/2 at j50, which is generally
nonzero. It is not allowed to simply put the boundary con
tion c(j50,z,R)50 into the element. To avoid this diffi
culty in the actual numerical scheme, we use an asymme
form
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Kj52
1

2m f 82~j! F ]2

]j22
2 f 9~j!

f 8~j!

]

]jG
2

1

4m f 84~j! F5

2
f 92~j!2 f 8~j! f-~j!G2

1

8m f 2~j!
.

~2.19!

This form is still Hermitian, but the finite difference repre
sentation is only approximately symmetric except whenf is a
linear function ofj ~cylindrical coordinater!. We will show
that the loss of population due to the asymmetry is neglig
when the transformation functionsf andg are chosen prop
erly. The quality of this representation will be discussed
Sec. III.

Here the differential operators in Eqs.~2.19! and~2.12b!
are evaluated using three- or five-point finite difference f
mulas. Accordingly, appropriate boundary conditions m
be imposed on the transformed wave functionc(j,z,R). At
the grid end pointsjmax, zmax, Rmin andRmax, c(jmax,z,R)
5c(j,6zmax,R)5c(j,z,Rmin)5c(j,z,Rmax)5 0;c~j50,z,R!50
~from the nature of the transformed wave function!.

Chelkowskiet al.35 have solved Eq.~2.5! with the help
of the Bessel–Fourier expansion in ther variable. This al-
lows one to eliminate the singularities in the Laplacian a
in the potential and to use a split operator propagat
method together with FFT inz and R. In the dual transfor-
mation approach, the transformed Schro¨dinger Eq.~2.10! is
solved by employing the ADI method.

III. RESULTS AND DISCUSSION

A. Application to H

We first apply our method to the time evolution of
hydrogen atom in the case where no laser field is turned
and the atom is initially~at t50! in the ground state 1s. We
designate the field-free transformed Hamiltonian asĤ0 . It
should be pointed out that the time evolution of 1s is the
worst case in applying the present method. As the averag
the radial coordinate becomes larger, the steep fall of
Coulomb potential around the nucleus damages the accu
less severely. Since only two variablesj andz are involved,
we use the Peaceman–Rachford method57,58 which is a two-
dimensional version of the ADI method. The time ev
lution for Dt is then separated into two steps: (11 iBDt/
2)cn11/25(12 iADt/2)c(tn) and (11 iADt/2)c(tn11)5(1
2 iBDt/2)cn11/2.

We demonstrate how much the norm and overlap of
1s state calculated by our method decrease or change
time. The norm and overlap are defined as^c1s

f (t)uc1s
f (t)&

and ^c1s
f (0)uc1s

f (t)&, respectively, wherec1s
f (0) is the dis-

cretized wave function whose amplitudes at the grid po
are identical with the analytic 1s transformed wave function
c1s5A2 f (j) f 8(j)g8(z) exp(2Af 2(j)1g2(z)), andc1s

f (t)
denotes the time evolution ofc1s

f (0) for thediscretizedform
of the field-free transformed Hamiltonian,Ĥ08 . The integrals
with respect toj andz are performed by using the trapezo
dal rule.

It should be noted thatc1s
f (0) is not identical with the

ground state of thediscretizedHamiltonian Ĥ08 ,c1s8 . The
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initial wave functionc1s
f (0) includes excited-state compo

nents$c2s8 ,c3s8 ,...% of Ĥ08 , i.e.,c1s
f (0)5Scj (0)c j8 , wherej

runs from 1s ~c1s is dominant!. As the discretized form is
better approximated to the Hamiltonian~2.11!, the norm and
overlap att50 are closer to unity and the difference betwe
c1s8 andc1s

f (0) becomes smaller (c1s;1).
The time evolution ofc1s

f calculated by our method is
expressed as

c1s
f ~ t !5(

j
cj~ t !c j8 exp~2 i tE j8!, ~3.1!

whereEj8 are eigenvalues ofĤ08 andcj (t) are expected to be
slowly varying functions of time. The norm and overla
change with time as ^c1s

f (t)uc1s
f (t)&5Sucj (t)u2 and

^c1s
f (0)uc1s

f (t)&5Scj* (0)cj (t)exp(2itEj8), respectively. If
the time evolution scheme generates no errors, the co
cients cj (t) are time-independent, i.e.,cj (t)5cj (0). The
time dependence ofcj (t) originates from the inaccuracy o
the time evolution scheme.

In this subsection, we usea528.3,b50.2, andg532.
Around these values, the results are insensitive toa, b, and
g. We test transformations by changingn and n in Eq.
~2.18a!. As shown in Sec. II C, nearj50, the transformed
wave function changes as'A(11nn)b j (2nn11)/2/ann.
Since we apply the finite difference method, the transform
wave function must change linearly or quadratically w
j:nn must be1

2 or 3
2. No further constraint onn or n is found.

In what follows, we numerically test two cases fornn5 1
2

and then51 andn5 3
2 case.

1. The n51 and n5 1
2 transformation

Shown in Fig. 1 are norms and overlaps for the thre
point finite difference scheme. The norms are denoted
bold lines and the absolute values of overlaps are denote
thin lines. Two cases of different grid spacings are co
pared: Case~a! Dj50.26 andDz50.26 ~lines with open
circles!; Case~b! Dj50.13 andDz50.13 ~solid lines!. The
grid boundaries are chosen asjmax565.0~the grid end inr is
54.3! and zmax555 ~the corresponding grid ends inz are
652.9!. For Case~a!, Nj5250 andNz5423. The time step
used to evolve the wave function isDt50.05 throughout this
paper. The initial wave functionc1s

f (0) in the grid represen-
tation contains other states thanc1s8 . As shown in Fig. 1, the
interference betweenc1s8 and the main contaminantc2s8 in-
duces an oscillation in the absolute value of the overlap.

The discretized ground statec1s8 is obtained by operating
an energy filter onc1s

f (0) and eliminating the excited
components.42 The norm ^c1s8 (t)uc1s8 (t)& and the overlap
u^c1s8 (0)uc1s8 (t)&u do not change up to 6 or 7 digits. Thi
proves that the coefficientscj (t) in Eq. ~3.1! are nearly time-
independent, i.e.,cj (t)5cj (0). The source of phase error
arising in the time evolution of the wave function is, ther
fore, only the inaccuracy of eigenvalues of the discretiz
HamiltonianĤ08 . For the ground state ofĤ08 , the virial theo-
rem holds well; the ratio of the potential energy to the kine
energy is21.990 for Case~a! and21.997 for Case~b!.

Excepta50 ~or nn50!, the finite difference represen
tation of Eq.~2.19! on the grid pointsj j5 j Dj ~j 51 to Nj!
is not symmetric, as mentioned in Sec. II C.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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^ j uKju j 11&52
1

2mDj2f 82~j j !
F12

Dj f 9~j j !

f 8~j j !
G , ~3.2a!

^ j 11uKju j &52
1

2mDj2f 82~j j 11! F11
Dj f 9~j j 11!

f 8~j j 11! G .
~3.2b!

In what follows, we abbreviate matrix elements^ j uKju j 8&
between pointsj and j 8 asK j , j 8 . The ratioK j 11,j /K j , j 11 is
about5

4 for j 51 ~the next point to thej50! and about 28/27
for j 52. However, except these few points nearj50, the
asymmetry is negligible. AsDj decreases, the leakage
norm decreases. The grid representation of Eq.~2.19! is
hence virtually symmetric for typical values of grid spacing
For excited states such asc2s

f , whether stationary or not, th
leakage in norm is much smaller than that in the 1s case~at
least by a factor of 1!, which reflects the fact that the asym
metric part becomes negligible at largej. The simplest way
to avoid the leakage in norm is to start from the ground s
of the discretized HamiltonianĤ08 .

While the three-point finite difference formulas for th
first and second derivatives are accurate up to the order
Dj, and Dz, the five-point versions are accurate up to t
orders ofDj3 andDz3. The norm and overlap for the five
point scheme are plotted in Fig. 2. The two cases~a! and~b!
are the same as in Fig. 1. Comparing Figs. 1 and 2, one fi
that the quality of the numerical scheme is drastically i
proved by the use of the five-point finite difference schem
As shown in Fig. 2,A^c1s

f (t)uc1s
f (t)&'u^c1s

f (0)uc1s
f (t)&u.

FIG. 1. Norms and overlaps of the 1s state calculated by the three-poin

finite difference scheme forn51 andn5
1
2. The norms are denoted by bol

lines and the absolute values of overlaps are denoted by thin lines.
parameters for variable transformations are as follows:a528.3, b50.2,
and g532. Two cases of different grid spacings are compared: Case~a!
Dj50.26 andDj50.26 ~lines with open circles!; Case~b! Dj50.13 and
Dz50.13 ~solid lines!. The grid boundaries are chosen aszmax555 ~the
corresponding grid ends inz are652.9! andjmax565.0~the grid end inr is
54.3!. For Case~a!, Nj5250 andNz5423. The time step used to evolve th
wave function isDt50.05.
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This means thatc1s(t)'1 andcj (t)'0 for j Þ1s. The gen-
eration of excited states ofĤ08 is negligible as well as the
leakage in norm.

For the five-point representation, the eigenvalues ofĤ08
are highly accurate; the ground-state energy is20.499 43 for
Case~a! and 20.499 71 for Case~b!. The virial theorem is
also fulfilled to very high accuracy; for the ground state
Ĥ08 , the ratio of the potential energy to the kinetic energy
21.9974 for Case~a! and21.9998 for Case~b!.

The solutions of the three- and five-point schemes c
verge to that of the Schro¨dinger equation by reducingDj,
Dz, and Dt; that is, both schemes are consistent with t
Schrödinger equation. For the parameters chosen in Fig
and 2, the error does not grow exponentially with time. Pr
tically, the method of then51 andn5 1

2 transformation is
unconditionally stable. For the cylindrical coordinate syste
the accuracy is hardly improved by using higher order fin
differences nor by using smaller spacings. For Case~a!, the
absolute value of the overlap is about 0.87 for the three-p
scheme and is 0.88 for the five-point scheme; for Case~b!
the values go up by 0.02 to 0.03.

2. The n 51 and n5 3
2 transformation

Next we test the transformation ofn51 and n53/2.
A result for the five-point scheme is shown in Fig. 3. A
the parameters are the same as used in Case~a!. The
norm is denoted by a dotted line and the overlap is deno
by a solid line. Since the relationA^c1s

f (t)uc1s
f (t)&

'u^c1s
f (0)uc1s

f (t)&u again holds, the rapid oscillations ar
attributed to the change inc1s(t). Comparing Case~a! in
Fig. 2, one finds that the accuracy is a little worse for t
present transformation than for then51 andn5 1

2 transfor-
mation. While the 1s transformed wave function fornn5 1

2

increases linearly withj around the nucleus, it increases qu
dratically for nn5 3

2. For both cases, the initial norm att
50 is accurate up to 7 or 8 digits. The difference in accura

he

FIG. 2. 1s norms and overlaps calculated by the five-point finite differen
scheme. The two Cases~a! and ~b! are the same as in Fig. 1.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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comes from the fact that the asymmetry of the finite diff
ence representation of Eq.~2.19! on grid pointsj j5 j Dj is
severer for the present transformation than for then51 and
n5 1

2 transformation. Using Eq.~3.1!, we can compare the
two cases for the three-point scheme. For the present tr
formation, the ratioK j 11,j /K j , j 11 is about2 7

16 for j 51 and

about (43)
2 for j 52. The deviation ofK j 11,j /K j , j 11 from

unity is large in comparison with then51 andn5 1
2 case.

This is due to the fact thatf (j) changes steeper for th
present transformation than then51 andn5 1

2 transforma-
tion.

3. The n 5 1
2 and n51 transformation

Among those we have tested, then51 andn51/2 trans-
formation provides most accurate results whenDj is as small
as in Case~a!. For low bound states, the accuracy is im
proved by increasinga. Extremely largea, however, should
not be used when higher excited/continuum states are
volved in the dynamics of the wave packet because the
spacing inr space increases asDr} f 8'(11nn)(j/a)nn

until j reachesa. In the range where the potential is near
flat, the grid spacingDr must be constant. For Eq.~2.18a!, f 8
becomes constant wherej.a. Different transformations of
Eq. ~2.18a! should be compared for a fixeda.

When computational ability is limited or large grids a
required to propagate the wave packet, we recommend to
another transformation ofnn5 1

2, i.e., the n5 1
2 and n51

case. This transformation is compared in Fig. 4 with then
51 andn5 1

2 case. The samea528.3 is used. The grid spac
ings used here are much larger than in Case~a!: Nj563 and
Nz5107 ~the other parameters are the same as before!. The
bold and thin lines without marks denote the norm and ov
lap for the n5 1

2 and n51, respectively; the bold and thi
lines with open squares denote the norm and overlap for
n51 andn5 1

2. For the present grid points, as shown in F
4, the n5 1

2 and n51 transformation is superior to then

FIG. 3. 1s norm and overlap calculated by the five-point finite differen

scheme forn51 andn5
3
2. All the parameters are the same as used in C

~a!. The norm is denoted by a dotted line and the overlap is denoted
solid line.
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51 andn5 1
2 one. The reason is as follows. For large spa

ings, while the accuracy of the finite difference method
evaluating the differentials is nearly the same for both tra
formations, the asymmetry in the grid representation ofKj

nearj50 is much smaller for then5 1
2 and n51 transfor-

mation than for then51 andn5 1
2 one. When the spacing

are as small as in Case~a!, while the asymmetry is the sam
for both transformations, the accuracy of the finite differen
method is higher for then51 andn5 1

2 transformation than
for the n5 1

2 andn51 one.

B. Phase space analysis in terms of a quasi-potential

As shown in this paper, variable transformation togeth
with the consistent transformation of the wave function
indispensable for the wave packet dynamics in Coulomb s
tems. In the following, using the phase space analysis,48 we
examine why the efficiency of the grid representation is
hanced by the variable transformations tested in Sec. III A
general, wave packets decay exponentially in classically
bidden regions of phase space. The representation efficie
can therefore be optimized by minimizing the missing pha
space, i.e., the classically allowed phase space that cann
covered by the grid representation or by minimizing t
wasted phase space area relative to the phase space co
by the grid representation~Fattal et al.48 have applied the
method to the H2

1 eigenvalue problem!. The maximum mo-
mentum withj in the grid representation is given byPj,max

5p/Dj. The function f (j) should be chosen so that th
phase space between2Pj,max and Pj,max covers the classi-
cally allowed phase space as well as possible.

The definition of the classically forbidden region for th
transformed Hamiltonian~2.11!, Ĥ is, however, rather arbi-

e
aFIG. 4. Comparison between two transformations ofnn5

1
2. The grid spac-

ings used here are much larger than in Case~a!: Nj563 andNz5107 ~the
other parameters are the same as before!. The bold and thin lines, without

marks, denote the norm and overlap for then5
1
2 andn51, respectively; the

bold and thin lines, with open squares, denote the norm and overlap fo

n51 andn5
1
2.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 5. Quasi-potentials and 1s transformed wave functions:~a! Cylindrical coordinatesa50 andb51; ~b! n5
1
2 andn51; ~c! n5

3
2 andn51. For~b! and

~c!, the following parameters are used as before:a528.3, b50.2, andg532. The quasi-potentials are drawn by thin contour lines. The energy inter
between thin lines are 0.1. The energies in the black-painted region alongj50, which appears in~a! and ~b!, are below25. The 1s transformed wave
functions for the three cases are drawn by bold broken contour lines.
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trary. To define it, we must interpretĤ as a classical Hamil-
tonian. We first recastĤ into

Ĥ5KR1Tj1Tz1Vquasi, ~3.3!

where

Vquasi~j,z!5
1

4m f 84~j! F7

2
f 92~j!2 f 8~j! f-~j!G2

1

8m f 2~j!

1
1

4mg84~z! F7

2
g92~z!2g8~z!g-~z!G

1
m2

2r2 1V1VE . ~3.4!

We then interpret the operators inĤ as follows. The Hermit-
ian operatorsTj and Tz with ‘‘effective masses’’m f 82(j)
andmg82(z) can be regarded as the kinetic energies for thj
andz degrees of freedom in the transformed representat
Then,Vquasi is regarded as the ‘‘quasi-potential.’’

Quasi-potentials for the hydrogen atom case are sh
in Fig. 5 by thin contour lines:~a! Cylindrical coordinates
(a50 andb51!; ~b! n51 andn5 1

2; ~c! n51 andn5 3
2.

For ~b! and~c!, the following parameters are used as befo
a528.3,b50.2, andg532. For the cylindrical coordinate
system

Vquasi~j,z50!521/j21/8mj2. ~3.5a!

For the generalized cylindrical coordinate system, the qu
potential takes

Vquasi~j,z50!'2
ann

j11nn 1
a2nn~2nn11!~2nn21!

8mj2~nn11!~nn11!2 ,

~3.5b!

in the region wherej!a. When the cylindrical coordinate
system or thenn5 1

2 transformations are employed,Vquasi is
negative infinity atj5z50; for the nn5 3

2 transformation,
Vquasi is positiveinfinity at the originj5z50.

An eigenfunction ofĤ is the transformed representatio
of the corresponding eigenfunction ofH. The 1s transformed
wave functions for the three cases are drawn in Fig. 5
bold broken contour lines. As the case goes from~a! to ~c!,
the peak of the 1s transformed wave function is more dista
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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from the nucleus relative to the whole shape. The spa
diffuseness of the transformed wave function in case~b! or
~c! is due to its lighter effective masses near the origin. T
success of thenn5 1

2 transformation can be attributed to th
fact that the transformed wave function increases to the p
more slowly than that for the cylindrical coordinate syste

Although thenn5 3
2 transformation is not the best one a

long as the ADI is employed, it has an interesting featu
The quasi-potential is repulsive near the origin. As shown
Fig. 5~c!, the potential minimum exists off the origin~at j
'5 andz50!; the peak of the 1s transformed wave function
is located near the potential minimum. The amplitude p
etrates the repulsive potential because the effective m
m f 82(j) becomes smaller with decreasingj.

Here we replace the differential operators inTj and Tz

with classical momentaPj andPz asPj
252]2/]j2 andPz

2

52]2/]z2. To observe the representation efficiency in t
4D phase space, different cuts are required. The 2D (j,Pj)
cut is taken for the worst case wherez50 andPz50. Con-
tour maps ofPj

2/2m f 821Vquasi(j,z50) are presented in Fig
6. The energies in the shaded areas are below the 1s energy
20.5.

For the cylindrical coordinate system, as shown in F
6~a!, the shaded area above a given maximum momen
Pj,max(5p/Dj) decreases slowly with increasingPj,max: The
high momentum part cannot be fully covered by any g
spacing. On the other hand, in Fig. 6~b!, the shaded area
abovePj,max decreases faster with increasingPj,max. To dis-
cuss the representation efficiency quantitatively, we de
the missing volume in phase space as

Vmiss52E
p/Dj

`

jdPj , ~3.6!

wherePj is the required momentum for energyE given as a
function of j as

Pj5 f 8~j!$2m@E2Vquasi~j,z50!#%1/2. ~3.7!

For the cylindrical coordinate system, one finds from E
~3.5a! and ~3.7! that nearj50 the required momentum in
creases with decreasingj as
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Pj5j21/2. ~3.8!

For nn5 1
2, in the range wherej!a, we have

Pj53Am/2a1/2j21/4. ~3.9!

For Eqs.~3.8! and ~3.9!, we obtain

Vmiss5`~ logarithmic divergence!

for the cylindrical coordinate system,~3.10a!

'
27m2

2a S Dj

p D 3

for nn5 1
2. ~3.10b!

The nn5 1
2 transformations are validated by the fact that t

missing volume decreases with decreasingDj.
For nn53/2, Vquasi(j,z50)54a3/25mj5 near j50.

The momentum required does not diverges atj5z50. Even
with finite sized of Dj, the whole area of the classicall
allowed phase space can be efficiently covered by a recta
with sides of@0,jmax# and @0,p/Dj#. Although the presen
finite difference schemes do not fully take this advantage
mentioned in Sec. III A, the development of efficient nume
cal schemes utilizing thenn5 3

2 transformation remains as
future possibility.

The quality of the form ofg(z) in Eq. ~2.18b! is the
same as the function proposed by Fattalet al.48

r 5Q2a arctan~bQ!, ~3.11!

wherer is the unscaled coordinate andQ is the scaled coor-
dinate. ForQ!b21, dr/dQ512ab; for Q@b21, dr/dQ
51.

C. 3D packet simulation of H 2
1

The two transformations ofnn5 1
2 are also tested for the

3D H2
1. The dissociative process is taken as the example

that end, first, the exact ground state~of the vibrational quan-
tum numberv50 in 1sg! of the 3D full system is prepare
by operating an energy filter on an approximate ground s
to eliminate the excited components.42 Next, the molecule is
excited by a weak ultrashort pump pulse from the grou
state onto 1su . The pump field is assumed as
Downloaded 16 Oct 2008 to 130.34.135.158. Redistribution subject to AI
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E~ t !5sin
p~ t1T!

T
sinv~ t1T!

for 2T<t<0, otherwiseE~ t !50, ~3.12!

where T is the pulse duration. The frequency used isv
50.43 ~105 nm! which corresponds to the energy gap be
tween 1sg and 1su at the equilibrium internuclear distance
R52.0 and the pulse duration isT5100 ~2.5 fs!. The pump
field is put into the dipole interaction Eq.~2.4!. A perturba-
tive iteration scheme59 with respect to the dipole interaction
is used to simulate the excitation process of the 3D packe
the weak field limit. To perform the time evolution of the
packet required in the scheme, we solve the transform
Schrödinger Eq.~2.10! by using the ADI method. At the end
of the pump process (t50), the electronically excited com-
ponent of the packet~the first-order component with respec
to the dipole interaction! is normalized to unity. Aftert50,
the dissociative motion is pursued; the excited componen
propagated without an external field.

To illustrate the packet dynamics, we integrate the 3
packet over r. Snapshots of the probability* uf(R,r,
z)u2rdr are shown in Fig. 7. The grid ends are chosen
rmax58.83 and zmax510. We choosea528.3 and DR
50.05. In Fig. 7~a!, n51 andn5 1

2. The numbers of grid
points are enough large, although no transformation is us
for z coordinate;Nj5151 andNz5207 ~Dj50.1,Dz50.1!.
The excitation and dissociation dynamics in Fig. 7~a! is re-
garded as the exact one. As known from the existence of
nodal line atz50, the packet prepared by the pump pulse
electronically 1su . The errors in electronic phases attache
to the wave function are small enough to simulate the ex
tation process; the vibrational phases are also accur
enough to simulate dissociation process. In Fig. 7~b!, the n
5 1

2 and n51 transformation is used. The numbers of gr
points are reduced toNj519 andNz557. The main features
of the dynamics are well simulated even with the parame
set used in Fig. 7~b!, except that the wave packet trails th
skirt of low density and the relative nuclear velocity is a littl
larger than the exact one.

IV. SUMMARY AND CONCLUSIONS

We established the dual transformation technique f
wave packet dynamics. The technique contains both the v
the
FIG. 6. Contour maps ofPj
2/2m f 821Vquasi(j,z50) in the 2D (j,Pj) phase space forz50 andPz50. The energy intervals are 0.2 and the energies in

shaded areas are below the 1s energy20.5. The notations and parameters for~a!, ~b!, and~c! are the same as in Fig. 5.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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able transformation of the Hamiltonian and the transform
tion of the wave function with a normalization constrain
We applied it to Coulomb systems, i.e., the H atom and
3D model of H2

1 . The cylindrical coordinates are tran
formed asr5 f (j) and z5g(z), wherej and z are scaled
cylindrical coordinates. The functionsf and g must possess
the following features under the normalization constraint E
~2.8!: The transformed wave function is zero and analytic
the nuclei; the equal spacings in the new coordinates co
spond to grid spacings in the cylindrical coordinates that
small near the nuclei and are large at larger distances th
from. The time evolution is carried out by the ADI. Th
operation of the Hamiltonian on the wave function, which
required in the ADI scheme, is implemented by using fin
difference formulas.

In existing methods, the shape of the Coulomb poten
has been frequently modified by a variety of means. An
ample is the softened Coulombic form2(r 21d2)21/2 with
an ambiguous softening parameterd which eliminates the
singularity at the nucleusr 50.60 Another example is to
spread the positive nuclear charge uniformly over an a
equal to about one grid spacing.14,33 This introduces an ad
ditional potential at ther 50 boundary. The radius can b
varied so that the ground-state wave function obtained s

FIG. 7. Contour maps of the time-dependent probability* uf(r,z,R)u2rdr
obtained by integrating the 3D packet with respect tor. A sequence of
snapshots shows that the packet pumped on 1su moves toward larger inter-
nuclear distance. The origint50 in time is the end of the pump pulse. Th
grid ends are chosen asrmax58.83 andzmax510. In Fig. 7~a!, n51 andn

5
1
2. The numbers of grid points are large enough;Nj5151 andNz5207

(DR50.05). In Fig. 7~b!, the n51 andn5
1
2 transformation is used. The

numbers of grid points are reduced toNj519 andNz557 (DR50.05).
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fies the virial theorem. As mentioned in Sec. III A, when t
variable transformation functions and the grid spacings
properly chosen in the dual transformation, the virial the
rem is fulfilled to very high accuracy. For the dual transfo
mation, the singularity is removed without violating th
Schrödinger equation and any variational procedure is u
necessary.

The explicit form Eq.~2.18a! for f (j) proposed in this
paper has three parametersa, n, andn. We have tested trans
formations of differentn and n for the time evolution of a
field-free H atom in the 1s state; the norm and overlap of th
1s state calculated by our method are compared with ex
ones. Then51 andn5 1

2 transformation provides most ac
curate results whenDj is as small as in Case~a! in Sec. III.
For large spacings, then5 1

2 andn51 transformation is su-
perior to then51 andn5 1

2 one. We have also applied th
two transformations ofnn5 1

2 to the dissociation dynamics in
the 3D model of H2

1 . For then5 1
2 andn51 transformation,

the main features of the dynamics are well simulated e
with moderate numbers of grid points. Larger systems s
as H2 should be handled by using then5 1

2 andn51 trans-
formation.

The transformed Hamiltonian is divided into a kinet
energy and a potential; the phase space covered by the
representation is estimated. The validity of thenn5 1

2 trans-
formations is also enforced by the fact that the missing v
ume in phase space decreases with decreasingDj. On the
other hand, for the cylindrical coordinate system, the miss
volume is infinity. We have also tested the transformation
n51 andn5 3

2. Although the accuracy in then51 andn
5 3

2 case is a little worse than in then51 andn5 1
2 case, all

the phase space can be fully covered bynn5 3
2 transforma-

tions even for finite sizes ofDj and Dz. This advantage of
nn5 3

2 transformations may be utilized in future studies.
In this paper, the wave functions are expanded in cy

drical coordinates. Another choice is to use spherical coo
natesr, u, and w. The wave function can be expanded
spherical harmonics as14,33,61

(
l

f l~r !Ylm~u,w!.

The dual transformation technique is in principle applica
to any coordinate systems. For a variable transformatior
5h(h), the original radial wave functions$f l(r )% need to
be converted as

c l~h!5h~h!Ah8~h!f l~h~h!!.

Then, one can obtain the coupled equations for the tra
formed wave functions$c l(h)%. If the field-free potential
V(r ,u,w) is spherically symmetric as in hydrogenlike atom
~this is not the case for H2

1!, the time propagation for
$c l(h)% in the presence of a linearly polarized field can
efficiently carried out using the Peaceman–Rachf
method.33 The functionh(h) should be chosen so that th
transformed wave functions satisfy the three requirement
the dual transformation. Generally speaking, the procedur
solving a given problem is to choose the best coordin
system for describing the dynamics and then to apply
dual transformation.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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In conclusion, the dual transformation is a solid tec
nique that provides efficient time evolution schemes for C
lomb systems. The accuracy and stability reach the level u
ally required for wave packet dynamics.
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