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We investigate the quantal dynamics of the electronic and nuclear wave packet of H2
1 in strong

femtosecond pulses (>1014W/cm2). A highly accurate method which employs a generalized
cylindrical coordinate system is developed to solve the time-dependent Schro¨dinger equation for a
realistic three-dimensional~3D! model Hamiltonian of H2

1. The nuclear motion is restricted to the
polarization directionz of the laser electric fieldE(t). Two electronic coordinatesz andr and the
internuclear distanceR are treated quantum mechanically without using the Born-Oppenheimer
approximation. As the 3D packet pumped onto 1su moves toward larger internuclear distances, the
response to an intense laser field switches from the adiabatic one to the diabatic one; i.e., electron
density transfers from a well associated with a nucleus to the other well every half optical cycle,
following which interwell electron transfer is suppressed. As a result, the electron density is
asymmetrically distributed between the two wells. Correlations between the electronic and nuclear
motions extracted from the dynamics starting from 1su can be clearly visualized on the
time-dependent ‘‘effective’’ 2D surface obtained by fixingr in the total potential. The 2D potential
has an ascending and descending valley alongz56R/2 which change places with each other every
half cycle. In the adiabatic regime, the packet starting from 1su stays in the ascending valley, which
results in the slowdown of dissociative motion. In the diabatic regime, the dissociating packet
localized in a valley gains almost no extra kinetic energy because it moves on the descending and
ascending valleys alternately. Results of the 3D simulation are also analyzed by using the
phase-adiabatic statesu1& and u2& that are adiabatically connected with the two states 1sg and 1su

as E(t) changes. The statesu1& and u2& are nearly localized in the descending and the ascending
valley, respectively. In the intermediate regime, bothu1& and u2& are populated because of
nonadiabatic transitions. The interference between them can occur not only at adiabatic energy
crossing points but also near a local maximum or minimum ofE(t). The latter type of interference
results in ultrafast interwell electron transfer within a half cycle. By projecting the wave packet onto
u1& and u2&, we obtain the populations ofu1& and u2&, P1 and P2 , which undergo losses due to
ionization. The two-state picture is validated by the fact that all the intermediates in other adiabatic
states thanu1& andu2& are eventually ionized. WhileE(t) is near a local maximum,P2 decreases but
P1 is nearly constant. We prove from this type of reduction inP2 that ionization occurs mainly from
the upper stateu2& ~the ascending well!. Ionization is enhanced irrespective of the dissociative
motion, wheneverP2 is large and the barriers are low enough for the electron to tunnel from the
ascending well. The effects of the packet’s width and speed on ionization are discussed. ©1999
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I. INTRODUCTION

Current laser technology has enabled experimentalis
concentrate radiation energy to very intense levels on t
scales of electronic motion. For atoms interacting with
tense laser fields, one of the main subjects is dynamic
electrons.1 Special attention has been paid to new nonlin
optical processes such as above-threshold ionization2–4 and
high-order harmonic generation of emission~HHG!.5–13 In
the high-intensity and low-frequency range, the Coulomb
tential distorted by the laser electric field forms a ‘‘qua
static’’ barrier through which an electron can tunnel. The r
of tunneling ionization can be calculated by ‘‘quasistati
theories.14–18Corkum13 has well explained the mechanism
HHG by assuming that the velocity of the electron after q
11150021-9606/99/110(23)/11152/14/$15.00
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sistatic tunneling is zero and the evolution of the ejec
electron is described by classical mechanics~high-order har-
monics is generated when the electron circles back to
vicinity of the nucleus!.

For molecules, another kind of internal motion, name
nuclear motion, is also involved in the dynamics of the s
tem. Recent experiments and theories in a strong laser
case (.1011W/cm2) have underscored the combined proce
of photodissociation and photoionization. It has been exp
mentally revealed that the kinetic energies of fragments
consistent with Coulomb explosions at specific internucl
distances in the range of 7–10 a.u.19–24 An explanation for
this finding is as follows: ionization rates at the critical i
ternuclear distances exceed those near the equilibrium in
2 © 1999 American Institute of Physics
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nuclear distance and those of dissociative fragments,
ionization to higher-charge states occurs when the nu
pass through the critical range.23–27

The fact that ionization is enhanced at critical intern
clear distances suggests that strong correlation between
electronic motion and the nuclear configuration/motion
ists in intense laser fields. Although a large number of th
retical studies24,28–33have been made on molecular dynam
in laser fields, our knowledge is still limited, especially, as
how an electron~or electrons! and nuclei move in intense
laser fields and as to how these two motions are correl
with each other. In a previous paper,34 we have studied the
quantal dynamics of H2

1 as to how the electronic motio
induced by an intense laser pulse (.1014W/cm2) affects the
nuclear motion. The question to be posed next is how
electronic motion reacts to the initiated nuclear motion.
this paper, by accurately solving the time-dependent Sc¨-
dinger equation for a realistic 3D model Hamiltonian of H2

1,
we investigate effects of the nuclear motion on enhan
ionization and on electron transfer between the two w
associated with two nuclei. Although nuclear motion is,
the model, restricted to the polarization directionz of the
laser electric field, the electronic coordinatesz and r ~per-
pendicular toz! and the internuclear distanceR are treated
quantum mechanically without using the Born-Oppenheim
~B-O! separation. The electronic and nuclear wave pac
can be visualized on the time-dependent ‘‘effective’’ 2D s
face obtained by fixingr in the total potential.

The response of the electron to a time-dependent l
electric field is classified into the adiabatic and diabatic
gimes. For H2

1, there are two electronic states 1sg and 1su

which are strongly coupled with each other by radiative
teraction. Two ‘‘phase-adiabatic’’ states are defined as tim
dependent eigenfunctions that are obtained by diagonali
the electronic Hamiltonian~including the dipole interaction
with the classical electric field! in terms of the two B-O
electronic wave functions 1sg and 1su . The electronic and
nuclear correlation dynamics is analyzed by using the
phase-adiabatic states and nonadiabatic transitions bet
them. We also examine the mechanism of ionization in
intense field by projecting the wave packet onto the t
phase-adiabatic states. The validity of the two-state pictur
discussed.

When irradiated by an intense laser pulse, H2
1 photodis-

sociates as H2
1→H11H or photoionizes followed by Cou

lomb explosion as H2
1→H11H11e2. Fundamental pattern

of electronic and nuclear correlation dynamics can be
tracted by starting from the excited electronic state 1su . The
molecule is assumed to be vertically excited from the vib
tional ground state of 1sg . In this case, without an intens
field, the molecule just dissociates. In this paper, on con
tion that the packet is initially pumped to 1su , the dissocia-
tion and photoionization processes in an intense field
their interplay are discussed. The initial condition of starti
from 1su makes the discussion simpler than the other c
of starting from 1sg , since the bound component of nucle
motion does not appear in the former case~the gained kinetic
energy of dissociative motion is large!.

The rest of this paper is organized as follows. In Sec.
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I,

we generalize the method developed for the H atom35 to
solve the time-dependent Schro¨dinger equation for a 3D
model of H2

1 ~only the internuclear distance is considered
a nuclear coordinate! and to investigate the electronic an
nuclear full dynamics in currently available ultraintense,
trashort laser pulses. In Sec. III, the coupled equations for
two phase-adiabatic states are derived to analyze the ful
dynamics. Adiabaticity and nonadiabatic transitions are o
lined. In Sec. IV, results of the 3D simulation are present
Electronic and nuclear motions caused by an intense field
analyzed using the time-dependent surface composed o
Coulomb potentials and the dipole interaction, as well
using the two phase-adiabatic states~and nonadiabatic tran
sitions!. Finally, in Sec. V, concluding remarks are give
with a brief summary of the present work.

II. A NUMERICAL METHOD FOR A 3D H 2
1 SYSTEM

In this work, we use the 3D model employed in Ref. 2
In the model, the following assumptions are made: the
plied laser fields are linearly polarized along thez-axis; the
nuclear motion is restricted to the polarization direction
the laser electric field. The electron moves in three dim
sions. Because of the cylindrical symmetry of the model,
z-component of the electronic angular momentum,m\, is
conserved; the electronic degrees of freedom to be con
ered are two cylindrical coordinatesz and r. Here,r and z
are measured with respect to the center of mass of the
nuclei, r cn .

The time-dependent Schro¨dinger equation of this three
body system is written in the following form after separati
of the center-of-mass coordinate,r c ~throughout this paper
atomic units are used!,

i
]

]t
f~r,z,R!

5H 2
1

mp

]2

]R22
1

2mS ]2

]r2 1
1

r

]

]r
1

]2

]z2D
1

m2

2r2 1V~r,z,R!1VE~z,t !J f~r,z,R!, ~2.1!

whereR is the internuclear distance,me andmp are electron
and nuclear masses, andm52mpme/(2mp1me). The poten-
tial V(r,z,R) is the sum of the Coulomb interactions

V~r,z,R!5
1

R
2

1

Ar21~z2R/2!2
2

1

Ar21~z1R/2!2
, ~2.2!

and the dipole interactionVE(z,t) between the molecule an
the electric fieldE(t) of a laser pulse,36

VE~z,t !5zS 11
me

2mp1me
DE~ t !. ~2.3!

The dipole moment is given by (za2zc)1(zb2zc)2(ze

2zc)522(zc2zcn)2@ze2zcn2(zc2zcn)#, whereza , zb ,
and ze represent the coordinates of the two nuclei and
electron, respectively, all measured with respect to the la
ratory system~the subscriptc stands for the center-of-mas
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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coordinate andcn stands for the center of mass of the tw
nuclei!. Using the differencezc2zcn5zme /(2mp1me), we
obtain Eq.~2.3!.

We spatially discretize the Hamiltonian to solve t
time-dependent Schro¨dinger Eq.~2.1!. The finite difference
method is chosen to evaluate the differential operators c
tained in the Hamiltonian. It should, however, be noted t
the Coulomb potential is characterized by its long range
its singularity at the origin. The grid boundary in coordina
space must be chosen to be far from the origin to accom
date the wave function and the grid spacings must be s
to generate high momentum components near the origin
overcome these obstacles, we present a new method w
the finite difference method is effectively used. The ba
idea for the new method is developed in a previous pape35

For the cylindrical coordinate system, the finite diffe
ence method does not give sufficient accuracy. The coo
nate system to be employed must satisfy the following t
requirements:~i! the differential operators can be well eval
ated by the finite difference method even near the Coulo
singular points~the positions of nuclei!; ~ii ! the equal spac-
ings in the new coordinates correspond to grid spacing
the cylindrical coordinates that are small near the nuclei
are large at larger distances therefrom. Variable transfor
tions ~mapping procedures! have been used to reduce th
number of representation points for electronic struct
calculations.37–39We propose the generalized cylindrical c
ordinate system as

r5 f ~j!; z5g~z!, ~2.4!

where f (j) and g(z) are functions for variable transforma
tion to fulfill the above two requirements.

The functionf(r,z,R) is normalized as

E
0

`

dRE
0

`

drE
2`

`

dzruf~r,z,R!u251. ~2.5!

When the finite difference method is used, it is genera
difficult to conserve the norm of the wave function. It h
been known that to conserve the norm numerically the
lowing normalization condition should be imposed on t
transformed wave functionc(j,z,R),35

E
0

`

dRE
0

`

djE
2`

`

dzuc~j,z,R!u251. ~2.6!

Note that the volume element for normalization isdRdjdz,
not like jdRdjdz.

The transformed wave function that satisfies the norm
ization condition Eq.~2.6! is uniquely determined as

c~j,z,R!5Af ~j! f 8~j!g8~z!f~ f ~j!,g~z!,R!, ~2.7!

where the function with a prime denotes the derivative w
respect to its argument. Inserting Eq.~2.7! into Eq.~2.1!, one
obtains the following equation:

i
]c~j,z,R!

]t
5Ĥc~j,z,R!, ~2.8!

where the transformed HamiltonianĤ is given by
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Ĥ5KR1Kj1Kz1
m2

2r2 1V1VE . ~2.9!

The kinetic energy parts with respect to coordinatesR, j, and
z, i.e., KR , Kj , andKz are expressed as

KR52
1

mp

]2

]R2 , ~2.10a!

Kj52
1

2m f 82~j! H ]2

]j22
2 f 9~j!

f 8~j!

]

]j
1

1

2 f 82~j!

3F5

2
f 92~j!2 f 8~j! f-~j!G J 2

1

8m f 2~j!
, ~2.10b!

and

Kz52
1

4m F 1

g82~z!

]2

]z2 1
]2

]z2

1

g82~z!G
1

1

4mg84~z! F7

2
g92~z!2g8~z!g-~z!G . ~2.10c!

The differential operators in Eqs.~2.10! are evaluated using
five-point finite difference formulas.

We are now in a position to determinef andg explicitly.
To avoid the numerical difficulties concerning the Coulom
singularity, the transformed wave functionc must be zero at
the singular points. This requirement, referred to as~iii !,
means that the prefactorAf f 8g8 of the transformed wave
function in Eq.~2.7! must be zero at the nuclei. Poor perfo
mance of the cylindrical coordinate system originates fr
the fact that the requirement~i! is not satisfied. For the cy
lindrical coordinate system, the transformed wave function
not analytic around the singular points becauseAf f 8g8
'Ar.

To fulfill the three requirements~i!–~iii !, we choose in
this paper the following variable transformations:

f ~j!5jA j

j1a
, ~2.11a!

g~z!5z, ~2.11b!

where the parametera is a width inr where the potentialV
is relatively deep. We chooseDj50.16, Dj50.18, DR
50.05, anda528.3. The functions in Eqs.~2.11! are not
unique. In Ref. 39, the representation efficiency is optimiz
such that the wasted classical phase space area is min
~the method is applied to the H2

1 eigenvalue problem!.
Whenever more efficient transformations are found, one
replace Eqs.~2.11! with them.

Chelkowskiet al.24 have solved Eq.~2.1! with the help
of the Bessel–Fourier expansion in ther variable. This al-
lows one to eliminate the singularities in the Laplacian a
in the potential and to use a split operator propagat
method together with fast Fourier transform inz andR. Here,
to evolve the wave function according to Eq.~2.8!, we em-
ploy the alternating-direction implicit~ADI ! method,40

which is adaptable to variable transformations. Among va
ous propagation methods, the ADI method is found to be
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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most accurate for steep attractive potentials, at least for
1D Coulomb potential.35 A summary of the ADI method is
given in the Appendix.

III. TWO PHASE-ADIABATIC STATES

For H2
1, there are two charge resonance states 1sg and

1su which are strongly coupled with each other by radiat
interaction. It is justified to represent the dynamics of t
system in terms of the states 1sg and 1su . The two-state
model cannot directly take into account the ionization p
cess but helps to understand the dissociation and photo
ization processes.

We start with diagonalizing the electronic part includin
the radiative interaction,

Ĥel~ t !52
1

2m S ]2

]r2 1
1

r

]

]r
1

]2

]z2D1
m2

2r2 1V~r,z,R!

1VE~z,t !, ~3.1!

in terms of the two B-O electronic wave functionsu1sg& and
u1su& ~abbreviated asug& and uu&!. The time t and R are
treated as adiabatic parameters. The resulting eigenfunc
are given by

u1&5cosuug&2sinuuu&,
~3.2!u2&5cosuuu&1sinuug&,

where

u5
1

2
arctanF2^guzuu&E~ t !

DEug~R! G , ~3.3!

with the B-O energy separationDEug(R)5Eu(R)2Eg(R).
The eigenvalues are

E1,2~R,t !5 1
2 @Eg~R!1Eu~R!

7ADEug
2 14u^guzuu&E~ t !u2#. ~3.4!

To emphasize the adiabaticity ofu1& and u2& with respect to
the phase ofE(t), we call them ‘‘phase-adiabatic’’ states.41

For H2
1, the transition moment̂guzuu& approachesR/2 asR

increases.42

Using the two phase-adiabatic states, the total w
function is expressed as

uc&5x1~R!u1&1x2~R!u2&, ~3.5!

wherex1 and x2 are the nuclear wave functions associa
with u1& and u2&. Inserting Eq.~3.5! into the time-dependen
Schrödinger equation for the Hamiltonian~3.1!, we obtain
the following coupled equations,

]

]t
x1~R!52 i F2

1

mp

]2

]R2 1E1~R,t !1
1

mp
S ]u

]RD 2G
3x1~R!2L~R,t !x2~R!, ~3.6a!

]

]t
x2~R!52 i F2

1

mp

]2

]R2 1E2~R,t !1
1

mp
S ]u

]RD 2G
3x2~R!1L~R,t !x1~R!, ~3.6b!

where the laser-induced nonadiabatic coupling is
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L~R,t !5
]u

]t
2

2i

mp

]u

]R

]

]R
2

i

mp

]2u

]R2 . ~3.7!

Here the small nonadiabatic coupling term
^gu]2/]R2ug&/mp and ^uu]2/]R2uu&/mp are ignored. The
term]u/]t is the nonadiabatic coupling due to the change
the electric field, and the other coupling terms inL(R,t) are
due to the joint effect of the electric field and the nucle
motion. Thachuket al.43 have developed a semiclassical fo
malism for treating time-dependent Hamiltonians~nuclei are
propagated classically on the surfaces! and applied it to the
dissociation of diatomic ions. They have derived the no
diabatic couplings]u/]t and v]u/]R, wherev is the rela-
tive nuclear velocity. These two terms correspond to the fi
and second terms in Eq.~3.7!. For homonuclear ions,]u/]t
is much larger thanv]u/]R,43 except whenDEug@^guzuu&
3(pulse envelope).

Using the two localized statesuR&5(ug&1uu&)/& and
uL&5(ug&2uu&)/&, the populations in the right and lef
wells associated with two nuclei,PR andPL , are expressed
as follows:

PR~R!5cos2S u1
p

4 D ux1~R!u21sin2S u1
p

4 D ux2~R!u2

1Re@cos 2ux1* ~R!x2~R!#, ~3.8a!

PL~R!5sin2S u1
p

4 D ux1~R!u21cos2S u1
p

4 D ux2~R!u2

2Re@cos 2ux1* ~R!x2~R!#. ~3.8b!

The third term in both equations represents the interfere
betweenu1& and u2&.

The solution of Eq.~3.6! can be classified by using th
following quantity:44,45

d5U DEug
2 ~R!

^guzuu&«~ t !v
U, ~3.9!

where v is the laser frequency. The adiabatic energi
E1(R,t) and E2(R,t), come close to each other whenE(t)
50, e.g., att5np/v (n51,2,...) for the electric fieldE(t)
that changes as sin(vt). On condition that the two adia
batic ~or diabatic! states do not interfere with each othe
the adiabatic and nonadiabatic transition probabilities
each crossing point are well described by the Landa
Zener formulas,44–46 Pad512exp(2pd/4) and Pnonad

5exp(2pd/4), respectively. Ford@1, Pad>1, the phase-
adiabatic picture of electronic and nuclear dynamics wo
well. For d!1, the main route is the nonadiabatic chann
As the field changes more slowly,d becomes larger.

IV. RESULTS AND DISCUSSION

In this section, correlations between the electronic a
dissociative motions are extracted from the dynamics star
from 1su . Analyses by the two-state model are presen
together with results of the 3D packet simulation. We de
onstrate how useful the two-state model is for interpret
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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both the dissociation and photoionization processes in
tense fields. The procedure taken in the 3D simulation is
follows.

First, the molecule in the ground state 1sg ~of the vibra-
tional quantum numberv50! is excited onto 1su by a weak
ultrashort pump laser. The pump pulse duration isTP

5100(2.5 fs) and the frequency isvP50.43(105 nm),
which corresponds to the energy gap between 1sg and 1su

at R52.0 ~;equilibrium internuclear distance in 1sg!. The
exact ground state of the 3D full system is calculated
operating an energy filter on an approximate ground stat
eliminate the excited components.47 At the end of the pump
process the electronically excited component of the pack
normalized to unity.

Second, we apply an intense pulse to the normali
packet on 1su ~we call this pulse the ‘‘second’’ pulse!. The
second pulse is turned on at the end of the pump pulst
50). In this paper, the electric field of the second pulse
assumed to have the form

E~ t !5«~ t !sinvt, ~4.1!

where«(t) is the slowly varying envelope function andv is
the frequency. We use the following envelope function,

«~ t !5«0 sin~pt/T! for 0<t<T;

otherwise «~ t !50, ~4.2!

whereT is the pulse duration and«0 is the peak strength. We
adopt the following values for the second pulse:v
50.0515(884 nm), «050.096(3.231014W/cm2) and T
5400(10 fs). The molecule can be ionized by the seco
pulse. To eliminate the outgoing component we set abs
ing boundaries for the electronic coordinatesr andz.48 The
ionization probability is calculated by subtracting the r
maining norm from the initial norm.

A. Overview of dissociative ionization

Once ionization starts, in general, the packet spreads
only along the polarization directionz but also along the
transverse directionr. For an intense field like the secon
pulse, the spread alongz is, however, much wider than th
transverse one. The key to understanding correlations
tween the electronic and nuclear motions is hence reduce
the following probability:

P~z,R!5E uf~r,z,R!u2rdr. ~4.3!

Two snapshots of the probability att50 ~just after the pump
pulse has fully decayed! and t5224 are illustrated in Figs
1~a! and 1~b!, respectively. The second pulse is appli
@E(t)520.0805 att5224.#

As shown in Fig. 1~a!, the probability att50 is split into
the regions around the two nuclei atz56Re/2, whereRe is
the equilibrium internuclear distance in 1sg . We have con-
firmed that the packet prepared by the pump pulse is e
tronically 1su . Since the packet is on the dissociative 1su

potential, the packet moves toward larger internuclear
tances as time passes. As shown in Fig. 1~b!, the two peaks
which are bound to the two nuclei move along^z&5
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6^R&/2. Figure 1~b! also shows the characteristic of phot
ionization; the second pulse spreads the packet alongz. The
direction of the ionization flux depends on the phase~posi-
tive or negative! of the electric field at the moment.

The present ionization process falls under the categ
of tunneling ionization or barrier suppression ionization. T
potential distorted by the laser electric field forms a ‘‘qua
static’’ barrier through which the electron can tunnel. Su
pose thatE(t)520.096. Cross sections of the instantaneo
potentialV(r,z,R)1zE(t) at four internuclear distancesR
52, 4, 7, and 14 are plotted in Fig. 2. The transverse co
dinater is fixed at 0. Along the polarization axisz, the in-
stantaneous potential has an inner and an outer barrier. S
the barrier heights are the lowest atr50, the potential atr
50 illustrates the main route to ionization.~We fix r when
the 3D potential is mapped onto 2D or 1D space but ne
fix r in calculating the wave packet dynamics.! WhenE(t)
,0, the outer barrier is on the positive-z side. The electric
field lowers the barrier~s! for ionization. Tunneling ioniza-

FIG. 1. Characteristic features of dissociative ionization in the 3D simu
tion. Snapshots of* uf(r,z,R)u2rdr are taken at~a! t50 and~b! t5224.
The second pulse is turned on att50 just after the pump from 1sg to 1su .
Comparing the two figures, one finds that the two peaks which are boun
the two nuclei in the dissociation channel H1H1 move alongz56R/2. In
Fig. 1~b!, an ionizing component, which protrudes fromz'5 toward larger
z, is observed. When the field strengthE(t),0, the electron is ejected from
the molecule toward positivez. Part of the ejected component circles ba
to H2

11 .
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tion occurs if the electron has enough time to penetrate
barrier~s! before the phase of the field changes~the process is
called ‘‘barrier suppression ionization’’ when the barrier
lowered below the energy of the packet!. Favorable to tun-
neling ionization is the condition that the electric field
stronger and its period is longer. The case is classified by
Keldysh parameterg5vA2I p/«0 ,14–17 whereI p is the ion-
ization potential. The quasistatic tunneling condition is giv
by the inequalityg,1. The ordinary multiphoton ionization
process is regarded as the opposite caseg.1.

B. Interwell electron transfer

Besides the ionization process, another type of electro
motion is observed, namely the electron transfer between
two nuclei. As known from Fig. 2, each nucleus works a
potential well for the electron. Electron density can be tra
ferred from well to well by an electric field. We present a
example of the electron transfer between the two wells.
focus on the interwell transition, we fix the internuclear d
tance atR54. We take 1su as the initial state. The applie
pulse is the same as the second pulse used in Fig. 1. S
shots of the packet att531 and 92~a half cycle later! are
shown in Figs. 3~a! and 3~b!. The unequal electron distribu
tion between the two wells in Fig. 3~a! results from the mo-
tion that electron density transfers from the left well atz5
2R/2 to the right well. The energies of the right and le
wells are shifted, respectively, by6RE(t)/2 because of the
dipole interaction term Eq.~2.3!. At t531, E(t).0 the as-
cending well is the right one and the descending well is
left one. The ascending and descending wells change pl
with each other every half cycle. The electron motion in F
3 means that a part of the electron density is transferred f
the descending well to the ascending well~although the force
due to the electric field is opposite!.

Using the parameterd already defined in Sec. III, the
electronic motion with respect to the change in the elec
field can be classified into the adiabatic or diabatic regi
according to whetherd@1 or d!1. At small internuclear

FIG. 2. 1D effective potentials of H2
1 in an intense field at four internuclea

distancesR52, 4, 7, and 14. The instantaneous field strength is taken
E(t)520.096 andr is fixed at 0. The total potential is the sum of Eqs.~2.2!
and ~2.3!. Because of its double-well structure at zero field, the distor
potential has an inner and an outer barrier. The energy levelsE1 andE2 of
the two phase-adiabatic statesu1& and u2& are given by Eq.~3.4!. The gap
betweenE2 and the maximum of the inner and outer barriers is the larges
R'4.2.
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distances, the energy differenceDEug is large and the tran-
sition moment^guzuu& is relatively small: one can expect
that d@1. SinceDEug50.099 and̂ guzuu&51.8 atR54, d
.1.6 in the first optical cycle. The case shown in Fig. 3 i
nearly adiabatic. According to the adiabatic theorem,49 if d
@1, the time development of the excited state 1su is given
by the upper phase-adiabatic stateu2&. Staying inu2& means
that the ascending well is more populated as in Fig. 3. If th
molecule is initially in the ground state 1sg and the case is
adiabatic, electron density transfers from the ascending w
to the descending one.

At larger internuclear distances, the transition betwee
the two wells is suppressed. In the diabatic regime, the tra
sition rate for interwell tunneling is given by the well-known
form DEugJ0@2^guzuu&«(t)/v#,44,50–52 where J0 is the ze-
roth order Bessel function. Interwell tunneling is further sup
pressed with increasing field strength. There also exist sp
cific conditions for the Bessel function to be zero. For th
zeros of the Bessel function, interwell transition is inhibited
The coherent destruction of tunneling50–52 is due to interfer-

s

d

at

FIG. 3. Interwell electron transfer when the internuclear distance is frozen
R54.0. Snapshots of the probability of the 2D packet are taken at~a! t
531 and~b! at t592. The field strengthE(t) is 0.023 att531 and20.063
at t592. The initial state is 1su . The parameters for the second pulse ar
the same as used in Fig. 1.
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



s
ll
3

he

d
le

hose
ion,

his
he
so-
to

tum-
f
ond
the

e
the

to
en

6

,
-

e
e
pl

the

ho
p

he

11158 J. Chem. Phys., Vol. 110, No. 23, 15 June 1999 Kawata, Kono, and Fujimura
ence between the two adiabatic~or diabatic! components at
periodic crossing pointstn5np/v (n51,2,...).44

C. Slowdown of dissociative motion as a result of
electronic and nuclear correlation dynamics

In the above subsection, the interwell transition is illu
trated butR is fixed. To examine the effect of the interwe
transition on the dissociative dynamics, we go back to the
simulation. The time-dependent probability of finding t
molecule atR,

P~R,t !5E E uf~r,z,R!u2rdrdz, ~4.4!

is presented in Fig. 4. The time is measured from the en
the pump pulse. The thin lines show snapshots of the nuc

FIG. 5. Quantum-mechanical averages of the internuclear distance in th
simulation. The solid line represents the average under the second puls
the broken line represents the average when the second pulse is not ap

FIG. 4. Probability of finding the molecule atR in the 3D simulation. The
bold lines show snapshots under no electric field and the thin ones s
those under the intense second pulse. The difference between the two
positions att5400 indicates the slowdown of dissociative motion by t
second pulse.
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ar
motion under the second pulse and the bold ones show t
when the second pulse is not applied. Because of ionizat
the integrated probability*P(R,t)dR is smaller in the
former case than that in the latter case. It follows from t
figure that the dissociative motion is slowed down by t
intense laser field. The average kinetic energy of the dis
ciation products is 4.0 eV without a field and it is reduced
3.2 eV by the second pulse. For the two cases, the quan
mechanical average ofR is plotted in Fig. 5 as a function o
time. The solid line represents the average under the sec
pulse and the broken line represents the average when
second pulse is not applied.

As mentioned in Sec. IV A, the electronic motion in th
intense field is characterized by the 1D motion along
polarization directionz. The r-fixed model is known to re-
produce quantitative features of the dynamics of the H2

1 in an
intense field.33 In Ref. 33, the value ofr is fixed at 1.0; the
shapes of the 1sg and 1su surfaces calculated in ther-fixed
model are similar to those in the 3D model. The key
illustrate the slowdown of dissociative motion can be giv
by the time-dependent potential of two variablesR and z.
Contour maps for the 2D potential are shown in Fig.
(r51.0). When the second pulse is not applied@Fig. 6~a!#,
the packet pumped onto 1su stays in the two valleys along
z'6R/2, moving toward largerR. When the field is applied
as shown in Fig. 6~b!, the bottoms of the right and left val
leys are shifted by6RE(t)/2. The ascending~descending!

3D
and
ied.

FIG. 6. Time-dependent H2
1 potential as a function of two variablesz and

R(r51.0) for ~a! zero electric field and~b! a positive electric field@E(t)
50.09#. The potential energy is lower in the shaded area. Without
second pulse, the probability of Eq.~4.3! for the packet pumped onto 1sg

moves as shown by bold lines in Fig. 6~a!.
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valley is the sequence of ascending~descending! wells at
different R.

During the first half optical cycle@E(t).0#, the greater
part of density moves from the descending well to the
cending one@e.g., from A to B in Fig. 6~b!# because att
50 the molecule is in 1su . The component of the wav
packet in the right valley starts moving along the ascend
valley as denoted by the arrow in Fig. 6~b!. In consequence
the dissociative motion is blocked by the upward slope.
the second half cycle@E(t),0#, the packet moves to the le
~ascending! well: the motion is again blocked. As a resu
during the first cycle, the dissociative motion of the packe
slowed down by the field. In the adiabatic regime, the pac
starting from 1su stays in the ascending valley, which r
sults in the slowdown of dissociative motion. In the diaba
regime, the packet localized in a valley moves on the
scending and ascending valleys alternately: roughly spe
ing, the dissociative motion is no longer accelerated nor
celerated on the average. The dynamics on the 2D effec
potential clearly shows that the correlation between the e
tronic and nuclear motions causes the slowdown of the
sociative motion.

To explain the slowdown of dissociation, one may a
use the potentialsE1 andE2 of the two phase-adiabatic state
u1& and u2&. The diagonal correction term (]u/]R)2/mp in
Eqs.~3.6! is negligible (,331025). The molecule dissoci-
ates more slowly on the upward potentialE2 than on the
field-free 1su potential. To estimate kinetic energies of th
fragments, in this paper, we just run classical trajectories
E2 and E1 using the semiclassical formalism by Thach
et al.43,53They propose a criterion as to how classical traj
tories should be hopped between time-dependent surfa
The conservation principle to apply during a hop depe
upon its physical origin. The nonadiabatic coupling]u/]t
mainly induces energy exchange between the electron
the field. When]u/]t is dominant, nuclear momentum con
servation is appropriate. On the other hand, whenv]u/]R is
dominant, energy exchange occurs between the electron
nuclei: total energy conservation is appropriate. The two l
iting cases can be smoothly bridged with a physically ju
fied conservation scheme.43

Here we simply apply the rule of momentum conserv
tion to hoppings at and aftert52p/v ~where v]u/]R
,0.02]u/]t!. The initial condition att50 is that the veloc-
ity of the nuclear motion onE2 is zero atR52.12('Re), for
which without the second pulse the kinetic energy of
fragments is the same as the quantum-mechanical avera
eV. If, under the second pulse, the trajectory stays onE2

until t52p/v and the case then switches to the diaba
regime, the kinetic energy of the fragments is reduced to
eV. @In the diabatic regime, the trajectory is assumed to h
betweenE1 andE2('20.56RuE(t)u/2) every half cycle.# It
is reduced to 2.9 eV, if the packet stays onE2 until t
53p/v. The values of reduced kinetic energy are close
the quantum-mechanical value in the 3D simulation, 3.2
This is consistent with the fact that the line between
adiabatic and diabatic regimes can be drawn betweet
52p/v and 3p/v ~as will be shown in Fig. 8!.
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D. Ultrafast electron transfer within a half optical cycle

Ultrafast interwell electron transfer results from a corr
lation between the electronic and nuclear motions. In Fig
we show contour maps of the probability~4.3! at ~a! t584
and ~b! t597. In the second half cycle (61,t,122), the
greater part of the density resides in the left~ascending! well;
and this overall localization is in accordance with the ad
batic theorem. However, we note that the population in
right well is smaller att584 than att597, i.e., it changes
drastically within a very short time. The distribution in th
right well has a minimum~Min! in Fig. 7~a! and has a maxi-
mum ~Max! in Fig. 7~b!. These two types of wave functio
alternately appear with the period of;24 in the second half
optical cycle and the populations in the right and left we
oscillate accordingly.

The interwell electron transfer within a half cycle is e
plained using the two-state model. By solving the coup
Eqs. ~3.6!, we can estimate time-dependent populations
shown in Fig. 8. Here, the internuclear distance is treated
a time-dependent parameterR(t). The quantum-mechanica
averagê R(t)& under the second pulse~solid line in Fig. 5! is
used asR(t). In the first half cyclet<61, the state is per-
fectly kept in u2&. In the second half cycle, overall, the adi
batic picture still holds:PL turns larger thanPR . However,
we observe an oscillatory behavior inPL andPR . While the
electronic distribution is completely localized to the left
t'84, it is delocalized to some extent att'96 and it is once

FIG. 7. Contour maps of* uf(r,z,R)u2rdr at ~a! t584.0 and~b! t597.0.
The change in the population of the right well indicates that interwell el
tron transfer occurs within a half optical cycle.
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more delocalized att'108. This rapid oscillation period
;24 of the alternate appearances of localization and delo
ization is almost the same as the one observed in the
simulation.

During any half cycle, as demonstrated in Fig. 8, t
populations ofu1& andu2& are nearly constant. Combining th
fact with Eq. ~3.6!, we find thatx j can be expressed as th
product of the phase factor exp$2i*t@Ej(R,t8)
1(]u/]R)2/mp#dt8% and the modulus. Att596,u in Eqs.~3.8!
is '20.66, which changes slowly in comparison with t
rapid oscillation period;24. The first two terms in Eqs
~3.8! are therefore not responsible for the rapid oscillation
is the interference term in Eqs.~3.8! that is responsible for
the rapid oscillation,

cos 2ux1* ~R!x2~R!

}cos 2uux1* ~R!x2~R!uexpH 2 i E t

@E2~R,t8!

2E1~R,t8!#dt8J . ~4.5!

The period of the phase factor, 2p/@E2(R,t)2E1(R,t)#
~;23 at t596!, corresponds to the difference between t
points of localization att584 andt5108.

As known from Eqs.~3.8!, if x1(R)5x2(R), PL /PR is
independent of R @for the above-mentioned treatmen
x1(R)5x2(R)5d(R2R(t))]. This is not the case for the
3D simulation. As shown in Figs. 7,PL /PR depends onR.
The shape of the section cut along the line A is nearly giv
by ux2(R)u2 and the right well populations for Figs. 7~a! and
7~b! can be expressed as 0.98ux1(R)u210.016ux2(R)u2

70.25ux1* (R)x2(R)u, respectively. The interference term
relatively large wherex1(R) and x2(R) overlap with each
other. The position of maximum overlap, e.g., Max in F
7~b!, is larger inR than the peak position in the left well~the
peak of ux2(R)u2!. This is a proof thatx1 moves outward
faster thanx2 . If momentum conservation is applied to th
hop att5p/v, the trajectory runs faster onE2 than onE1 .

FIG. 8. Time-dependent populations in the two-state model. The solid
represents the population of the left well stateuL&. The dotted and broken
lines denote the populations of the upper and lower phase-adiabatic statu2&
andu1&, respectively. The internuclear distance is replaced with its quant
mechanical average in the 3D calculation~solid line in Fig. 5!.
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The discrepancy means that energy exchange occurs bet
the electron and nuclei. The packetu2&ux2& prepared by the
pump pulse splits, aroundt5p/v, into u2&ux2& andu1&ux1&.
At t5p/v, ^R&53.6; the energy gap isDEug'0.13. Part of
this electronic energy is converted to the nuclear motion
E1 becausev]u/]R is as large as 0.1]u/]t.

We conclude that the ultrafast electron transfer discus
above is due to the interference betweenu1& and u2& within a
half cycle ~not at crossing points!. The interference disap
pears whenux1& and ux2& do not overlap with each other
The difference in motion between the two nuclear pack
caused by electronic motion changes the pattern in ultra
interwell electron transfer. If the second pulse is stronger~for
instance,«050.3 and v50.07!, the interference term is
larger and the oscillation inPR becomes more pronounced
In the diabatic regime,u is close top/4 except for the vicini-
ties of crossing points; consequently, the interference term
Eqs.~3.8! becomes negligible.

E. Dependence of ionization on the internuclear
distance: Ionization from the ascending well

It has been reported that there are some ‘‘critical’’ inte
nuclear distances at which ionization is enhanced. Dep
dence of the ionization on the internuclear distanceR is at-
tributed to the double-well nature of the effective electron
potential which leads to a different ionization mechanis
from the atomic case.23,24 As shown in Fig. 2, the key quan
tities for ionization areE1 ,E2 , and the inner and outer bar
rier heights. The barrier heights are determined by the sum
Eqs.~2.2! and~2.3!. As R increases, the outer barrier is mo
suppressed by the dipole interaction. The heightV0 de-
creases as22AuE(t)u2RuE(t)u/2 at largeR. On the other
hand, the height of the inner barrier,V1 , increases as23/R
in the small R region ~say, R,4! and increases a
22AuE(t)u1RuE(t)u/2 at largeR. The adiabatic energiesE1

andE2 are nearly equal toEg andEu , respectively, for the
smallR region, and change as 0.57RuE(t)u/2 asR increases.
In the largeR region (R.10), the energy difference betwee
E1 andE2 is nearly the same as that between the two bar
heights: the barrier suppression is atomlike.

Except in the largeR region, the relative energyE2

2VB is higher thanE12Vo , whereVB is the maximum of
Vo and VI . The upper adiabatic stateu2& is easier to ionize
than u1&. The relative energyE22VB takes the maximum
value atR5Rx , whereRx is the position whereVo andVI

are equal to each other;E22VB is largest atR'4.2 for
uE(t)u50.096@it is peaked atR'5.2 for E(t)50.06 and at
R'7.5 for E(t)50.03#. Ionization is thus expected to b
enhanced whenu2& is populated andR is nearRx . To em-
body this idea, we also solve the 2D time-dependent Sch¨-
dinger equation obtained by fixingR in Eq. ~2.1!. We discuss
the ionization processes inR-fixed cases first, and then th
ionization in the 3D simulation.

1. R-fixed cases

We present the results of two cases. In the first c
~called case U!, the molecule is assumed to be prepared
1su by a pump pulse. Then, the second pulse used in pr
ous subsections, which induces ionization, is applied. Cas

e

-
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corresponds to the situation in the present 3D simulation
the second case~case G!, only the second pulse is applied
the molecule in 1sg ~no pump pulse is applied!. Most dis-
cussions of enhanced ionization in intense fields have b
developed in case G. The ionization probabilities for the t
cases are plotted in Fig. 9 as functions ofR. The closed
circles denote ionization probabilities for case U and
open circles denote those for case G. Critical internuc
distances are observed in both cases.

~i! Case U. In the smallR region (R,4), the ionization
probability increases with decreasingR. The smallR region
is characterized by its adiabaticity. Only the doorway state
ionization, namelyu2&, which is adiabatically connected wit
1su , is populated~the flow into u1& becomes less and les
with decreasingR!. Since, as shown in Fig. 2~a!, E2 is much
higher than the barriers, the probability of passing over
outer barrier is extremely high.

As R increases toward the intermediate region, the i
ization probability decreases to the minimum atR;4; it
increases again and has a peak atR;7. The mechanism o
ionization can be clearly revealed by using analyses base
the two-state model. The maxima of the inner and outer b
riers for R54 and 7 are plotted in Fig. 10 against tim
together withE1 and E2 . Shown in Fig. 11 are the time
dependent populations ofu1& andu2& obtained by mapping the
2D wave packet~the total population is less than unity b
cause of the ionization!. For R54, ionization occurs mainly
in the time domain betweent52p/v andt53p/v ~domain
I!; for R57, ionization occurs also in the domain betwe
3p/v and 4p/v ~domain II!. The detailed explanation i
given below.

For R54.0, in domain I (122,t,183), E2 is higher
than the barriers and the population of the stateu2&(P2

FIG. 9. Ionization probability of H2
1 as a function of the internuclear dis

tance. The parameters for the pulse are the same as those of the s
pulse. The closed circles denote ionization probabilities in the case w
the initial state att50 is 1su ~case U!, and the open circles denote those f
1sg ~case G!.
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'0.7) overweighs that ofu1&(P1'0.3). As shown in Fig.
12~a!, the total populationP11P2 is reduced from;0.91 to
;0.65, which corresponds to the reduction inP2 denoted by
the open circles in Fig. 11~a!. This reduction is a clear proo
of ionization fromu2&, because without ionization the popu
lation P2 is nearly constant between the level crossings at
52p/v and t53p/v. Around t53p/v, however, com-
plete exchange ofP2 with P1 takes places because the fie
envelope is coming close to the peak (d!1):P2 is reduced
to ;0.1. In domain II (183,t,244), althoughE2 is much
higher than the barriers, the reduction inP11P2 is only a
little ~;0.05! because of the low population ofu2&.

For R57.0,P2 is ;0.45 at the entrances to the two tim
domains and the energyE2 is higher than the barriers in bot
time domains. It should be noted in Fig. 11~b! that P2 is
recovered from;0.23 to;0.44 by the nonadiabatic trans
tion aroundt53p/v. The total populationP11P2 thus de-
creases in both time domains. The corresponding reduct
in P2 are denoted in Fig. 11~b! by the open marks. As ex
pected, the ionization probability is a decreasing function
R in the region ofR.7, and converges to the value 0.4
which is the same as that of the H atom.

In short, the criterion for enhanced ionization is as fo
lows: wheneverP2 is large and the barriers are low enoug
for the electron to tunnel from the ascending well, ionizati

ond
re

FIG. 10. Relation ofE1 and E2 with the maxima of the inner and oute
barriers. The applied field is the second pulse. The internuclear distan
fixed: ~a! R54.0 and~b! R57.0. The outer barrier is designated by th
bold–solid line and the inner barrier is designated by the thin–solid l
The barrier heights are defined for the instantaneous potential atr50. The
bold-dotted line denotesE2 and the thin-dotted denotesE1 .
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is enhanced. Figure 12 also demonstrates that the popul
remaining within the whole grid range is identical with th
total populationP11P2 after a long lapse of time. All the
intermediates in the other states are eventually ionized. T
rule is valid also for all the cases discussed below.

~ii ! Case G. As in case U, the dependence of the ion
tion probability onR is fully analyzed by mapping the wav
function onto the two adiabatic states. The above criter
for enhanced ionization is also valid for this case. AtR
'2.0, the ionization probability is almost zero: the stateu2&
is hardly populated fromu1&. As R approaches zero, the sy
tem is regarded as the He1 atom of large ionization potentia
I p52. As R increases to intermediate internuclear distanc
the ionization probability rapidly increases. In the interme
ateR region, the ionization probability exceeds that of the
atom by a factor of two, although the ionization potentialI p

is always larger than that of H. This is due to a combin
effect of efficient barrier suppression and nonadiabatic tr
sitions tou2&. As R increases, the difference between case
and G becomes smaller because of nonadiabatic transiti

2. The 3D simulation

The two-state model is also useful in analyzing the io
ization process of the 3D simulation in which nuclear moti
is considered quantum mechanically. The population rem

FIG. 11. Populations obtained by mapping theR-fixed 2D packet onto the
phase-adiabatic statesu1& and u2&: ~a! R54 and ~b! R57 ~case U!. The
dotted line denotes the population ofu1& and the solid line denotes that ofu2&.
Because of ionization, the population ofu2& significantly decreases in two
time domains. The reduction in domain I is denoted by the circles and
reduction in domain II is denoted by the squares.
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ing in the 3D whole grid range is shown in Fig. 13. Th
ionization probability is 0.71, which is a little higher than th
peak aroundR57 in case U. The first four sharp drops in th
population up tot'300 indicate that ionization is enhance
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FIG. 12. Populations of the 2D packet for~a! R54 and~b! R57. The solid
line denotes the total population of the two phase-adiabatic states an
dotted line denotes the population remaining in the whole grid range.

FIG. 13. Population in the whole grid range for the 3D simulation. T
circles and the squares denote domains I and II, respectively.
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four times. The maxima of the inner and outer barriers
shown in Fig. 14, together withE1 andE2 . In this calcula-
tion, the internuclear distanceR is treated parametrically to
be replaced with the quantum-mechanical average^R(t)& for
the 3D simulation~solid line in Fig. 5!. As known from Fig.
14, E2 goes beyond the barriers four times betweent585
and 295, which is consistent with the first four drops
Fig. 13.

Although, as shown in Fig. 14, the degree of barr
suppression,E22VB , is a little larger in domain I than in
domain II, the reduction in population is more pronounced
domain II. The enhancement of ionization in domain
comes from the large population ofu2&. Although ionization
is ignored in Fig. 8, we presume that the incomingP2 is
;0.3 in domain I and;0.65 in domain II. Nearly complete
exchange of the populations ofu1& andu2& at t53p/v shown
in Fig. 8 suggests that the incomingP2 in domain II is close
to P1 in domain I. Thus, wheneverP2 is large and the bar
riers are low enough for tunneling, ionization is enhanc
irrespective of the nuclear motion.

If R is replaced witĥ R(t)&, the ionization probability is
0.72, which is nearly equal to the value 0.71 in the 3D sim
lation. As suggested by theR-dependence of the ionizatio
probability in Fig. 9, the condition of nonadiabatic trans
tions and the aspect of barrier suppression change witR.
Considering that the full width at half maximum of th
present packet is as large as;1 in R, the coincidence in
ionization probability is probably attributed to the fact th
the ionization occurs mainly in domain II, i.e., in the regio
6.5,R,7.5. TheR-dependence of the ionization probabili
thereabouts is not as strong as in the smallR region~cf. Fig.
9!. For instance, the ionization probabilities for two trajec
ries R(t)5^R(t)&60.5 with the same speed are 0.69 a

FIG. 14. Relation ofE1 andE2 with the inner and outer barriers in the 3
simulation. The notations are the same as in Fig. 10. The internuclear
tance is replaced with its quantum-mechanical average~solid line in Fig. 5!.
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0.71, respectively. In the present case, the packet widthR
does not affect the ionization probability severely. T
packet width inR leads to a distribution of trajectoriesR(t)
around^R(t)&. The average over ionization probabilities fo
different R(t) is closer to the ionization probability 0.71 fo
the 3D simulation.

We also calculate the ionization probability for th
quantum-mechanical average^R(t)&NS obtained when the
second pulse is not applied~broken line in Fig. 5!. In this
case, the ionization probability is 0.68, which is smaller th
the value 0.72 for̂ R(t)& ~the difference converges to 0.0
with increasing grid size!. The population ofu2& for ^R(t)&NS

is nearly identical with that for̂R(t)& shown in Fig. 8. The
difference between̂R(t)&NS and^R(t)& is ;0.3 even in do-
main II of dominant ionization. The corresponding diffe
ence inE22VB is less than 0.01, which is not large enou
to reproduce the difference in ionization probability.

To fully explain the difference, we propose to consid
an additional effect, namely, the finite speed of the nuc
Suppose that the electric field is positive and is stro
enough for the electron density inu2& to be one-sided to the
ascending well~in this case, right well!. Because of the dis-
sociative motion, the right nucleus proceeds rightward. If
electron cannot follow the fast nuclear motion tight~imagine
in Fig. 6 a motion fromB parallel to theR-axis!, the lagging
electron is pulled by the right nucleus. This force is oppos
to the direction of ionization. The slowdown of dissociativ
motion onE2 allows the tight following and can therefor
help the ionization probability to increase.

V. SUMMARY AND CONCLUSIONS

We have performed full dynamical calculations for a r
alistic 3D model of H2

1 by solving the time-dependent Schro¨-
dinger equation for the system. Although the nuclear mot
is restricted to the polarization directionz of the laser electric
field, the electron moves in three-dimensional space.
study electronic and nuclear correlation dynamics in inte
laser fields, we have coped with awkward Coulomb pot
tials without introducing any approximations such as t
B-O separation of electronic and nuclear degrees of freed
The success is attributed to the introduction of a generali
cylindrical coordinate system.

The response to a laser electric field of H2
1 is classified

into two regimes. In the adiabatic regime, electron dens
transfers from a well associated with a nucleus to the ot
well every half optical cycle; in the diabatic regime, inte
well electron transfer is suppressed. As the field intensity
the internuclear distanceR increase, interwell transition is
further suppressed. As the 3D packet pumped onto 1su

moves toward larger internuclear distances, apart from
ionized component, the electron density is locked in ea
well. The electron distribution can be asymmetric betwe
the two wells if the pulse length is as short as the pres
one. One may be able to adjust the pulse shape and
frequency so that the electron density is eventually locali
in a well.

The correlation between the electronic and nuclear m
tions accelerates or decelerates the dissociative motio

is-
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H1H1. The acceleration and deceleration of dissociat
motion in intense fields are interpreted using the tim
dependent ‘‘effective’’ 2D potential surface obtained by fi
ing the transverse electronic coordinater in the total poten-
tial. The ‘‘effective’’ 2D potential has an ascending and
descending valley alongz56R/2 which change places with
each other every half cycle. In the adiabatic regime,
packet pumped onto 1su stays in the ascending valley
which results in the slowdown of dissociative motion. In t
diabatic regime, the packet localized in a valley gains alm
no extra kinetic energy because it moves on the descen
and ascending valleys alternatively. Correlation between
dissociative motion and the interwell electron transfer can
clearly visualized on the ‘‘effective’’ 2D potential. Charac
teristic features of nuclear motion are also reproduced
terms of the potential surfacesE1 andE2 of the two phase-
adiabatic statesu1& andu2&. The lower stateu1& is localized in
the descending valley andu2& is in the ascending valley. Th
kinetic energy distribution of fragments for the chann
H1H1 can be roughly estimated just by combining t
coupled equations for the two phase-adiabatic states wi
classical or quantal treatment of nuclear motion. The aver
kinetic energy of the fragments estimated by running cla
cal trajectories onE2(R,t) is consistent with that in the 3D
simulation.

In the intermediate regime, bothu1& andu2& are populated
because of nonadiabatic transitions. The interference
tween them occurs not only at level crossing points but a
within a half cycle~not at crossing points!. The latter type of
interference results in ultrafast interwell electron trans
with the period 2p/(E22E1). In intense fields, the period
can be much shorter than a half cycle. The interference
tern due to ultrafast interwell electron transfer reflects
fact that the nuclear packetux1u associated withu1& moves
toward largerR faster thanux2&. Such interference disap
pears whenux1& and ux2& do not overlap with each othe
~e.g., if the speeds ofux1& and ux2& are extremely different
from each other!.

Using theR-fixed 2D model of H2
1, we have also exam

ined how ionization is enhanced at specific internuclear
tances. Analyses are made by mapping the 2D packet
u1& and u2&. While the electric field is near a local maximu
or minimum, the populationP2 of u2& decreases butP1 is
nearly constant. This type of reduction inP2 is direct evi-
dence of ionization from the upper adiabatic stateu2&
~roughly speaking, from the ascending well!. Ionization is
enhanced wheneverP2 is large and the barriers are lo
enough for the electron to tunnel from the ascending w
The criterion is also valid for the ionization process in t
present 3D simulation. The width inR of the packet pumped
onto 1su does not affect the ionization probability severe
On the other hand, the packet’s speed affects the ioniza
The lag of the electronic motion with respect to the nucl
motion can reduce the ionization probability. The slowdo
of dissociative motion induced by the laser field has the
fore two effects on the ionization process: the longer re
dence time in the critical range of enhanced ionization a
the nearly perfect following of the electronic motion to th
speed of the nuclei.
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It is worth noting that all the intermediates in other ad
batic states thanu1& and u2& are eventually ionized irrespec
tive of the nuclear motion. After a long lapse of time, th
population within the whole grid range is identical to th
total populationP11P2 . This gives us a definite rule as t
how many phase-adiabatic states should be contained in
analysis of the ionization process. The final populati
within the whole grid range must be identical to the to
population of the chosen phase-adiabatic states. We are
structing a minimum set of phase-adiabatic states for a o
dimensional model of H2 to investigate ionization processe
in the two-electron molecule.54
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APPENDIX: TIME EVOLUTION WITH THE D’YAKONOV
SCHEME

If the time stepDt is sufficiently small, the short time
propagator exp@2iHDt# can be replaced with an approxima
propagator that is accurate up to a certain order ofDt. The
wave function at the desired time is obtained by operat
such an approximate propagator on the wave function ite
tively. We have tested various approximate propagators
see which one is the best for the 1D attractive Coulo
potential. The following approximate propagator called t
Cayley form is found to be the most efficient one;35

e2 iHDt'
12 iHDt/2

11 iHDt/2
. ~A1!

Using the Cayley form, the wave function at timetn

5nDt1t0cn, can be advanced by solving the equation
1 iHDt/2)cn115(12 iHDt/2)cn ~this implicit scheme is
called the Crank–Nicholson one55!. The differential opera-
tors are usually evaluated by the finite difference meth
The resultant band diagonal system of linear algebraic eq
tions, which is pentadiagonal for the five-point finite diffe
ence method, can be solved efficiently by usingLU decom-
position.

Although the Cayley–Crank–Nicholson~CCN! scheme
has many advantages, such as the conservation of energ
direct application has been limited only to one- or tw
dimensional problems.56 It has, however, been known tha
the inefficiency of computation for multidimensional cases
cured by a different way of generalizing the CCN schem
namely, the alternating-direction implicit method~ADI !. For
the ADI, the system of equations to be solved can be redu
to band diagonal systems for one-dimensional spaces,
the quality of the CCN is maintained.

In the following, we briefly review a 3D version of th
ADI. The ADI embodies the powerful idea of operator spl
P license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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ting and time splitting. For instance, by using the ADI o
can split the time evolution operator exp@2i(A1B1C)Dt# as

e2 i ~A1B1C!Dt'
1

11 iCDt/2

1

11 iBDt/2

3
12 iADt/2

11 iADt/2
~12 iBDt/2!~12 iCDt/2!.

~A2!
whereA, B, andC are arbitrary operators. The operation
separated into three steps by introducing ‘‘artificial’’ inte
mediate statescn11/3 andcn12/3,

~11 iADt/2!cn11/35~12 iADt/2!~12 iBDt/2!

3~12 iCDt/2!cn, ~A3a!

~11 iBDt/2!cn12/35cn11/3, ~A3b!

~11 iCDt/2!cn115cn12/3, ~A3c!

which is known as the D’yakonov scheme.40 For time-
dependent Hamiltonians, to keep the accuracy of orderDt2,
A, B, andC in Eqs.~A3! must be replaced with those at th
midpoint of the time step,tn11/25tn1Dt/2.

For the 3D problem to be reduced to three sets of o
dimensional problems, the differential operators involved
A, B, andC must be those of different freedoms. For H2

1, the
three kinetic energy partsKR , Kj , and Kz in the Hamil-
tonian Eq.~2.9! are confined inA, B, andC separately. We
furthermore divide the three-body Coulomb interactionsV
into nucleus–nucleus interaction 1/R and nucleus–electron
interaction V1(r,z,R)5V(r,z,R)21/R. The most reason
able way of separation is as follows:

A5KR1
1

R
, ~A4a!

B5Kj1
1

2
V1~r,z,R!1

m2

2r2 , ~A4b!

C5Kz1
1

2
V1~r,z,R!1VE~z,t !. ~A4c!
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