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The magnetic quenching of fluorescence in intermediate case molecules is modeled by including
two triplet manifolds$ubj&% and $ucj&% mutually shifted by the zero-field splittingEgap ~though a
triplet has three spin sublevels!; the$ubj&% are coupled to a bright singlet stateus& by intramolecular
interactionV and the two manifolds are coupled by a magnetic field. For the two manifold Bixon–
Jortner model where the level spacings and the couplings tous& are constant and no spin–vibration
interactions exist~the Zeeman interaction connects only the spin sublevels of the same rovibronic
level j !, there are two sets of field dressed eigenstates,$ub̂ j&% and $uĉ j&%, of the background
HamiltonianH2V. ub̂ j& and uĉ j& are liner combinations ofubj& and ucj&. We call the energy
structure ‘‘eclipsed (E)’’ when the two sets of dressed states overlap in energy and call it ‘‘staggered
(S)’’ when every ub̂& state is just between two adjacentuĉ& states. TheE and S structures
alternatively appear with increasing Zeeman energyhZ . As hZ increases, the number of effectively
coupled background levels,Neff , increases for theS structure but remains unchanged for theE
structure. TheS structure is in accord with the experimental result that the quantum yield is reduced
to 1/3 at anomalously low fields~hz/Egap!1!: in the far wing regions of the absorption band the
mixing between the manifolds is determined by the ratiohZ/Egap, but near the band center the
intermanifold mixing is enhanced by the presence ofus&. Using a random matrix approach whereH
is constructed of the rotation–vibration HamiltoniansHB andHC arising from the manifolds$ubj&%
and $ucj&%, we show that anS structure can be formed in real molecules by nonzero
DHBC[HB2HC2Egap ~Egap is the zero-field splitting at the equilibrium nuclear configuration!.
Indirect spin–vibration interactions lead toDHBCÞ0; the vibrationalDHBC caused by spin–spin
and vibronic interactions and the rotationalDHBC caused by spin–rotation and rotation–vibration
interactions. The matrix elements ofH are written down in terms of the eigenfunctions$u j &% of the
average Hamiltonian (HB1HC)/2. If the vibrational modes are strongly coupled~the energies of
levels are given by a Wigner distribution and the coupling strengths are given by a Gaussian
distribution!, the vibrational^ j uDHBCu j 8& for wave functions of roughly the same energy are
Gaussian random. As the rms of^ j uDHBCu j 8& approaches the average level spacing~on excitation
into higher vibrational levels!, the efficiency of magnetic quenching becomes as high as in theS
case. Nonzerô j uDHBCu j 8& let isoenergetic levels belonging to different manifolds vibrationally
overlap: theDHBC , together with the magnetic field, causes level repulsion leading to theS
structure and opens up isoenergetic paths between the manifolds. The efficient magnetic quenching
in pyrazine can be explained by the vibrationalDHBC , since theS1–T1 separation is as large as
4500 cm21. If Coriolis couplings causeK scrambling considerably, the rotationalDHBC mixes
$u j &%. This mechanism explains the rotational dependence of magnetic quenching ins-triazine of
which S1–T1 separation is only;1000 cm21. © 1995 American Institute of Physics.
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I. INTRODUCTION

Radiationless transition is a change in the electronic st
of a molecule.1–6 In many cases, two electronic states~or
two potential surfaces! are involved in a radiationless pro
cess. The conventional model to describe the process i
follows:1–7 a ‘‘bright’’ level us& ~carrying optical transition
probability! is coupled to a more dense manifold of bac
ground vibronic~rovibronic! levels$ubj&% by an intramolecu-
lar interactionV. For intersystem crossing~ISC!, us& is a
vibronic level of a singlet~e.g.,S1! and $ubj&% is a set of
vibronic levels in a triplet; the subscriptj denotes the
rotation–vibration levels in the triplet.V is the spin–orbit
162 J. Chem. Phys. 103 (1), 1 July 1995 0021-9606/95Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subject
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coupling. In the case where the direct spin–orbit couplin
between the singlet and triplet vanishes, there is a chance
second-order processes to couple the two electronic state
that case,V is written as a product combination of two in
teraction operators~e.g., the spin–orbit operator and the v
bronic interaction operator!.8

The selection rules for radiationless transitions in inte
mediate case molecules such as pyrazine can be adequ
described in Hund’s coupling case~b!.9–12Among the quan-
tum numbers used are the rotational angular momentumN,
electron spin angular momentumS, and total angular mo-
mentumJ. Interactions involving nuclear spins are ignore
/103(1)/162/20/$6.00 © 1995 American Institute of Physics¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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163H. Kono and N. Ohta: Efficient quenching in two manifold models
in this paper. The singlet and triplet levels are then denot
by uvS ;N8,S850,J85N8& and uvT ;N,S51,J&, respectively
~wherevS andvT denote rovibronic states of the singlet and
triplet!. Each uvT ;N,S51,J& level is split into three spin
sublevels by spin–spin and spin–orbit interactions. A sch
matic illustration of spin splitting is drawn in Fig. 1. The spin
sublevels belonging to a rovibronic leveluvT ;N& have differ-
ent J5N11,N,N21. These sublevels are denoted by th
fine structure componentsF1, F2, andF3, respectively.

We restrict ourselves to gas phases at low pressures.
the absence of external field, the space is isotropic: the to
angular momentumJ is conserved in ISC, i.e.,J5J8.10–12

The selectively excited singlet leveluvS ;N8S8J8& is coupled
by V to three levels of auvT& manifold, those with
J5J85N8 of the spin sublevels. The arrows~⇔! in Fig. 1
represent such couplings. Of the three spin sublevels belo
ing to the same rovibronic leveluvT ;N&, i.e., ofF1, F2, and
F3, only one level is coupled touvS ;N8S8J8&.

If an external magnetic field is applied, theDJ50 selec-
tion rule is no longer meaningful. When the magnetic field
strong enough to fully decouple the electron spinS from the
molecular axis, the spin sublevels with differentJ are
mingled among one another by the Zeeman interaction, a
the singlet level can interact with all the triplet spin
sublevels.10–16At zero field, the three sublevelsF1, F2, and
F3 are split from one another by the order of GHz~in Hund’s
case~b! the zero-field splittings of spin sublevels are as
sumed to be much smaller than the separation between ad
cent rotational levels!. As the Zeeman energy becomes large
than the zero-field splittings, the magnetic field mingles th
spin sublevels sufficiently: the number of the rovibronic lev
els effectively coupled tous&, Neff , is expected to increase by
a factor of 3 and the probability of returning tous& will be
reduced to 1/3 of that at zero field. For pyrazine, the zer
field splittings are on the order of 1 GHz,17 which means that
300 G in magnetic field strength is expected to be necess

FIG. 1. A schematic illustration of spin splitting. The
uvS ;N8,S850,J85N8& and uvT ;N,S51,J& denote singlet and triplet lev-
els, respectively~vS andvT denote rovibronic states of the singlet and trip-
let!. EachuvT ;N,S51,J& level is split into three spin sublevels. The spin
sublevels belonging to a rovibronic leveluvT ;N& have differentJ5N
11,N,N21. In the absence of external field, only one of them that satisfie
the selection ruleDJ50 is coupled touvS ;N8,S8,J8&.
J. Chem. Phys., Vol. 10Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subject¬
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for a substantial sublevel mixing or for a substantial redu
tion in the quantum yield~30 GHz is equivalent to 104 G for
g52!. What have been measured are however controvers
appreciable quenching occurs at fields that are as small as
G.18–24

Matsumotoet al.18,19 have suggested, as one reasonab
explanation, that the ‘‘Zeeman mixing process’’ connects t
sublevel components of different rovibronic levels. The pr
cess is called ‘‘intervibronic mixing.’’ This idea seems to b
supported by experimental observations that the efficiency
magnetic quenching increases with increasing vibration
level density in the triplet state~for pyrazine, the average
spacing between adjacent vibronic levels near theS1 origin is
less than 0.3 GHz if all the rovibronic levels are counted!.25

The vibrational state dependence of the fluorescence qu
tum yield and the time resolved decay lead to an importa
fact that magnetic quenching is more efficient on excitatio
into higher vibrational level inS1 than on excitation into the
vibrationless level.20–24,26It has also been reported that mag
netic quenching becomes more efficient with increasi
J8.18–24The observation suggests thatNeff increases with in-
creasingJ8. Presumably, Coriolis coupling in the triple
breaks down theDK50 selection rule~K is the projection of
N onto the molecular fixed axis!. This is called ‘‘K
scrambling.’’6,27–30

However, unless spin and vibration are directly or ind
rectly coupled to each other, the Zeeman interaction can
directly connect the spin sublevels of different rovibron
levels. What it directly connects are the different sublevels
the same rovibronic level~intravibronic mixing!. Without
spin–vibration interaction, the overlaps between the sp
sublevels of different rovibronic levels vanish. Coriolis cou
pling alone does not induce intervibronic mixing. This can b
clarified by using a representation in which Coriolis couplin
is diagonalized. We believe that some kind of ‘‘mechanism
is hidden behind the idea of intervibronic mixing. The pu
pose of this paper is to find out the mechanism of interv
bronic mixing and to explain why the quantum yield is re
duced to 1/3 at anomalously low fields.

In this paper, the effect of magnetic field on ISC is mod
eled by adding another background manifold$ucj&% coupled
to $ubj&%; the coupling between the sublevelsubj& anducj& is
induced by a magnetic field~in the absence of spin–vibration
interaction the Zeeman interaction mingles only the spin su
levels of the same rovibronic levelj !. A manifold means a
set of rovibronic levels that have the same total angular m
mentumJ. The term ‘‘intervibronic’’ can be put into ‘‘inter-
manifold excluding intravibronic.’’ The background mani
fold $ubj&% is a set of rovibronic levels that are directly
coupled to us& by the intramolecular interactionV, e.g.,
$uvT ;N5N8,S51,J5N8&%, and the manifold$ucj&% is a set
of rovibronic levels that are not directly coupled tous&, e.g.,
$uvT ;N5N8,S51,J5N811&%. A manifold can be associ-
ated with a potential surface that yields the vibronic leve
$uvT&%. Without spin–vibration interaction, the potential su
faces corresponding to different manifolds are of the sa
form and mutually shifted in energy by the zero-field spli
tings.

We deal with the two manifold model, though a triple

s

3, No. 1, 1 July 1995to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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164 H. Kono and N. Ohta: Efficient quenching in two manifold models
electronic state has three spin sublevels. Our model w
serve as a prototype to draw characteristic features of t
magnetic field effect on ISC. The model is treated in Secs.
and IV on the basis of the assumptions used in the Bixon
Jortner model7 ~equally spaced background levels with a
constant coupling tous&!. A random matrix approach is also
used in Sec. V to take into account level statistics.31 We
examine how the nearest-neighbor spacing distribution a
the coupling strength fluctuation affect the magnetic quenc
ing. The role of indirect spin–vibration interactions in mag
netic quenching is also examined in Sec. V.

II. PRELIMINARIES

In this introductory section, we outline the eigenstat
approach to time-resolved studies of an excited molecule a
review the relation between the time-resolved fluorescen
pattern and the level statistics. To relate our model with e
perimental observables, we make connections among
magnetic field strength, quantum yield, andNeff .

A. Time evolution and level statistics

The time evolution of a molecule undergoing radiation
less transitions can be described as follows. As usual, w
suppose that a ‘‘bright’’ levelus& is coupled to a more dense
manifold of background rovibronic levels$ubj&% through an
intramolecular interactionV. The eigenfunctionsun& of the
molecular HamiltonianH can be expressed as a liner com
bination of the zero-order levels

un&5anus&1(
j
bn jubj&, ~1!

Hun&5\vnun&, ~2!

where the coefficients are determined by the energies ofus&
and$ubj&% and by the couplingsvs j betweenus& and$ubj&%.
The s-level character is distributed among eigenfunction
We denote the full width at half-maximum~FWHM! of dis-
tribution byDE.

The time evolution of the system can be described
terms of$un&%. The initially prepared state is identical to the
nonstationaryus& level when the pulse duration is shorte
than\/DE.7,32,33For such excitation, the time dependence o
the initially prepared state is written as

uC~ t !&5exp~2 iHt /\!us&5(
n

an* un&e2 ivnt. ~3!

The time evolution of the fluorescence intensity,I f(t), can be
determined by projecting out of this wave function the brigh
level characterus&:

I f~ t !5Gsu^suC~ t !&u2

5GsH(
n

uanu4e2gnt12((
n,m

uanu2uamu2

3cos@~vn2vm!t#e2~gn1gm!tJ , ~4!

where we have included the radiative rate ofus&, Gs , and the
longitudinal relaxation rate of the eigenstateun&, gn .
J. Chem. Phys., Vol. 10Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subject¬
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Throughout this paper, the ‘‘intermediate case’’ is assume
that is, the average level spacing« and the average coupling
v are assumed to fulfill the relations«.\gn andv>«.

The first sum represents the population decays of in
vidual eigenstates~incoherent contribution! and the second
one represents thes-character interference among eigenstat
~coherent contribution!.29,30,34,35The coherent excitation over
the bandwidth DE results in a rapid phase collaps
~‘‘dephasing’’! among the eigenstates excited. The dephas
at early times (t,\/DE) is purely exponential if the
s-character distribution function~absorption profile! is a
Lorentzian, that is, for the case of equally spaced, equa
coupled ubj& levels ~the so-called Bixon–Jortner model!.7

Even for randomly spaced, randomly coupledubj& levels it is
very close to exponential.35 The decay constant for this fas
dephasing,gC , is generally equal toDE. The FWHMDE is
approximately given as

gC5DE5
2pv2

«
. ~5!

Strong recurrences of fluorescence occur at integer m
tiples of time t52p\/« if the eigenstates$un&% are equally
spaced by« ~for equally spaced, equally coupledubj& levels
the resultant eigenstate are nearly equally spaced!. This type
of recurrence is ascribed to the coherent term. For a rand
distribution of energy levels, such recurrences are smea
out and only slight undulations are observed; they beco
negligible once the coherent contribution fully decays, i.e
after t.\/DE ~especially when ensemble averages, such
over the rotational constantK, are necessary!. The slow de-
cay aftert.\/DE thus comes mainly from the sum of inco
herent decays of individual eigenstates.34,35

The energy levels for a set of independent oscillato
~integrable system! are independently distributed in the en
ergy axis. A collection of those levels will have many leve
close or overlapping. The distributionP(S) of nearest-
neighbor spacingsS exhibits ‘‘level clustering’’ ~PÞ0 at
S50!, and fits the Poisson distribution29–31 ~except for the
case where the system is harmonic!36

P~S!5
1

D
expS 2

S

D D , ~6!

whereD is the local average spacing. If the level spacin
distribution is given by a Poisson distribution, the fluore
cence decay is characterized by the biexponential form

I f~ t !5Gs@AI exp~2g I t !1AC exp~2gCt !#. ~7!

The decay constant for the incoherent component,gI , is con-
sidered the average of$gn% over the eigenstates inDE.

For a set of strongly coupled oscillators, the mode co
plings will split some of degeneracies, shifting the distribu
tion towards larger spacings. In the extreme limit represen
by completely random matrices, such as the Gaussian
thogonal ensemble~GOE!, the distribution is accurately
characterized by the Wigner surmise which exhibits ‘‘lev
repulsion’’ ~P50 atS50!31
3, No. 1, 1 July 1995to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



ju

t

r

i

’

s

i
l
u

r

-

y-
f

y

d
-

-

r-
be

c

d
o-
st
te
-

s

-

n-

165H. Kono and N. Ohta: Efficient quenching in two manifold models
P~S!5
p

2

S

D2 expF2
p

4 S SD D 2G . ~8!

The distribution has its peak atS'0.8D. This level correla-
tion causes a depression of the fluorescence intensity
after the decay of the fast component.35 This depression is
called the correlation hole, which Huberet al.37 have de-
tected in fluorescence decays following excitation of je
cooled butynal. In this case, exp~2gI t! in Eq. ~7! should be
replaced with38,39

@12b2~Dt !#exp~2g I t !,

whereb2(t) is the Fourier transform of the two-level cluste
functionY2~v!31 @the function 12Y2~v! gives the probability
of observing a level at a distancev from a given level#.

Some other distribution functions have been proposed
cover intermediate regimes between the two extreme lim
~namely, the Poisson and Wigner distributions!. Among them
is the Brody distribution with the ‘‘repulsion parameter’
r .31,40Given a level atE, let x(S)dSbe the conditional prob-
ability that the next energy level falls in the range [E1S,E
1S1dS] when the interval of lengthS contains no levels.
Then, the nearest-neighbor spacing distribution is expres
as41

P~S!5x~S!expS 2E
0

S

x~S8!dS8D , ~9!

where the exponential factor represents the probability th
the interval of lengthS contains no levels. The Brody distri-
bution comes from assuming thatx(S) is proportional toSr :

P~S!5
~11r !mSr

D11r expS 2m
S11r

D11r D , ~10!

where

m5FGS ~21r !

~11r ! D G
11r

. ~11!

For r less than or equal to zero, Brody distributions exhib
level clustering, and forr greater than zero they exhibit leve
repulsion. The Poisson distribution and the Wigner distrib
tion are the Brody distributions atr50 and r51, respec-
tively.

The ratio of the fast component to the slow one,AC/AI ,
is estimated as34

AC

AI
5
2((n,muanu2uamu2

(nuanu4
'1Y(

n
uanu4. ~12!

For the Bixon–Jortner~BJ! model, one finds that 1/(uanu
4 is

2~pv/«)2 at the limit of v/«@1. Since the number of
s-character distributed states in the FWHMDE is estimated
asDE/«, the value 2~pv/«)2 can be regarded as the numbe
of participating levels~us& and the effectively coupledubj&
levels!. The ratioAC/AI thus provides the number of effec
tively coupled background levels,Neff , which is defined in
this paper as42

Neff11[1 Y(
n

uanu4. ~13!
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The meaning ofNeff is enriched by the observation that
the time averaged probability of finding the system inus& is,
given the system being inus& initially,43–45

P~sus![ lim
T→`

1

T E
0

T

u^suC~ t !&u2dt5(
n

uanu4, ~14!

where we have used Eq.~3! neglecting all the relaxation
constants. SinceP(sus) can be interpreted to be inversely
proportional to the phase space volume explored by the d
namics~in general, including electronic and spin degrees o
freedom!, the inverse ofP(sus) is a measure of the number
of participating states, i.e.,P(sus)51/~Neff11!. The defini-
tion ~13! can be rationalized in this way.

So far we have mentioned the three cases:~i! the BJ
model ~the level energies are perfectly correlated!; ~ii ! the
Poisson distribution~the energies are uncorrelated, randoml
distributed!; ~iii ! the Wigner distribution~the energies are
correlated to some extent!. In the time-dependent fluores-
cence signal, the three cases~i!, ~ii !, and ~iii ! characteristi-
cally show the strong recurrence, biexponential decay, an
the existence of correlation holes, respectively. If the corre
lation hole is difficult to experimentally detect, the decay is
approximated by the biexponential form. The observed fluo
rescence decay can be explained by either case~ii ! or case
~iii !; energy correlation is exaggerated in case~i!. However,
the meaning ofNeff remains the same and valid for any of the
three cases. The two manifold BJ model will help us unde
stand the magnetic field effect on ISC, since the effect can
discussed throughNeff ~shown in Sec. II B!. We adopt the
two manifold BJ model in Sec. III to discuss the magneti
field effect while keeping in mind that energy correlation is
overstated and randomness is completely thrown away.

B. Relation of Neff with observables

It has been experimentally observed that as the applie
magnetic field strength is increased the slow decay comp
nent of the fluorescence decreases in intensity while the fa
component remains constant. For the moment, we attribu
the magnetic quenching of the slow component to the effi
cient increase inNeff by the magnetic field. A full detail of
the mechanism is given in Secs. III–V.

The quantum yield of the slow component at zero field i
given by time integration of the first term in Eq.~4!:

F I~hZ50!5
Gs

g I~N011!
, ~15!

whereN0 is the number of effectively coupled levels at zero
field andhZ represents the Zeeman interaction energy. As
suming that thes character is equally distributed among
N011 states, we have the average relaxation rate of eige
states,gI ,

4,34

g I5~gs1N0gT!/~N011!, ~16!

wheregs is the relaxation rate ofus& andgT is the average
relaxation rate of background levels. Substituting Eq.~16!
into Eq. ~15! yields
3, No. 1, 1 July 1995to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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166 H. Kono and N. Ohta: Efficient quenching in two manifold models
F I~hZ50!5
Gs

gs1N0gT
. ~17!

At the high field limit,Neff is expected to increase by a fact
of the multiplicityM ~for a triplet,M53!

F I~hZ5`!5
Gs

gs1MN0gT
. ~18!

The quantum yield of the fast component is derived fro
the second term in Eq.~4! as

FC5
Gs

DE
. ~19!

The fast component is independent of the field strength
cause the density of background states, 1/«, increases but the
couplingv decreases.20–24The overall quantum yieldF thus
diminishes by the reduction in the slow component. In w
follows we relate the three key factors, namely, the Zeem
energy, quantum yield, andNeff .

The value ofhZ where the reduction in quantum yiel
reaches one-half of the total amount of quenching at the h
field limit may be employed as a measure of the efficiency
magnetic quenching. We denote it byh1/2,

F~hZ5h1/2![@F~hZ50!1F~hZ5`!#/2

[FC1F I~hZ5h1/2!, ~20!

whereF5FC1F I . The definition ofh1/2 is thus reduced to

F I~hZ5h1/2!5@F I~hZ50!1F I~hZ5`!#/2. ~21!

Using Eqs.~17! and ~18!, one can rewrite Eq.~21! as

1

gs1N1/2gT
5
1

2 S 1

gs1N0gT
1

1

gs1MN0gT
D , ~22!

whereN1/2 is the Neff at hZ5h1/2. Rearranging the abov
equation, one finds thatN1/2/N0 satisfies forgTÞ0,

N1/2

N0
5
2MN0gT1~M11!gs

~M11!N0gT12gs
. ~23!

Theh1/2 can thus be defined as the Zeeman energy at w
the Neff satisfies Eq.~23!. For M53, the value ofN1/2/N0
lies between 3/2 and 2~according to whetherN0gT.gS or
N0gT,gS!. In Sec. IV we treat the right-hand side in E
~23! as practically constant: one can obtainh1/2 without ex-
plicitly including the relaxation constants.

III. THE TWO MANIFOLD BIXON–JORTNER MODEL

In the absence of external field, a vibronic level inS1,
us&, is coupled to the manifold of rovibronic levels$ubj&%
that satisfy theDJ50 selection rule~which are regarded a
those arising from a spin sublevel potential surface!. The
effect of magnetic field on ISC is modeled by adding anot
background manifold$ucj&% that is coupled to$ubj&% by a
magnetic field. The coupling scheme is illustrated in Fig.
Although a triplet electronic state has three spin sublev
we deal with the two sublevel manifolds~$ubj&% and $ucj&%!
to draw the essence of the magnetic field effect. The mo
allows us to perform mathematical calculations easily and
derive useful analytical expressions.
J. Chem. Phys., Vol. 1Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subjec
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The total Hamiltonian for the system is written as

H5H01V1HZ , ~24!

where HZ is the Zeeman interaction and the unperturbed
HamiltonianH0 gives the energies of the zero-order levels

H0us&5Esus&; H0ubj&5Ebjubj&; H0ucj&5Ecjucj&.
~25!

The absorption band shape~the distribution of absorption
probability! and relevant quantities can be obtained by solv-
ing the eigenvalue problem~alternatively, one may employ
the Green’s function method!46–49

Hun&5Enun&. ~26!

The eigenfunctionsun& can be expressed as liner combina-
tions of zero-order levels

un&5anus&1(
j
bn jubj&1(

j
cn jucj&. ~27!

Putting Eq.~27! into Eq. ~26! and taking matrix elements
with various zero-order states, one obtains the following se
of equations:

~Es2En!an1(
j

^suVubj&bn j50, ~28a!

~Ebj2En!bn j1^bj uVus&an1hZcn j50, ~28b!

hZbn j1~Ecj2En!cn j50, ~28c!

wherehZ[^bj uHZucj& and we have assumed that the spin
sublevels of different rovibronic levels are not connected by
the magnetic field~by assuming that the sublevel potentials
are of the same form and shifted byEgap!, that is,

^bi uHZucj&5^bj uHZucj&d i j5hZd i j , ~29!

Ecj5Ebj2Egap, ~30!

whereEgap is the zero-field splitting.
Substitution of Eqs.~28b! and ~28c! into Eq. ~28a! then

leads to the characteristic equation for the eigenvalues

FIG. 2. Illustration of the two manifold model. In the absence of external
field, a vibronic level inS1, us&, is coupled to the rovibronic levels$ubj&%
that satisfy the selection ruleDJ50. The effect of magnetic field on ISC is
modeled by adding another background manifold$ucj&% that is coupled to
$ubj&% by the magnetic field. The arrows~⇔! and the wavy lines with arrow
heads~← ! indicate the intramolecular interactionV and the Zeeman inter-
actionHZ , respectively.
03, No. 1, 1 July 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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Es2En1(
j

u^suVubj&u2

En2Ebj2hZ
2/~En2Ecj!

50. ~31!

The totalb andc components in thenth eigenstate,Bn and
Cn , can be obtained from Eqs.~28b! and ~28c!:

Bn[(
j
bn j
2 5an

2(
j

u^suVubj&u2

@En2Ebj2hZ
2/~En2Ecj!#

2 , ~32!

Cn[(
j
cn j
2 5an

2(
j

hZ
2u^suVubj&u2

@~En2Ebj!~En2Ecj!2hZ
2#2

.

~33!

The absorption probability of the eigenstateun& is propor-
tional toan

2. The value ofan is determined from the normal
ization conditionan

21Bn1Cn51:

an
25S 11(

j

u^suVubj&u2@~En2Ecj!
21hZ

2#

@~En2Ebj!~En2Ecj!2hZ
2#2 D

21

. ~34!

We here introduce the following assumptions as in
pioneering paper of Bixon and Jortner:7

~i! The background levels are equally spaced with
energy difference«:

Ebj5 j«, ~35!

where j50,61,62,... .
~ii ! The matrix elements of the intramolecular interacti

V are assumed to be a constantv, independent of the indexj :

v5^suVubj&. ~36!

Under these assumptions, infinite summation in E
~31!–~33! can be carried out. The characteristic Eq.~31! is
reduced to

Es2En1
pv2

«
@cos2 u cot~a2b!1sin2 u cot~a1b!#50,

~37!

whereu represents the degree of magnetic field-induced c
pling between the two background manifolds

u5
1

2
tan21

2hZ
Egap

~38!

anda andb are defined as

a5pSEn1
Egap

2 D Y«, ~39!

b5pAEgap
2 14hZ

2/~2«!. ~40!

Sincea is a function ofEn , one must solve Eq.~37! numeri-
cally to get eigenvaluesEn . The absorption probabilityan

2

and the background componentsBn and Cn are given by
analytical forms

an
25F11S pv

« D 2@11cos2 u cot2~a2b!1sin2 u cot2~a

1b!#G21

, ~41a!

Bn5S pv
2« D 2an2$2sin2 2u@cot~a1b!2cot~a2b!#/b
J. Chem. Phys., Vol. 1Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subjec
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an

n

s.

u-

1~11cos2 2u!@cosec2~a1b!1cosec2~a2b!#

12 cos 2u@cosec2~a1b!2cosec2~a2b!#%,

~41b!

Cn5S pv
« D 2S hZ

Egap
D 2an2 cos2 2u$@cot~a1b!2cot~a

2b!#/b1cosec2~a1b!1cosec2~a2b!#% ~41c!

which can be evaluated using the eigenvalues obtained.
We now show some numerical examples~Figs. 3 and 4!

for the eigenvalues and absorption probabilities. The Zeeman
energies taken are in dimensionless units:hZ50 in Fig. 3;~a!
hZ510.3 and~b! hZ510.077 82 in Fig. 4. The other param-
eters are the same for the three cases:v5«51 andEgap510.
In the zero-field case~Fig. 3!, the intensity profile~envelope!
follows

A0~E![
v2

@~E2Es!
21~DE/2!2#

, ~42!

where the FWHMDE at zero field is defined as

DE52Av21S pv2

« D 2'2pv2/«. ~43!

For hZÞ0, it is evident that there existtwo intensity
profiles~sequences!. In Fig. 4~a!, a very intense profile and a
very weak one exist; in Fig. 4~b!, an intense one and a rela-
tively weak one exist~the profile functions are plotted by
dotted lines!. We call the stronger one the ‘‘strong sequence’’
and the weaker one the ‘‘weak sequence,’’ though both can
be comparable in intensity at high fields. The classification
into the two sequences is artificial, but it helps our systematic
understanding of the magnetic quenching.

The two profile functions can be obtained by rewriting
Eq. ~37! as

FIG. 3. Eigenvalues and absorption probabilities for the two manifold BJ
model at zero field. The parameters used are:v5«51, Egap510, andhZ50.
03, No. 1, 1 July 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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168 H. Kono and N. Ohta: Efficient quenching in two manifold models
~X214!sin2 2a14~2 cos 2u sin 2b2X cos 2b!sin 2a

2X2 sin2 2b14 cos2 2u sin2 2b

24X cos 2u sin 2b cos 2b50, ~44!

where

X5
2«~En2Es!

pv2
. ~45!

Since Eq.~44! is a quadratic equation for sin 2a, we have
two sets of solutions yielding the strong and weak sequen
~a pair of characteristic equations for determining the eige
values!

sin 2a

5
22~2 cos 2u sin 2b2X cos 2b!6AX2f ~u,b,X!

X214
,

~46!

where

FIG. 4. Eigenvalues and absorption probabilities for the two manifold
model at~a! hZ510.3 and~b! hz510.077 82. The other parameters are th
same as in Fig. 3.
J. Chem. Phys., Vol. 10Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subject
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f ~u,b,X![X2 sin2 2b14X cos 2u sin 2b cos 2b

14~12cos2 2u sin2 2b!. ~47!

The corresponding cos 2a are also obtained by deriving the
quadratic equation for cos 2a from Eq. ~37!:

cos 2a

5
2X~2 cos 2u sin 2b2X cos 2b!72Af ~u,b,X!

X214
.

~48!

The signs of the square roots in Eqs.~46! and ~48! are, for
X.0, combined in order of appearance and, forX,0, in
reverse order. The sin 2a and cos 2a are regarded as func-
tions of ‘‘continuous’’X. The profiles ofan

2, Bn , andCn for
the strong and weak sequences can therefore be obtaine
functions of continuous energyEn2Es by substituting
sin 2a and cos 2a into Eqs. ~41!. The cot~a1b! and
cot~a2b! in Eqs.~41! are related with sin 2a and cos 2a as
follows:

cot~a6b!5
cot a cot b71

cot b6cot a
, ~49!

cot a5
11cos 2a

sin 2a
. ~50!

IV. NUMERICAL RESULTS AND DISCUSSION

The two cases~a! and ~b! in Fig. 4 remarkably differ in
the numberNeff , although the field strengths are nearly
equal. They are understood as extreme cases and class
by using the eigenfunctions for the HamiltonianH01HZ

~excluding V!. There are two sets of eigenstates~field
dressed states! for this Hamiltonian

ub̂ j&5cosu ubj&1sin u ucj&;
~51!

uĉ j u52sin u ubj&1cosu ucj&.

The corresponding eigenvalues for the two sets$ub̂ j&% and
$uĉ j&% are given by

Êb j5
Ebj1Ecj1Êgap

2
; Êc j5

Ebj1Ecj2Êgap

2
, ~52!

where Êgap denotes the energy difference between th
dressed statesub̂ j& and uĉ j&:

Êgap5AEgap
2 14hZ

2. ~53!

The eigenvalues of the field dressed states shift withhZ ~the
level spacings in the same manifold remain constant!.

The two extreme cases can be interpreted as the follo
ing two cases of the dressed state energy structure.~a! The
eclipsed structure:Êgap5l« wherel is an integer, i.e., the two
sets of dressed states overlap in energy@cf. Fig. 5~a!#. Since
b5Êgapp/2«, b5p l /2. ~b! The staggered structure:
Êgap5~l11/2!« or b5p ~l11/2!/2, i.e., the two sets of
dressed states are staggered so that the nearest-neighbor
spacing of dressed states is«/2 @cf. Fig. 5~b!#.

J
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169H. Kono and N. Ohta: Efficient quenching in two manifold models
Figure 4~a! corresponds nearly to the eclipsed structu
and Fig. 4~b! corresponds to the staggered structure. T
eclipsed and staggered structures alternatively appear at
tervals of about«/2 in hZ .

A. The eclipsed structure

In this case the fine structure of the absorption band
the same as in the zero-field case@cf. Figs. 3 and 4~a!#,
irrespective of the field strength. The number of effective
coupled background levels remains unchanged even at h
fields @hZ/Egap.1 in Fig. 2~a!#. Mathematically it is easy to
show that the absorption probability@Eq. ~41a!# is classified
into two sets$an

250% and $an
2(hZ50)5A0(En)% by putting

b5p l /2 into Eqs.~46! and ~48!.
The reason is elucidated as follows. Take a pair of d

generate dressed statesub̂ j& and uĉ j 8& as shown in Fig. 5~a!
~j 8 is chosen so that its energyÊc j8 is equal toÊb j!. Since
these two states have the same energy, a unitary transfor
tion of them also leads to a diagonal representation
H01HZ ~for any value ofh!

uf0&[sin h ub̂ j&1cosh uĉ j 8&

5sin h sin u ucj&1cosh cosu ucj 8&

1sin h cosu ubj&2cosh sin u ubj 8& ~54!

and

uf1&[cosh ub̂ j&2sin h uĉ j 8&

5cosh cosu ubj&1sin h sin u ubj 8&

1cosh sin u ucj&2sin h cosu ucj 8&. ~55!

It is possible to determine the parameterh so that
^suVuf0&50. The series ofuf0& can be chosen not to interac
with us& ~in the present caseh5u!. On the other hand, in the
series ofuf1&, the dressed states are equally spaced, equ
coupled tous& ~the spacing is« and the coupling constant is
v! as in the zero-field case. The total volume in phase spa
increases at high fields by a factor of 2 but the actual dyna
ics explores only half of it.

That the energy structure of the absorption band is u
changed does not mean that the zero-order manifold$ucj&% is
insulated in the dynamics. It means that the time evolution
the us& level population behaves as in the zero-field case b

FIG. 5. The two extreme cases of the energy structure of field dressed sta
~a! the eclipsed structure and~b! the staggered structure. In the eclipse
structure, the two setsub̂ j&% and $uĉ j&% of dressed states overlap in energ
and in the staggered structure the two sets of dressed states are stagge
that the nearest-neighbor level spacing of dressed states is«/2.
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does not mean that$ubj&% and$ucj&% are uncoupled@see Eq.
~55!#. The phase spacevolumeexplored is the same as in the
zero-field case but the region explored is different. The mi
ing ratioCn/Bn in uf1& is

Cn

Bn
5
2 sin2 u cos2 u

cos4 u1sin4 u
~56!

which is independent ofun&. The coupling between the zero-
order manifolds is enhanced in comparison with that eval
ated from the coefficients ofb andc components inub̂ j&, i.e.,
Cn/Bn5sin2 u /cos2 u. At low fields ~hZ/Egap,1!, the value
given by Eq.~56! is twice as large as sin2 u /cos2 u.

When two dressed states are degenerate, it is alwa
possible, irrespective their coupling strengths~even if the
coupling strength fluctuates!, to find a transformation under
which one state carries coupling strength tous& and the other
does not. By setting the condition̂suVuf0&50 in Eq. ~54!,
one finds

tanh5
sin u

cosu

^suVubj 8&
^suVubj&

.

B. The staggered structure

The staggered structure changes the situation. In F
4~b!, Neff is twice as large asN0. If the level structure is
restricted to the staggered case,Neff/N0 increases with in-
creasinghZ/Egap as shown in Fig. 6~for v/«@1!. Since the
level structure depends onhZ , we have continuously
changed thehZ while keeping the structure staggered, i.e
settingb5p ~l11/2!/2. The value ofh1/2 can be determined
as follows. For the multiplicityM52, the right-hand side in
Eq. ~23! can take values between 4/3 and 3/2. We treat t
value as a constant 3/2:h1/2 is defined as the Zeeman energ
at whichNeff is one-and-a-half times as large as the zero-fie
value N0. We have numerically checked thatN0 is nearly
independent ofEs and is regarded as a function of the ratio
v/« only @calculate Eq.~13!#. It is found that at the limit of
v/«@1 the valueN011 becomes 2(pv/«)2 @insert Eq.~42!
into Eq. ~13! and replace summation with integration#. We

tes:

ed so

FIG. 6. The relation betweenNeff/N0 andhZ/Egap for the staggered struc-
ture. TheN0 is assumed to be large~v/«@1!.
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170 H. Kono and N. Ohta: Efficient quenching in two manifold models
have also noted thatNeff is a function of two ratiosv/« and
hZ/Egap @cf. Eqs.~41a! and~46!–~50!#. The ratioh1/2/Egap is
therefore determined byv/« ~or N0! alone. The relation,
shown in Fig. 7, is obtained numerically by finding thehZ at
which N1/2/N0 becomes 3/2.

The result suggests the possibility that the ratioh1/2/Egap
can be much smaller than 1. The curve however does
agree with the experimentally observed tendency thath1/2
drastically decreases with increasingN0. The magnetic
quenching depends strongly on the vibrational level den
of the triplet state coupled toS1 ~i.e., onN0!. For instance, in
magnetic quenching of pyrimidine, the half-quenching fie
strengthH1/2 for 6a

2 of S1 is less than one-third of that o
6a1 ~the energy difference between the two levels is ab
600 cm21!.21 The magnetic quenching also becomes m
efficient with increasing rotational quantum numberJ8 of the
excited level. In Fig. 8,H1/2 on 0–0 band excitation fo
pyrazine ~j! and pyrazine-d4 ~s! are plotted agains
2J811.20,22 The drastic decrease inH1/2 implies thatN0 is

FIG. 7. The relation betweenh1/2/Egap andN0 for the staggered structure
Theh1/2 have been obtained by settingN1/2/N053/2 @see Eq.~23!#.

FIG. 8. Half-quenching field strengthsH1/2 on 0–0 band excitation for
pyrazine~j! and pyrazine-d4 ~s!. They are plotted against 2J811.
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nearly proportional to 2J811. It is probable thatK scram-
bling in the triplet caused by Coriolis interaction leads to th
selection ruleDK5anything~the breakdown of the symmet-
ric top approximation may also be responsible for it!.50–53

We examine why it is not necessary forh1/2 to be as
large asEgap. The disagreement about the dependence ofh1/2
onN0 will be discussed in detail in Sec. V. As shown in Fig
4~b!, the absorption band contains the strong sequence a
the weak sequence. Another example is given in Fig. 9 f
hZ/Egap52.839 45~Egap510.0!. The solid line represents the
envelopeA1 of the strong sequence and the dotted line re
resents the envelopeA2 of the weak sequence. It is found
that the sum of the two envelopes is nearly equal to th
zero-field envelopeA0(E), irrespective of the field strength

A1~E!1A2~E!'A0~E! ~57!

which means that the decay rate of the fast component
mains unchanged. This is the case for high rotational or v
brational levels ofS1. For such levels,N0 is expected to be
large and the band envelope smoothed~the s-character dis-
tribution locally averaged for small energy intervals! is ex-
pected to be Lorentzian. If the magnetic field increases t
density of states effectively by a factor of 3, the couplin
strengthv2 decreases by a factor of 3~for M53!.

We have found that the envelope of the weak sequence
well approximated by

A2~E!'
v2 sin2 u

@~E2Es!
212~DE/2!2 sin2 u#

~58!

and therefore the strong sequence is well approximated b

A1~E!'A0~E!2A2~E!. ~59!

Equation ~58! indicates that the envelope of the weak se
quence has FWHM of&DEusinuu and height of 2(v/DE!2

~'1/N0!. The width increases linearly withhZ/Egap at low
fields but the height, which is independent of the fiel
strength and a half of the heightA0 (E5Es) at zero field, is

FIG. 9. The envelopes of absorption probabilities for the strong and we
sequences. The parameters used are:hZ52.839 45, Egap510.0, and
n5P51. The solid line represents the envelopeA1 of the strong sequence
and the dotted line represents the envelopeA2 of the weak sequence.
03, No. 1, 1 July 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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171H. Kono and N. Ohta: Efficient quenching in two manifold models
nonzero even at zero field. This suggests that even at
fields there are chances of fitting eigenstates into the en
lope and the magnetic field is more operative than usua
expected from the magnitude of the mixing coefficient sin2 u.

For largeN0, summation in Eq.~13! can be replaced
with integration and only the area of the envelope squaredA2

matters

Neff11

N011
'

(n for hZ50@A
0~En!#

2

(strong@A
1~En!#

21(weak@A
2~En!#

2

'
*@A0~E!#2dE

*@A1~E!#2dE1*@A2~E!#2dE

5
1

12usin uu@4~12&usin uu!/cos 2u21#/&
,

~60!

where the strong and weak under summation symbols den
the eigenvalues belonging to the strong sequence and th
to the weak sequence, respectively. The curve in Fig. 6
identical with Eq.~60!. The asymptotic value in Fig. 7 cor
responds to the approximate valueA17/16 ' 0.26 ob-
tained by setting the last version in Eq.~60! equal to 3/2.
As expected, the last version becomes 2 ashZ/Egap→`.
@The ratio in area between the two sequenc
*A2(E)dE/*A1(E)dE, is estimated to be&usinuu/~2
2&usinuu! by using Eqs.~58! and ~59!.# Equation ~60!
means, as shown in Fig. 7, that the ratioNeff/N0 can be
regarded as a function ofhZ/Egap only and independent of
N0. In what follows we will reveal how the magnetic field
couples zero-order levels and why it distributess character
over many eigenstates so efficiently.

We go over the degree of mixing between the two ze
order manifolds$ubj&% and $ucj&% for each sequence. Figur
10~a! shows the envelopes ofan

2, Bn , andCn values in the
strong sequence and Fig. 10~b! shows those in the weak se
quence. TheBn envelopes are indicated by broken lines a
the Cn envelopes are indicated by dotted lines. T
s-component envelopes are indicated by solid lines@they are
approximated by the envelope functions~58! and ~59!#. The
parameters are the same in Fig. 9. For the strong seque
the b component dominates over thec component but the
degree of mixing depends on the eigenvalue. In the far w
regions (uEn2Esu@DE), the mixing is as small as expecte
from the coefficients ofb andc components inub̂ j& @see Eq.
~51!#; the ratio Bn :Cn is given by cos2 u :sin2 u
~0.935:0.065!. However, as the energy approaches the cen
of the absorption band, thec component grows while theb
component diminishes; at the absorption band center
zero-order manifolds are fully mixed in terms of subtot
population, i.e., the ratioBn :Cn is 1:1. For the weak se-
quence, the majority is reversed~the major component isc
and the minor component isb! but the main feature remains
the same. In the far wing regions, the mixing is small a
given by the coefficients ofb andc components inuĉ j&, i.e.,
Bn :Cn5sin2 u :cos2 u. At the center of the absorption band
the zero-order manifolds are fully mixed.

It is interesting to know how many zero-order levels a
involved in an eigenstate. The number of zero-orderb levels
J. Chem. Phys., Vol. 1Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subjec
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~or c levels! involved in an eigenstateun&, NB ~or Nc!, may
be defined as

NB5
~( jbn j

2 !2

( jbn j
4 ; NC5

~( j cn j
2 !2

( j cn j
4 , ~61!

where the numerators are necessary to take into account
norm of each component. Figure 11~a! shows the envelopes
of these values in the strong sequence and Fig. 11~b! shows
those in the weak sequence. The broken lines denoteNB and
the dotted lines denoteNC . Roughly speaking, as the eigen
state lies closer to the band center, the number of zero-or

FIG. 10. The envelopes of the zero-order componentsan
2, Bn , andCn for ~a!

the strong sequence and~b! the weak sequence. TheBn envelopes are indi-
cated by broken lines and theCn envelopes are indicated by dotted lines
Thes-component envelopes are indicated by solid lines. The parameters
the same as in Fig. 9.

FIG. 11. The number of zero-orderb levels (NB) and that of zero-orderc
levels (NC) for ~a! the strong sequence and~b! the weak sequence. The
broken lines denoteNB and the dotted lines denoteNC . The parameters are
the same as in Fig. 9.
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172 H. Kono and N. Ohta: Efficient quenching in two manifold models
levels involved increases ~which means more
‘‘ergodic’’ !.43,44 The fact thatNB in the weak sequence in-
creases near the band center, shown in Fig. 11~b!, indicates
that the growth of the weak sequence near the band cente
accompanied with mixing among nearbyub& and uc& levels.
The increase inNB in the strong sequence, shown in Fig
11~a!, is due to intramanifold~b-manifold! mixing via theus&
level which takes place at zero field~qualitatively, theNB in
the strong sequence changes with energy as in the zero-fi
case!.

At this stage we briefly summarize the mixing schem
and the mechanism of the growth ofNeff . In the far wing
regions, the field dressed states$ub̂ j&% and$uĉ j&% are approxi-
mate eigenstates of the total HamiltonianH. The former set
corresponds to the strong sequence and the latter set co
sponds to the weak sequence. The mixing between the t
levels ubj& and ucj& in a field dressed state is weak, i.e.
Bn :Cn5cos2 u :sin2 u for the strong sequence, and
sin2 u :cos2 u for the weak sequence. In the far wing regions
an eigenstate contains only oneb-character level and only
onec-character level~a pair of levels connected by the Zee
man interaction!. On the other hand, near the absorptio
band center, inter- and intramanifold mixings are accelerate
that is,NB andNC increase, which concurrently distributes
the s character to more eigenstates.~Here ‘‘intermanifold’’
means ‘‘between theb and c manifolds’’ and ‘‘intramani-
fold’’ means ‘‘among levels of theb manifold’’ or ‘‘among
levels of thec manifold.’’! This is an explanation for the
growth of the weak sequence. One may also say that t

FIG. 12. Zero-order components in eigenstatesun& for the strong sequence:
~a! the coefficient ofubj&, i.e.,$bn j% and~b! the coefficient ofucj&, i.e.,$cn j%,
are given as functions of the eigenvalueEn2Es and the zero-order level
energyEbj2Es or Ecj2Es .
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presence of the doorwayus& level ~or thes–b intramolecular
interactionV! distributes theb and c characters more effi-
ciently ~than in the presence of a magnetic field alone! by
distributing itself over nearby eigenstates.

We next make the above summary more tangible by c
culating coefficients ofubj& and ucj& in eigenstatesun&, i.e.,
$bn j% and $cn j%. The coefficients for the strong and wea
sequences are plotted in Figs. 12 and 13, respectively. T
are given as functions of the the eigenvalueEn2Es and the
zero-order level energyEbj2Es or Ecj2Es . Figures 12~a!
and 13~a! show b coefficients $bn j% and Figs. 12~b! and
13~b! show c coefficients$cn j%. The mechanism of zero-
order level scrambling can be visualized by the couplin
scheme drawn in Fig. 2.

At zero field, there are no intermanifold mixings; th
only existing mixing is the intramanifold one induced byV.
The interactionV scramblesbj levels lying in the rangeDE
aroundEs . The intramanifold mixing existing at zero field
which we will call V-induced intramanifold mixing, is re-
sponsible for the nonzerob coefficients along theEbj5En

line in Fig. 12~a!. In the far wing regions the positive part o
$bn j% exceeds the negative part overwhelmingly, or vic
versa, that is,NB51. As the eigenvalue approachesEs the
positive and negative parts become comparable: theNB in-
creases as shown in Fig. 11~a!.

The Zeeman interaction induces intermanifold mixing.
connects the same vibronic levels$bj and cj % belonging to
different manifolds~HZ-induced sublevel mixing!. For the
strong sequence, as expected from the scheme in Fig. 2,
sublevel mixing creates nonzeroc coefficients along the line

FIG. 13. Zero-order components in eigenstatesun& for the weak sequence:
~a! the coefficient ofubj&, i.e.,$bn j% and~b! the coefficient ofucj&, i.e.,$cn j%.
, No. 1, 1 July 1995to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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173H. Kono and N. Ohta: Efficient quenching in two manifold models
at Ecj5En2Egap @Fig. 12~b!#. The nonzerob coefficients
along theEbj5En line in Fig. 12~a! indicate the companion
~parent! b levels ~these eigenstates areb-character domi-
nated!. For the weak sequence, the eigenstates
c-character dominated. Theb levels appearing along the lin
at Ebj5En1Egap in Fig. 13~a! are paired byHZ with the
parent c levels appearing along theEcj5En line in Fig.
13~b!.

There is nothing new about the mixings we have m
tioned in the above two paragraphs. New types of inter-
intramanifold mixings are induced by the coexistence of
intramolecular interaction and the magnetic field. In the f
lowing we give a full detail of them.

1. Isoenergetic intermanifold mixing

There is no direct interaction betweenbj and cj 8 ~the
chain of existing interactions is likebj⇔s⇔bj 8← cj 8 in
Fig. 2!, but isoenergetic paths are opened up between
zero-order manifolds. The fact that in the weak seque
@Fig. 13~a!# nonzerob coefficients appear at theEbj5En line
indicates that a zero-orderc level can be mixed up withb
levels that are energetically near thec level. This type of
mixing indirectly couple, say,ubj& anducj 8& in Fig. 2. This is
a novel type of mixing we have never realized before. T
key process is the Raman-like second-order o
s⇔bj 8← cj 8 which suppliess character to the zero-orde

FIG. 14. The accessible phase spaces for the eclipsed and staggered
tures. The top represents the sequential coupling scheme. The arrow~⇔!
denotes the intramolecular interactionV that couples the doorway levelus&
to theb manifold and the wavy line~← ! denotes the Zeeman interactio
HZ that couples theb manifold to thec manifold. The size of a box repre
sents the phase space volume of the manifold~the white area representsb
component and the black area representsc component!. The eclipsed struc-
ture converts the sequential coupling scheme to that in the middle, w
only half of the overall phase space is accessible fromus&. The accessible
region is described by$uf1&% and the inaccessible region is described
$uf0&% @see Eqs.~54! and ~55!#. Each phase space volume is identical w
that of theb manifold. Therefore, the time-averaged probability of findi
the system inus&, P(sus), remains unchanged, i.e.,P(sus)51/(N011). For
the staggered structure case, illustrated at the bottom, all the phase sp
accessible at high fields. The probabilityP(sus) can be reduced to
1/~2N011!.
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cj 8 level.54 The resulting state is entitled to interact wit
isoenergetic$bj% levels throughV. One may say that theus&
level triggers isoenergetic mixing between zero-order ma
folds.

On the basis of second-order perturbation theory ths
component in ac-character dominated eigenstate is es
mated byuvhZ/Egap(Es2Ecj) u

2, which explains the feature
of the weak sequence that as the eigenvalue~'Ecj! ap-
proachesEs the s andb components increase. This expre
sion is identical with the second-order expansion form of t
envelope functionA2 @see Eq.~58!#, indicating that the
Raman-like process is the key one. As shown in Fig. 13~a!,
in the far wing regions theb component comes mainly from
the Egap shifted b level connected byHZ-induced sublevel
mixing; in the center, however, the mainb component comes
from isoenergeticb levels @cf. Fig. 10~b!#. A reverse flow is
also generated by the isoenergetic intermanifold mixing
rendersc character to theb-character dominated state. It i
shown in Fig. 12~b! that nonzeroc coefficients appear at the
isoenergetic lineEcj5En . This type of component grows a
the eigenvalue gets closer toEs . It is generally concluded
that in the center of the absorption band the mainb ~or! c
levels included in an eigenstate are isoenergetic ones and
theEgapshifted ones. TheEgapshiftedb levels renders char-
acter to the zero-orderc levels and mediate between isoe
ergeticb and c levels. The role of theEgap shifted level is
important in isoenergetic intermanifold mixing but it i
‘‘catalytic’’ in that near the band center theEgapshifted level
decreases in population.

2. Intramanifold mixing between gap separated levels

Nonzerob andc coefficients exist atEbj5En1Egap in
Fig. 12~a! and atEcj5En2Egap in Fig. 13~b!, respectively.
They are virtually regarded as mixings between intrama
fold levels separated byEgap. One may interpret the mixing
as a virtual second-order perturbation of the Zeeman inte
tion and the isoenergetic intermanifold mixing. For instanc
nonzero components atEbj5En1Egap in Fig. 13~a! are in-
duced by processes such asbj 8← cj 8↔bj ~the arrow↔
indicates the isoenergetic intermanifold mixing!. This type of
virtual second-order process is fourth order in real pertur
tion: the intramanifold mixing between gap separated lev
is the smallest.

C. Results obtained from the two manifold
Bixon–Jortner model

We have examined two extreme energy structur
namely, the eclipsed and staggered structures. Between
two cases there is a major difference; with increasing fi
strength theNeff increases for the staggered structure b
remains unchanged for the eclipsed structure. The differe
can be schematically illustrated by coupling schemes in F
14. The top represents the sequential coupling scheme.
arrow ~⇔! denotes the intramolecular interactionV that
couples the doorway levelus& to the manifold$ubj&% and the
wavy line ~← ! denotes the Zeeman interactionHZ that
couples the manifold$ubj&% to $ucj&%. The size of a box rep-
resents the phase space volume of the manifold~which
should be taken relative!. The eclipsed structure converts th
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174 H. Kono and N. Ohta: Efficient quenching in two manifold models
sequential coupling scheme to that in the middle, where o
half of the overall phase space~$ubj&% and $ucj&%! is acces-
sible from us&. The accessible region is described by$uf1&%
and the inaccessible region is described by$uf0&% @see Eqs.
~54! and ~55!#. Each phase space volume is identical wi
that of $ubj&%. Therefore, the time averaged probability o
finding the system inus&, P(sus), remains unchanged, i.e.
P(sus)51/(N011). The feature thatNeff remains the same
is independent of the magnetic field strength. On the ot
hand, for the staggered structure, all the phase space is
cessible at high fields. The probabilityP(sus) can be reduced
to 1/~2N011!.

What the staggered structure model suggests is in acc
with experimental results on the magnetic quenching.
special importance are the Raman-likes-character transfer to
indirectly coupled background levels, concurrent isoen
getic intermanifold mixing, and resultant weak sequen
They are unique to the energy transfer among three or m
manifolds and are the keys to understanding the reason
the efficiency of magnetic quenching is so high at anom
lously low fields. For the eclipsed structure model, whic
explains nothing with the magnetic quenching, the Ram
like process is not operative. The energy correlation betw
the twodressedstate manifolds$ub̂ j&% and$uĉ j&% prevents a
weak sequence from growing with increasingHZ .

At any field strength, there is a chance that aub̂& dressed
state energetically coincides with auĉ& state. The problem is
that if a perfect staggered structure is impossible even a v
high field will not reduce the quantum yield to 1/2~for
M52! of the zero-field value contrary to the experiment
fact. Necessary conditions for the complete magne
quenching~that the quantum yield is reduced to 1/2 at hig
fields! are:~i! the energy distribution of dressed states at hi
fields is the same type as that of theb manifold and the
average spacing is reduced to«/2; ~ii ! the coupling distribu-
tion at high fields is the same type of that of theb manifold
and the rms of the coupling is reduced to (v j

2)1/2/&. Our BJ
model does not satisfy the above conditions unless the s
gered structure is assumed.

V. A RANDOM MATRIX APPROACH

We have so far used the two manifold BJ model, whe
energy correlations are overstated and fluctuations in
coupling are disregarded. Caution must be exercised on
interpretation of what the model indicates. In real molecul
the energy spacings are not equal and the couplings are
constant. It is therefore impossible for everyub̂& dressed state
to be paired up with auĉ& state of the same energy: a
eclipsed structure is never reached at any field strength. M
of field dressed states do not overlap in energy with ea
other. Because of the irregularity of zero-order level energ
~e.g., the Wigner distribution!, this is the case at any field
strength. The features inherent in the staggered struc
model will survive to some extent. The point is the rat
between eclipsed structure part and staggered structure
which is a matter of level statistics. The basic principle
J. Chem. Phys., Vol. 10Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subject
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that if the two systems have the same spacing and couplin
strength on an average the system with the larger repulsio
parameterr has largerNeff .

We here propose a random matrix approach that can ta
into account effects of the energy and coupling distribution
on the magnetic quenching, and then consider possible typ
of distributions at zero field and at the high field limit and the
role of spin–vibration interaction. Let the electronic wave
function for us& be uA&, and let those for theb andc mani-
folds beuB& anduC&. The total Hamiltonian can be written as

H5uA&HA^Au1uB&HB^Bu1uC&HC^Cu

1$uA&V^Bu1uB&HZ^Cu1h.c.%, ~62!

whereHA , HB , andHC are the rotation–vibration Hamilto-
nians for the three electronic statesuA&, uB&, anduC&, respec-
tively. We next define the average Hamiltonian and the dif
ference Hamiltonian forHB andHC:

H̄5~HB1HC!/2 ~63!

and

DHBC5HB2HC2Egap, ~64!

where Egap is the zero-field splitting at the equilibrium
nuclear configuration of a sublevel potential. Reversibly,HB

and HC are expressed in terms ofH̄ and DHBC ;
HB5H̄1~Egap1DHBC!/2 andHC5H̄2~Egap1DHBC!/2. In
Sec. III, we have assumed that the energy gap between t
sublevel potentials is a constantEgap, irrespective of the
nuclear configuration, i.e.,DHBC50. In general, the gap de-
pends on the nuclear configuration, i.e.,DHBCÞ0. We will
present two mechanisms ofDHBC in Secs. V A and V B.

To write down the matrix elements ofH, we introduce
the eigenfunctions and eigenvalues ofH̄:

H̄u j &5Ej u j &. ~65!

The matrix elements ofH for the basis set$u j &% are given as

^ j 8u^BuHuB&u j &5Ejd j j 81
Egap

2
d j j 81

^ j 8uDHBCu j &
2

,

~66a!

^ j 8u^CuHuC&u j &5Ejd j j 82
Egap

2
d j j 82

^ j 8uDHBCu j &
2

,

~66b!

^suHuB&u j &5v j ; ^ j 8u^BuHuC&u j &5hZd j j 8 . ~66c!

The parameters$Ej ,v j ,^ j 8uDHBCu j &% that are inherent in
the system are provided by considering a variety of energ
distributions and coupling strength distributions. The relation
betweenNeff/N0 andhZ/Egap is obtained by diagonalizing the
matrix at various values ofhZ .

A. The vibrational DHBC caused by a combination of
spin–spin and vibronic interactions

The spin Hamiltonian generally takes the form

Hs52XSX
22YSY

22ZSZ
2, ~67!

whereSX , SY , andSZ are the projections of the electron spin
operator onto the principal axes. The zero-field splittings
caused by spin–spin and spin–orbit interactions,X, Y, andZ
3, No. 1, 1 July 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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175H. Kono and N. Ohta: Efficient quenching in two manifold models
depend on the electronic state.55,56 For example, each con
stant of a pure3pp* is different from that of a pure3np* .
These electronic states are vibronically coupled, which le
to the two adiabatic states

C15aCn1bCp ; C25aCp2bCn , ~68!

where the coefficientsa andb are functions of vibronic cou-
pling modesQ and the subscriptsp andn refer to the pure
3pp* and 3np* states. The zero-field splittings for thes
adiabatic states are functions of nuclear coordinates,
instance,55

X1~Q!5uau2Xn1ubu2Xp 1; Y1~Q!5uau2Yn1ubu2Yp 1.
~69!

If only two spin sublevels in the stateC1 are considered
DHBC can be written as

DHBC5@X1~Q!2Y1~Q!#2@X1~0!2Y1~0!#

5~a221!~Xn2Yn!1b2~Xp2Yp!1•••. ~70!

As the nuclear configuration is shifted from the equilibriu
one, the value ofDHBC can change a few times as much
Egap. In this mechanism~the vibrationalDHBC!, DHBC is a
function of vibrational degrees of freedom. The role
DHBC is examined for the following three cases.

1. Case M: Nonintegrable, strongly coupled systems
with DHBC50

Consider theH̄ that hasf vibrational degrees of free
dom. If the corresponding modes are strongly coupled, o
high vibrational energies, the level spacing distribution
the Wigner distribution well. First, we generate energy sp
ings from a Wigner distribution. The average spacing is
noted by«. The energies of levels are then located in t
energy axis by piling up those spacings~in this sense highe
order level correlations that the GOE should possess are
taken into account but they do not play the key role in
present context!. We choose the coupling strengthsv j from a
Gaussian distribution44,57 with dispersion of~4.5«!2 and set
Egap5100«. Another condition imposed is thatDHBC50
~this restriction will be released in case H!. Figure 15~a!
shows the field dependence ofNeff/N0 ~N0'120!. Seven sets
of random numbers are generated for preparing Wigner
tributions that have the same average spacing« and Gaussian
distributions that have the same coupling dispersion~4.5«!2.
The different marks in Fig. 15~a! correspond to different sets
Almost all values ofNeff/N0 are smaller than the value
~solid line! given by Eq.~60!. Even athZ/Egap52, the aver-
age value ofNeff/N0 is much smaller than the value of 2 th
is expected from the increase in the background level d
sity. This is explained by the level clustering of dress
states that are coupled tous&. At zero field, the spacing dis
tribution is a Brody distribution withr51, i.e., a Wigner
distribution. On the other hand, at the high field limit, th
spacing distribution of dressed states is a combined distr
tion of two Wigner distributions mutually shifted byEgap.
This distribution is well approximated by a Brody distrib
tion with r'0.36~and the average spacingD5«/2!. As hZ is
J. Chem. Phys., Vol. 1Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subjec
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increased, the ratio of overlapping levels becomes higher: t
valueNeff/N0 does not increase as rapid as Eq.~60! and never
reaches 2 on an average.

2. Case L: Integrable, weakly coupled systems

If f degrees of freedom are independent or only weak
coupled~at low vibrational energies!, the eigenstate is de-
fined by f quantum numbers. Those eigenfunctions o
roughly the same energy typically look very different~they
have completely different nodal patterns!. Where these func-
tions overlap in configuration space, they beat violent
against each other: the matrix elements^ j uDHBCu j 8& of the
smooth potentialDHBC are very small, compared to the av-
erage level spacing.DHBC couples strongly only states that
do not differ greatly from each other in the assignment o
vibrational quantum numbers; these states are separate
least by energy of one quantum. Therefore we expe
^ j uDHBCu j 8& to be effectively zero.

At zero field, the spacing distribution will be a Poisson
distribution. At the high field limit, the spacing distribution is
a combined distribution of two Poisson distributions mutu
ally shifted byEgap ~no interactions between them!, which
remains to be a Poisson distribution. That is, the distributio
becomes a Poisson withD5«/2 and the average coupling
strength is reduced to (v j

2)1/2/&. If the couplings were con-
stant,Neff/N0 would approach 2 ashZ increases. For this
case, we have numerically confirmed thatNeff/N0 increases
nearly as rapid as Eq.~60!.

However, for the integrable system, where selectio
rules operate, some couplings are expected to be strong
many others will be very weak. Clustering levels of a Pois

FIG. 15. Relations betweenNeff/N0 and hZ/Egap in the random matrix
model. The energies of levels are determined by piling up those spacin
that are generated from a Wigner distribution of average spacing«. The
coupling strengthsv j are generated from a Gaussian distribution with dis
persion of~4.5«!2 ~Egap5100«!. Seven sets of random numbers are gene
ated for preparing Wigner distributions that have the same average spac
« and Gaussian distributions that have the same coupling dispersion~4.5«!2.
The different marks in the figure correspond to different sets.~a! DHBC50

and ~b! u^ j uDHBCu j 8&u25(2«)2.
03, No. 1, 1 July 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



r-
e

ls
e
d

ck
n
t,
fo

e
a
ls
.

o
in

el
th
ed
ic

n
s

o

i

c

la

rl
It
as
te
-
at
th

o

t

t

h
f

-

go-

-

ic
-

at
e-

ct

-
m-
-

s

ic

176 H. Kono and N. Ohta: Efficient quenching in two manifold models
son distribution will have coupling strengths of different o
ders of magnitude. Consider two nearly degenerate lev
Since they have completely different nodal patterns~other-
wise they would repel each other!, one of the levels will be
strongly coupled tous& and the other level is not. The leve
that are weakly coupled tous& can be combed out of th
background levels$u j &%. The combed background manifol
looks as if level clustering is removed to some extent~level
clustering is substantially less effective in the combed ba
ground manifold than in the Poisson distribution with co
stant coupling!. In the level structure at the high field limi
obtained by superimposing the combed background mani
on the same one shifted byEgap ~note that̂ j uDHBCu j 8&50!,
many levels with relatively large coupling strengths clust
The degree of level clustering is larger at high fields than
low fields. AshZ is increased, the ratio of overlapping leve
becomes higher andNeff/N0 increases more slowly than Eq
~60!. The maximum value ofNeff/N0 is less than 2~on an
average!, as in Fig. 15~a!. These features, which are als
observed in case M, explain why magnetic quenching is
efficient for molecules of small energy separation betweenS1
andT1 ~except excitation onto high rotational levels!.

3. Case H: Nonintegrable, strongly coupled systems
with relatively large DHBCÞ0

TheDHBC , which is as small asEgap, do not affect the
energies and coupling strengths for low vibrational lev
which are mutually separated at spacings much larger
DHBC . However, the case is different for strongly coupl
systems at high energies, i.e., for chaotic systems of wh
average spacings are less than, say, 0.01 cm21. For the ‘‘ir-
regular’’ regime of phase space where the classical motio
ergodic,58 the following assumptions that no integrable sy
tems meet are justified semiclassically:59 ~i! each eigenfunc-
tion is spread over the entire classically allowed region
configuration space appropriate to its energy;~ii ! its coarse-
grained probability density in phase space agrees well w
the classical microcanonical density at that energy;~iii ! the
ergodic wave functions should be ‘‘Gaussian random’’ fun
tions of the coordinatesq, i.e., ^quj & be Gaussian random~a
Gaussian random̂quj & leads to a Gaussian randomv j !.

44

Heller et al.60 have found that an eigenstate in the irregu
regime can display a networked narrow ridge~called
‘‘scars’’! with enhanced intensities which stands out clea
and appears to be coming from classical periodic orbits.
obvious that periodic orbit scar localization contradicts
sumptions~i! and~ii !. Since the ratio of those states to sta
that satisfy conditions~i!, ~ii !, and~iii ! will decrease to mea
sure zero with increasing energy, we do not count eigenst
of scar localization, i.e., we use all three assumptions in
following qualitative discussion.

If the three features are accepted, there are no str
selection rules for^ j uDHBCu j 8&. For wave functions of
roughly the same energy, these matrix elements are of
same order of magnitude. Since^quj & are Gaussian random
functions of the coordinates, the matrix elemen
^ j uDHBCu j 8& ~5*dq*dq8^j uq&^quDHBCuq8&^q8uj 8&! of the
smooth potentialDHBC would be a Gaussian random wit
respect to statesu j & and u j 8&. Let us estimate the order o
J. Chem. Phys., Vol. 10Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subject¬
ls.

-
-

ld

r.
t

-

s
an

h

is
-

f

th

-

r

y
is
-
s

es
e

ng

he

s

magnitude of the dispersionu^ j uDHBCu j 8&u2. A given state
u j & couples mainly to states that lie within a rangeDEc

aroundEj . Outside the range, the mismatch in local wave
length kills the integral̂ j uDHBCu j 8&. DEc is defined such
that ^ j uDHBCu j 8&50 if uEj2Ej 8u.DEc . From the sum
rule61

(
j 8

u^ j uDHBCu j 8&u25^ j uDHBC
2 u j &5O~DHBC

2 ! ~71!

the dispersion u^ j uDHBCu j 8&u2 is estimated to be
O(DHBC

2 )(«/DEc). Upon letting DEc550 cm21 and
«51023 cm21, the rms of^ j uDHBCu j 8& becomes as large as
the average level spacing.

Figure 15~b! is the result for u^ j uDHBCu j 8&u25(2«)2

@the other parameters are the same as in Fig. 15~a!#. Smooth-
ing the fluctuation, one finds that the calculatedNeff/N0
grows as rapid as or more rapidly than Eq.~60!. This sug-
gests that the background dressed states obtained by dia
nalization ofH-V form a staggered structure owing to non-
zero elements of̂j uDHBCu j 8& ~the background dressed state
structure can be revealed by settingv j50!. We have con-
firmed that aroundhZ/Egap52 the background dressed states
form a spacing distribution represented by a Brody distribu
tion of r50.95 ~the average level spacing is«/2! and their
couplings tous& form a Gaussian random distribution of dis-
persion ~4.5«!2/2. For pyrazine, theS1–T1 separation is
;4500 cm21 and theS1–T2 separation is;2900 cm21. At
theS1 origin, the vibrational density of states in the triplets is
2–531023 cm21:25 vibrational modes in the triplets are ex-
pected to be rather strongly coupled. The efficient magnet
quenching in pyrazine is explained by the formation of stag
gered structure due to the vibrationalDHBC .

The mechanism that a staggered structure is formed
high fields is explained as follows. Because of nonzero el
ments of^ j uDHBCu j 8&, isoenergetic levels belonging to dif-
ferent spin sublevels~ubj& anducj 8&! have small but nonzero
vibrational overlap. Then, the magnetic field opens up dire
paths between them~which is another factor to enhance the
efficiency of magnetic quenching!. The interaction energy
between the corresponding dressed statesub̂ j &% and $uĉ j 8& is
estimated to be

^b̂ j uHuĉ j 8&52sin 2u^ j u
DHBC

2
u j 8&. ~72!

If the interaction energy is as large as the average spacing«,
level repulsion occurs in a wide range of energy. The wide
ranging level repulsion causes a staggered structure acco
panied by isoenergetic intermanifold mixing. For this mag
nitude of ^ j uDHBCu j 8&, u j & is distributed among$ubj&% or
$ucj&% over a width of about 10« which is much less than
Egap: the meaning of the energy gapEgap is not fully lost.

B. The rotational DHBC caused by a combination of
spin–rotation and rotation–vibration interactions

Because of the interaction of unpaired electron spin
with the magnetic fields created by molecular rotation~spin–
rotation interaction!,62 the zero-field splittings depend on the
rotational state. For simplicity, we use the oblate symmetr
3, No. 1, 1 July 1995to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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177H. Kono and N. Ohta: Efficient quenching in two manifold models
top approximation and define the rotational state by t
quantum numbersN,K. The spin–rotation interaction can
then be included in theHA andHB as follows:

HB5Hv1Hrv1(
N,K

FB~N,K !uN,K&^N,Ku, ~73!

HC5Hv1Hrv1(
N,K

FC~N,K !uN,K&^N,Ku, ~74!

whereHv represents the vibrational Hamiltonian,Hvr the
rotation–vibration interaction ~Coriolis interaction!,
FB(N,K) andFC(N,K) the rotational energies for the spi
sublevels associated withuN,K&. FB(N,K) andFC(N,K) in-
clude the spin–spin, spin–orbit, and spin–rotation intera
tions. Let FB(N,K) and FC(N,K) correspond to the rota-
tional termsF2(N,K) andF1(N,K), respectively. They have
been derived by Raynes63,64

F2~N,K !5Er~N,K !1
3K2~a2a!

N~N11!
, ~75!

F1~N,K !5Er~N,K !2
3~N11!a

2N13
1~a2a0!~N11!

2
3K2

N11 S a2
a

2N13D , ~76!

whereEr(N,K) is the purely rotational energy, the constan
a0 anda originate from the spin–rotation interaction, anda
J. Chem. Phys., Vol. 10Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subject¬
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originates from the spin–spin interaction.62 These constants
also include effects of spin–orbit interaction.~The meanings
of these constants are the same as those in Ref. 63.! In the
following, we replaceFB(N,K) andFC(N,K) with F2(N,K)
andF1(N,K) whenever it is necessary.

For the above set of Hamiltonians, the difference Hamil-
tonianDHBC is

DHBC5(
N,K

DFBC~N,K !uN,K&^N,Ku, ~77!

where

DFBC~N,K !5@FB~N,K !2FC~N,K !#2@FB~0,0!

2FC~0,0!#. ~78!

This rotationalDHBC , which is a function of rotational de-
grees of freedom, never mixes$u j &% if the rotation–vibration
interactions are weak, i.e., when the total wave function can
be well approximated as a single product ofuN,K& and the
vibrational wave functionufv& ~of which energy isEv , i.e.,
Hvufv&5Evufv&!. However, the rotationalDHBC mixes
$u j &% if a- andb-axis Coriolis couplings causeK mixing to a
great extent. Consider two statesufv&uN,K& and
ufv8&uN,K8& that are mixed by the Coriolis interactions as

u j &5cosjufv&uN,K&1sin jufv8&uN,K8&, ~79!

u j 8&5cosjufv8&uN,K8&2sin jufv&uN,K&, ~80!

where
j5
1

2
tan21

2^N,Ku^fvuHrvufv8&uN,K&
Ev1@FB~N,K !1FC~N,K !#/22Ev82@FB~N,K8!1FC~N,K8!#/2

. ~81!

For this case,DHBC mixes the functionsu j & and u j 8& which are considered eigenfunctions of the average HamiltonianH̄:

^ j uDHBCu j 8&5
sin 2j

2
@DFBC~N,K8!2DFBC~N,K !#5

sin 2j

2

3~K1K8!~K82K !

N S a2
3a

2N13D . ~82!

It is not so difficult to treat cases where many states are mixed by rotation–vibration interaction. In general,u j & takes the
form

u j &5(
K

uf j ,K&uN,K&, ~83!

whereufj ,K& contains only the vibrational degrees of freedom. Using the sum rule@see Eq.~71!#, we find that

(
j 8

u^ j uDHBCu j 8&u25(
K

u^f j ,Kuf j ,K&u2DFBC
2 ~N,K !'

1

2N11 (
K

DFBC
2 ~N,K !5

18~N11!~3N213N21!

30N S a2
3a

2N13D
1N2S a02a1

a

2N13D
2

12N~N11!S a02a1
a

2N13D'~a0
21a2!N2, ~84!
me
where all theK components are assumed to be equally pop
lated in u j & owing toa- andb-axis Coriolis couplings. Non-
zero matrix elements of̂ j uDHBCu j 8& will be distributed
among (2N11)NP levels that are energetically nearu j &,
whereNP is the number of vibrational levels mixed by the
Coriolis couplings52,53 ~NP is regarded as the number o
u-

f

nearly degenerate vibrational levels belonging to the sa
polyad!.65 The dispersion is thus expected to be

u^ j uDHBCu j 8&u25
~a0

21a2!N2

~2N11!NP
. ~85!
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178 H. Kono and N. Ohta: Efficient quenching in two manifold models
The condition that a staggered structure is formed is that
rms of ^ j uDHBCu j 8& is larger than the average level spacin
including the rotational degrees of freedom,

A~a0
21a2!N2

~2N11!NP
>

«

2N11
, ~86!

where« is the average spacing forN50 ~the purely vibra-
tional spacing!.

Take s-triazine, for example.23,66 This molecule is kind
of a small molecule, since the triplet density of vibrationa
states« is ;1 cm21 at the 61 vibrational level ofS1: the
magnetic quenching at this band is inefficient for lowJ8<5
~under collision-free conditions, the amount of quenching
150 G is 10% of the fluorescence quantum yield at ze
field!. Since the energy separation between the 61 of S1 and
theT1 origin is only about 1700 cm

21, the vibrationalDHBC

does not induce a staggered structure. However, in the b
gas at 250 mTorr, where the averageJ8 is about 30, the
amount of quenching at 150 G reaches 40% of the fluor
cence quantum yield at zero field. We attribute this to th
formation of a staggered structure due to the rotation
DHBC . The typical values ofa0 anda for intermediate case
molecules are expected to be about 0.01 cm21 ~0.02 cm21 for
the lowest triplet of H2CO of which rotational constants are
larger than those ofs-triazine!.63 Considering anharmonic
constants,NP would be less than 50. The inequality~86! is
fulfilled for the set of these values~N;J8530!.

VI. SUMMARY AND CONCLUSIONS

In this paper, the effect of magnetic field on ISC ha
been modeled by including two background manifolds$ubj&%
and $ucj&% mutually shifted by the zero-field splittingEgap;
the $ubj&% manifold is coupled to the singlet bright levelus&
by the intramolecular interactionV and the two manifolds
are coupled by the Zeeman interactionHZ . The two mani-
fold model features the magnetic field effect on ISC, thoug
a triplet electronic state has three spin sublevels. The mo
is analyzed on the basis of the two manifold BJ model a
the random matrix approach. In the two manifold BJ mode
it has been assumed that the background level spacings
the couplings tous& are constant~« and v! and no spin–
vibration interactions exist~the Zeeman interaction connect
only the spin sublevels of the same rovibronic levelj and
does not connect the spin sublevels of different rovibron
levels!. In the random matrix approach that can take in
account level statistics, the role of indirect spin–vibratio
interactions in magnetic quenching has been examined.

By analyzing the two manifold BJ model, we have foun
that two extreme energy structures, namely, the eclipsed
staggered structures, are of special importance. They are
fined by using the field dressed states for the backgrou
HamiltonianH01HZ~5H2V!. There are two sets of field
dressed states,$ub̂ j&% and$uĉ j&% ~ub̂ j& anduĉ j& are liner com-
binations of ubj& and ucj&!. We call the structure eclipsed
when the two sets of dressed states overlap in energy and
it staggered when everyub̂& state is just between two adja
cent uĉ& states. The energies of the field dressed states s
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with the Zeeman energyhZ . The eclipsed and staggere
structures alternatively appear at intervals of about«/2 in hZ .

Between the two cases there is a major difference; w
increasinghZ the number of effectively coupled backgroun
levels,Neff , increases for the staggered structure but rema
unchanged for the eclipsed structure. When two dress
states are degenerate~in the eclipsed case, everyub̂& dressed
state energetically coincides with one ofuĉ& states!, it is al-
ways possible, irrespective of their coupling strengths,
find a transformation under which one state carries coupli
strength tous& and the other does not. This is the reason w
Neff remains constant with increasinghZ if the level structure
is restricted to the eclipsed one.

What the staggered structure model suggests is in acc
with experimental results on the magnetic quenching. In t
far wing regions of the absorption band, the field dress
states$ub̂ j&% and $uĉ j&% are approximate eigenstates of th
total HamiltonianH. In these regions, an eigenstate contai
only oneb-character level and only onec-character level~a
pair of levels connected by the Zeeman interaction! and the
mixing between the two levelsubj& anducj& is determined by
the ratiohZ/Egap: the mixing between zero-order levels~in-
termanifold mixing! is small as long as the ratiohZ/Egap is
small. On the other hand, near the absorption band center,
s component is transferred to background levels$ucj&% by the
second-order Raman-like process due toV andHZ , which
distributes thes character to more eigenstates~intermanifold
mixing isoenergetic tous&!. The intermanifold mixing is en-
hanced by the presence of the doorwayus& level ~or V!.
Consequently, if the levels structure is restricted to the sta
gered one,Neff increases with increasinghZ more rapidly
than expected for the far wing regions.

In the two manifold BJ model, energy correlations a
overstated and fluctuations in the coupling are disregard
In real molecules, the energy spacings are not equal and
couplings are not constant. It is impossible for everyub̂&
dressed state to be paired with auĉ& state of the same energy
As long as spin and vibration do not interact with each oth
it is also impossible for all the dressed states to be non
generate. Neither perfect eclipsed structure nor perfect st
gered structure are possible. The problem is that if a perf
staggered structure is impossible even very high fields w
not reduce the quantum yield to 1/2~for M52! of the zero-
field value contrary to the experimental fact.

Necessary conditions for the complete magnetic quen
ing ~that the quantum yield is reduced to 1/2 at high field!
are:~i! the energy distribution of dressed states at high fiel
is the same type as that of theb manifold and the average
spacing is reduced to«/2; ~ii ! the coupling distribution at
high fields is the same type of that of theb manifold and the
rms of the coupling is reduced to (v j

2)1/2/&. Our BJ model
does not satisfy the above conditions unless the stagge
structure is assumed. We have solved the problem by us
the random matrix approach that can consider level statis
of background levels and spin–vibration interaction.

In the random matrix approach, the doorway electron
stateuA& and two background electronic statesuB& and uC&
are introduced. The total HamiltonianH is constructed of the
3, No. 1, 1 July 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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179H. Kono and N. Ohta: Efficient quenching in two manifold models
rotation–vibration Hamiltonians for the three electron
states involved, HA , HB , and HC . The difference
DHBC[HB2HC2Egapplays the key role, whereEgap is the
zero-field splitting at the equilibrium nuclear configuratio
In the presence of spin–vibration interaction, the energy
between the sublevel potentials depends on the nuclear
figuration, i.e.,DHBCÞ0. Two mechanisms ofDHBC have
been presented: theDHBC caused by a combination of spin
spin and vibronic interactions~the vibrationalDHBC! and the
DHBC caused by a combination of spin–rotation a
rotation–vibration interactions~the rotationalDHBC!.

The vibrationalDHBC is a function of vibrational de-
grees of freedom and the rotationalDHBC is a function of
rotational degrees of freedom. The matrix elements ofH are
written down in terms of the eigenfunctions$u j &% and eigen-
values $Ej% of the average Hamiltonian (HB1HC)/2. The
role of the vibrationalDHBC depends on the density of v
brational states and on how strongly the vibrational mo
are coupled.

For a system where the vibrational modes are stron
coupled, the energies of levels are given by a Wigner dis
bution and the coupling strengths are given by a Gaus
distribution. If the rms of̂ j uDHBCu j 8& is smaller than the
average level spacing, the calculated values ofNeff/N0 are,
on an average, smaller than Eq.~60! for the staggered case i
the two manifold BJ model. At zero field, the spacing dist
bution is a Brody distribution with the repulsion parame
r51, i.e., a Wigner distribution, but at the high field limi
the spacing distribution of dressed states is a combined
tribution of two Wigner distributions mutually shifted b
Egap. This distribution is well approximated by a Brody di
tribution with r'0.36. AshZ is increased, the ratio of over
lapping levels becomes higher: the valueNeff/N0 does not
increase as rapidly as Eq.~60! and never reaches 2 on a
average.

For weakly coupled systems, the spacing distribut
will be a Poisson distribution. The eigenfunctions of rough
the same energy typically look very different and they b
violently against each other: the matrix elemen
^ j uDHBCu j 8& are negligible. Consequently, the spacing d
tribution at the high field limit is a combined distribution o
two Poisson distributions mutually shifted byEgap, which
remains to be a Poisson distribution~the average spacing an
coupling strength are, respectively, reduced to 1/2 and
1/&!. If the couplings were constant, with increasinghZ ,
Neff/N0 would approach 2 andNeff/N0 increases nearly a
rapid as Eq.~60!. However, for weakly coupled system
where selection rules operate, some couplings are expe
to be strong and many others will be very weak. Cluster
levels of a Poisson distribution will have coupling streng
of different orders of magnitude. The levels that are wea
coupled tous& can be combed out of the background lev
$u j &%. The combed background manifold looks as if lev
clustering is removed to some extent. In the level structur
the high field limit, obtained by superimposing the comb
background manifold on the same one shifted byEgap, many
levels with relatively large coupling strengths cluster. T
degree of level clustering is larger at high fields than at l
fields. As hZ is increased, the ratio of overlapping leve
J. Chem. Phys., Vol. 1Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subjec
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becomes higher andNeff/N0 increases more slowly than Eq.
~60!. The maximum value ofNeff/N0 is less than 2~on an
average!. These features explain why magnetic quenching
inefficient in molecules of small energy separation betwee
S1 andT1.

For strongly coupled systems, there are no strong sele
tion rules for ^ j uDHBCu j 8&. For wave functions of roughly
the same energy, these matrix elements are Gaussian rand
The dispersion u^ j uDHBCu j 8&u2 is estimated to be
O(DHBC

2 )(P̄/DEc), whereDEc is the range outside which
the mismatch in local wavelength between wave function
kills the integral^ j uDHBCu j 8&. Upon lettingDEc550 cm21

and«51023 cm21, the rms of̂ j uDHBCu j 8& becomes as large
as the average level spacing. When the rms of^ j uDHBCu j 8&
is as large as the average spacing, the calculatedNeff/N0

grows as rapidly as Eq.~60!. Nonzero elements of
^ j uDHBCu j 8& let isoenergetic levels belonging to differen
spin sublevels~ubj& and ucj 8&! vibrationally overlap. The ef-
fect ofDHBC is therefore twofold: theDHBC , together with
the magnetic field causes wide-ranging level repulsion lea
ing to a staggered structure~which is accompanied by the
efficient isoenergetic intermanifold mixing! and opens up
isoenergetic paths between the two manifolds~which also
enhance the efficiency of magnetic quenching!. The efficient
magnetic quenching in pyrazine can be explained by the fo
mation of staggered structure due to the vibrationalDHBC ,
since theS1–T1 separation is as large as 4500 cm21.

The rotationalDHBC mixes$u j &% if a- andb-axis Cori-
olis ~in the oblate case! couplings causeK mixing consider-
ably. Nonzero matrix elements of^ j uDHBCu j 8& will be dis-
tributed among (2N11)NP levels that are energetically near
u j &, whereNP is the number of vibrational levels mixed by
the Coriolis couplings. Then, the condition that a stagger
structure is formed is Eq.~86!, i.e., the inequality that the
rms of ^ j uDHBCu j 8& is larger than the average level spacin
including the rotational degrees of freedom. It is known fo
s-triazine that for lowJ8<5 the amount of quenching at 150
G is 10% of the fluorescence quantum yield at zero field b
in the bulk gas~the averageJ8;30! it amounts to 40%. We
attribute this to the formation of a staggered structure due
the rotationalDHBC , since the energy separation betwee
theS1 andT1 origins is only about 1000 cm21.

The question left to us is a quantitative one: How muc
do the characteristic mechanisms proposed in this pap
function in real molecules? We should employ methods
discussing quantitatively without providing energy levels an
their couplingsa priori. That is, potential surfaces are inpu
data. In a previous paper,67 we have presented a method~the
filtered energy Lanczos method! to simulate intermediate
case radiationless transitions for given potentials. The str
egy consists of three steps:~1! computation of an optically
prepared state at a time just after the pump pulse has
cayed; ~2! extraction of eigenfunctions from the optically
prepared state;~3! calculation of time-dependent quantities
such as the fluorescence intensity using the eigenfunctio
obtained. The first step can be carried out by time-depend
methods for wave-packet dynamics.68,69 In the second step,
Lanczos vectors are generated, from the prepared state, w
an energy filtered Hamiltonian and diagonalize the unfiltere
03, No. 1, 1 July 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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180 H. Kono and N. Ohta: Efficient quenching in two manifold models
Hamiltonian. Preliminary calculations have been perform
for systems of two vibrational degrees of freedom~the den-
sity of states is;20/cm21!: an accuracy of 1025 cm21 can
easily be obtained. The long time dynamics up to;1 ms is
within reach. As shown in this paper, magnetic quench
can be discussed by calculatingNeff from the eigenfunctions
~also by calculating the time-resolved fluorescence sign!.
Correlation between energy and coupling will be adequa
taken into account by putting realistic potential surfac
Work based on these approaches will be reported elsewh

To conclude this paper we would like to point out th
the problem we are tackling is not restricted to the magn
quenching of fluorescence but rather general: What happ
when three or more sequentially coupled potential surfa
are involved in the dynamics? Our model implies that ene
transfer or mixing is enhanced by adding more potential s
faces.
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41E. Haller, H. Köppel, and L. S. Cederbaum, Chem. Phys. Lett.101, 215

~1983!; Phys. Rev. Lett.19, 1665~1984!.
42R. J. Bell and P. Dean, Faraday Discuss. Chem. Soc.50, 55 ~1970!.
43E. J. Heller, J. Chem. Phys.72, 1337~1980!; E. J. Heller and M. J. Davis,
ibid. 86, 2118 ~1982!; E. B. Stechel and E. J. Heller, Annu. Rev. Phys.
Chem.35, 563 ~1984!.

44E. J. Heller and R. L. Sundberg, inChaotic Behavior of Quantum Systems,
NATO Adv. Study Ser. B Vol. 120, edited by G. Casati~Plenum, New
York, 1985!, p. 255.

45E. J. Heller, J. Chem. Phys.92, 1718~1990!.
46M. L. Goldberger and K. M. Watson,Collision Theory~Wiley, New York,
1964!.

47B. Carmeli and A. Nitzan, J. Chem. Phys.72, 2054~1980!.
48B. Carmeli, R. Tulman, A. Nitzan, and M. H. Kalos, Chem. Phys.72, 363

~1982!.
49S. D. Druger, J. Chem. Phys.68, 5250~1978!.
50H. Kono, S. H. Lin, and E. W. Schlag, J. Chem. Phys.77, 4474~1982!.
51M. Aoyagi and S. K. Gray, J. Chem. Phys.94, 195 ~1991!.
52A. B. McCoy, D. C. Burleigh, and E. L. Sibert III, J. Chem. Phys.95,
7449 ~1991!.

53D. C. Burleigh and E. L. Sibert III, J. Chem. Phys.98, 8419~1993!.
54H. Kono, Y. Nomura, and Y. Fujimura, Adv. Chem. Phys.80, 403 ~1991!.
55M. Terazima, S. Yamauchi, and N. Hirota, J. Chem. Phys.83, 3234

~1985!; J. Phys. Chem.89, 1220~1985!.
56H. Hayashi and S. Nagakura, Mol. Phys.24, 801 ~1972!.
57R. D. Levine, Adv. Chem. Phys.70, 53 ~1988!.
58I. C. Percival, Adv. Chem. Phys.36, 1 ~1977!.
59M. V. Berry, J. Phys. A10, 2083~1977!; M. V. Berry, J. H. Hannay, and A.
M. Ozorio de Almaida, Phys. D8, 229 ~1983!; M. V. Berry, in Chaotic
Behaviour of Deterministic Systems, edited by G. Iooss, R. Helleman, and
R. Stora~North-Holland, New York, 1983!, p. 171.

60P. O’Connor, J. Gehlen, and E. J. Heller, Phys. Rev. Lett.58, 1296~1987!.
61P. Pechukas, Phys. Rev. Lett.51, 943 ~1983!.
62J. H. Van Vleck, Rev. Mod. Phys.23, 213 ~1951!.
63W. T. Raynes, J. Chem. Phys.41, 3020~1964!.
64W. T. Raynes, J. Chem. Phys.44, 2755~1965!.
65M. E. Kellman and L. Xiao, J. Chem. Phys.93, 5821~1990!; J. P. Pique,
J. Manners, G. Sitja, and M. Joyeux,ibid. 96, 6495~1992!; A. D. Bykov,
O. V. Naumenko, L. N. Sinitsa, B. P. Winnewisser, M. Winnewisser, P. S
Ormsby, and K. Narakari Rao, J. Mol. Spectrosc.166, 169 ~1994!.

66N. Ohta and T. Takemura, J. Phys. Chem.94, 3466~1990!; J. Chem. Phys.
93, 877 ~1990!.
3, No. 1, 1 July 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



181H. Kono and N. Ohta: Efficient quenching in two manifold models
67H. Kono, Chem. Phys. Lett.214, 137 ~1993!.
68R. Kosloff, J. Phys. Chem.92, 2087~1988!; Annu. Rev. Phys. Chem.45,
145 ~1994!; C. Leforestieret al., J. Comput. Phys.94, 59 ~1991!.

69M. D. Feit, J. A. Fleck, Jr., and A. Steinger, J. Comput. Phys.47, 412
J. Chem. Phys., Vol. 1Downloaded¬16¬Oct¬2008¬to¬130.34.135.158.¬Redistribution¬subjec
~1982!; H. Kono and S. H. Lin, J. Chem. Phys.84, 1071~1986!; H. Kono
and Y. Fujimura, Chem. Phys. Lett.184, 497 ~1991!; M. Suzuki, Phys.
Lett. 146, 319 ~1990!; A. D. Bandrauk and H. Shen, Chem. Phys. Lett.
176, 428 ~1991!.
03, No. 1, 1 July 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp


