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The magnetic quenching of fluorescence in intermediate case molecules is modeled by including
two triplet manifolds{|b;)} and{|c;)} mutually shifted by the zero-field splitting,, (though a
triplet has three spin sublevglshe{|b;)} are coupled to a bright singlet sta&® by intramolecular
interactionV and the two manifolds are coupled by a magnetic field. For the two manifold Bixon—
Jortner model where the level spacings and the couplings tare constant and no spin—vibration
interactions exisfthe Zeeman interaction connects only the spin sublevels of the same rovibronic
level j), there are two sets of field dressed elgensta{tbbp} and {|c;)}, of the background
Hamiltonian H—V. |b> and |c;) are liner combinations ofb;) and |c;). We call the energy
structure “eclipsed E)” when the two sets of dressed states overlap in energy and call it “staggered
(S)” when every |b> state is just between two adjacejd) states. TheE and S structures
alternatively appear with increasing Zeeman endrgyAs h; increases, the number of effectively
coupled background level®N 4, increases for th& structure but remains unchanged for the
structure. Thes structure is in accord with the experimental result that the quantum yield is reduced
to 1/3 at anomalously low field$h,/E4,;<1): in the far wing regions of the absorption band the
mixing between the manifolds is determined by the rajéE,,, but near the band center the
intermanifold mixing is enhanced by the presencésdf Using a random matrix approach whete

is constructed of the rotation—vibration Hamiltoniathg andH arising from the manifold$|b;)}

and {|c;)}, we show that anS structure can be formed in real molecules by nonzero
AHgc=Hg—Hc—Egqy (Egqp is the zero-field splitting at the equilibrium nuclear configuration
Indirect spin—vibration interactions lead foHz~+#0; the vibrationalAHg - caused by spin—spin

and vibronic interactions and the rotationmaH - caused by spin—rotation and rotation—vibration
interactions. The matrix elements lfare written down in terms of the eigenfunctiofig)} of the
average HamiltonianHg+Hc)/2. If the vibrational modes are strongly coupl@ébe energies of
levels are given by a Wigner distribution and the coupling strengths are given by a Gaussian
distribution, the vibrational(j|AHg¢|j’) for wave functions of roughly the same energy are
Gaussian random. As the rms @fAHg|j’) approaches the average level spadiog excitation

into higher vibrational leve)s the efficiency of magnetic quenching becomes as high as isthe
case. Nonzerdj|AHgc|j') let isoenergetic levels belonging to different manifolds vibrationally
overlap: theAHg, together with the magnetic field, causes level repulsion leading tdSthe
structure and opens up isoenergetic paths between the manifolds. The efficient magnetic quenching
in pyrazine can be explained by the vibratiodeH g, since theS,—T, separation is as large as
4500 cm®. If Coriolis couplings caus& scrambling considerably, the rotationAHg- mixes

{lj)}- This mechanism explains the rotational dependence of magnetic quenchsrtgarine of
which S;—T; separation is only~1000 cm . © 1995 American Institute of Physics.

I. INTRODUCTION coupling. In the case where the direct spin—orbit coupling

between the singlet and triplet vanishes, there is a chance for
econd order processes to couple the two electronic states. In

that casey is written as a product combination of two in-

cess. The conventional model to describe the process is &&raction operatore.g., the spin—orbit operator and the vi-
follows:1~" a “bright” level |s) (carrying optical transition Pronic interaction operathf o S
probability) is coupled to a more dense manifold of back- The selection rules for radiationless transitions in inter-
ground vibronigrovibronic) levels{|b;)} by an intramolecu- Mmediate case molecules such as pyrazine can be adequately
lar interactionV. For intersystem crossingSC), |s) is a  described in Hund's coupling cage).*"**Among the quan-
vibronic level of a singletle.g.,S;) and{|b;)} is a set of tum numbers used are the rotational angular momerhiim
vibronic levels in a triplet; the subscript denotes the electron spin angular momentuB) and total angular mo-
rotation—vibration levels in the triplel is the spin—orbit mentumJ. Interactions involving nuclear spins are ignored

Radiationless transition is a change in the electronic state
of a molecule’™® In many cases, two electronic states
two potential surfacgsare involved in a radiationless pro-
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H. Kono and N. Ohta: Efficient quenching in two manifold models 163

IVs;N'.K",S' =0, J' ) VN, K,S=1,J) fpr a substantial subl-evel mixing.or for_ a substantial reduc-
tion in the quantum yield30 GHz is equivalent to T0G for
—_ Ny U} g=2). What have been measured are however controversial;
$ —_ N’ appreciable quenching occurs at fields that are as small as 20
— N+l N'H] G 18-24
_ N +2 )

Matsumotoet al!®!° have suggested, as one reasonable
explanation, that the “Zeeman mixing process” connects the
sublevel components of different rovibronic levels. The pro-
\ -_— N'-} cess is called “intervibronic mixing.” This idea seems to be

- supported by experimental observations that the efficiency of
magnetic quenching increases with increasing vibrational
level density in the triplet statéfor pyrazine, the average

—_— N -2 spacing between adjacent vibronic levels neaiSherigin is
N — N1 N less than 0.3 GHz if all the rovibronic levels are counted
- The vibrational state dependence of the fluorescence quan-
FIG. 1. A schematic illustration of spin spliting. The tum yield and the time resolved decay lead to an important
lvs;N’,S'=0,"=N’) and|vy;N,S=1,J) denote singlet and triplet lev- fact that magnetic quenching is more efficient on excitation
els, respectivelyvs andvy denote rovibronic states of the singlet and trip- jntq higher vibrational level i, than on excitation into the
let). Each|vy;N,S=1,J) level is split into three spin sublevels. The spin . . 0-24.26
sublevels belonging to a rovibronic levéy;;N) have differentJ=N vibrationless levef It has also been reported that mag-
+1,N,N—1. In the absence of external field, only one of them that satisfiesnetic quenching becomes more efficient with increasing
the selection ruledJ=0 is coupled tdvs;N',S",J"). J' 18-24The observation suggests thég; increases with in-
creasingJ’. Presumably, Coriolis coupling in the triplet
breaks down th& K =0 selection ruléK is the projection of

in this paper. The singlet and triplet levels are then denote® Onto theﬁ Z;nggecular fixed axis This is called ‘K

by |vs;N’,S'=0,'=N’) and|vy;N,S=1,J), respectively ~Scrambling.™~

(wherevg andv; denote rovibronic states of the singlet and ~ However, unless spin and vibration are directly or indi-
triplet). Each|vy;N,S=1,J) level is split into three spin rectly coupled to each other, the Zeeman interaction cannot

sublevels by spin—spin and spin—orbit interactions. A schedirectly connect the spin sublevels of different rovibronic
matic illustration of spin splitting is drawn in Fig. 1. The spin levels. What it directly connects are the different sublevels of
sublevels belonging to a rovibronic level; ;N) have differ- the same rovibronic levefintravibronic mixing. Without
entJ=N+1,N,N—1. These sublevels are denoted by thesSpin—vibration interaction, the overlaps between the spin
fine structure components,, F,, andF3, respectively. sublevels of different rovibronic levels vanish. Coriolis cou-

We restrict ourselves to gas phases at low pressures. phng alone does not induce intervibronic mixing. This can be
the absence of external field, the space is isotropic: the totgllarified by using a representation in which Coriolis coupling
angular momentund is conserved in ISC, i.e]=J'10-12  is diagonalized. We believe that some kind of “mechanism”
The selectively excited singlet levilig;N’S'J’) is coupled is hidden behind the idea of intervibronic mixing. The pur-
by V to three levels of a|VT> manifold, those with pose of this paper is to find out the mechanism of intervi-
J=J"=N’ of the spin sublevels. The arrows>) in Fig. 1  bronic mixing and to explain why the quantum yield is re-
represent such couplings. Of the three spin sublevels belongiuced to 1/3 at anomalously low fields.
ing to the same rovibronic levéy;;N), i.e., of F;, F,, and In this paper, the effect of magnetic field on ISC is mod-
F3, only one level is coupled tpvg;N’S'J"). eled by adding another background maniféld;)} coupled

If an external magnetic field is applied, thdd=0 selec-  to {|b;)}; the coupling between the sublevéls) and|c;) is
tion rule is no longer meaningful. When the magnetic field isinduced by a magnetic fiekin the absence of spin—vibration
strong enough to fully decouple the electron sBifrom the  interaction the Zeeman interaction mingles only the spin sub-
molecular axis, the spin sublevels with differedt are levels of the same rovibronic levg). A manifold means a
mingled among one another by the Zeeman interaction, ansket of rovibronic levels that have the same total angular mo-
the singlet level can interact with all the triplet spin mentumJ. The term “intervibronic” can be put into “inter-
sublevelst®~1® At zero field, the three sublevels;, F,, and  manifold excluding intravibronic.” The background mani-
F5 are split from one another by the order of Gtz Hund’s ~ fold {|b;)} is a set of rovibronic levels that are directly
case(b) the zero-field splittings of spin sublevels are as-coupled to|s) by the intramolecular interactioV, e.g.,
sumed to be much smaller than the separation between adjflvy;N=N',S=1,J=N’)}, and the manifold|c;)} is a set
cent rotational leve)s As the Zeeman energy becomes largerof rovibronic levels that are not directly coupled|&), e.g.,
than the zero-field splittings, the magnetic field mingles the{|v;;N=N’,S=1,J=N’+1)}. A manifold can be associ-
spin sublevels sufficiently: the number of the rovibronic lev-ated with a potential surface that yields the vibronic levels
els effectively coupled t¢s), No¢, is expected to increase by {|v1)}. Without spin—vibration interaction, the potential sur-
a factor of 3 and the probability of returning te) will be  faces corresponding to different manifolds are of the same
reduced to 1/3 of that at zero field. For pyrazine, the zeroform and mutually shifted in energy by the zero-field split-
field splittings are on the order of 1 GHZwhich means that tings.
300 G in magnetic field strength is expected to be necessary We deal with the two manifold model, though a triplet
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164 H. Kono and N. Ohta: Efficient quenching in two manifold models

electronic state has three spin sublevels. Our model willThroughout this paper, the “intermediate case” is assumed,
serve as a prototype to draw characteristic features of ththat is, the average level spaciagnd the average coupling
magnetic field effect on ISC. The model is treated in Secs. lIv are assumed to fulfill the relations>%y, andv=e¢.

and IV on the basis of the assumptions used in the Bixon— The first sum represents the population decays of indi-
Jortner modél (equally spaced background levels with avidual eigenstategincoherent contributionand the second
constant coupling t¢s)). A random matrix approach is also one represents thecharacter interference among eigenstates
used in Sec. V to take into account level statisticsVe  (coherent contribution?®%343The coherent excitation over
examine how the nearest-neighbor spacing distribution anthe bandwidth AE results in a rapid phase collapse
the coupling strength fluctuation affect the magnetic quench¢‘dephasing”) among the eigenstates excited. The dephasing
ing. The role of indirect spin—vibration interactions in mag-at early times {<A/AE) is purely exponential if the

netic quenching is also examined in Sec. V. s-character distribution functioabsorption profilg is a
Lorentzian, that is, for the case of equally spaced, equally
Il. PRELIMINARIES coupled |b;) levels (the so-called Bixon—Jortner moglél

Even for randomly spaced, randomly couplbp} levels it is
In this introductory section, we outline the eigenstatevery close to exponentidf. The decay constant for this fast
approach to time-resolved studies of an excited molecule andephasing;, is generally equal tdE. The FWHMAE is
review the relation between the time-resolved fluorescencgpproximately given as
pattern and the level statistics. To relate our model with ex-
perimental observables, we make connections among the 2mv2

magnetic field strength, quantum yield, aNg. ve=AE= . (5)
€

A. Time evolution and level statistics

The time evolution of a molecule undergoing radiation-  S{rong recurrences of fluorescence occur at integer mul-
less transitions can be described as follows. As usual, whPles of timet=2m#/e if the eigenstateg|n)} are equally
suppose that a “bright” levels) is coupled to a more dense spaced by (for equally spaced, equally couplé}) levels
manifold of background rovibronic levelgb;)} through an the resultant eigenstate are nearly equally spadeéds type

intramolecular interactio®. The eigenfunctiongn) of the of recurrence is ascribed to the coherent term. For a random
molecular HamiltoniarH can be expressed as a liner com- distribution of energy levels, such recurrences are smeared

bination of the zero-order levels out and only slight undulations are observed; they become
negligible once the coherent contribution fully decays, i.e.,
Iny=a |S>+E by [b:) (1) aftert>#%/AE (especially when ensemble averages, such as
n — PnjlPj/
i

over the rotational constatt, are necessaryThe slow de-

cay aftert>#/AE thus comes mainly from the sum of inco-
H[n)=%iwn[n), (2 herent decays of individual eigenstaf&8s

where the coefficients are determined by the energids)of The energy levels for a set of independent oscillators

and{|b;)} and by the couplings; between|s) and{|b;)}. (integrable systejnare independently distributed in the en-

The s-level character is distributed among eigenfunctions€rgy axis. A collection of those levels will have many levels

We denote the full width at half-maximuFWHM) of dis-  close or overlapping. The distributioR(S) of nearest-

tribution by AE. neighbor spacingss exhibits “level clustering” (P#0 at
The time evolution of the system can be described inS=0), and fits the Poisson distributith>* (except for the

terms of{|n)}. The initially prepared state is identical to the case where the system is harmoffic

nonstationary|s) level when the pulse duration is shorter

than#/AE."3233For such excitation, the time dependence of P(S)= = expl — S ®)
the initially prepared state is written as D D/’
|\]I(t)>:exq—th/ﬁ)|s>:z a¥|nye 'ent, (3 WwhereD is the local average spacing. If the level spacing
n

distribution is given by a Poisson distribution, the fluores-

The time evolution of the fluorescence intensityt), can be ~ cence decay is characterized by the biexponential form
determined by projecting out of this wave function the bright

level charactets): () =T A} exp(—yt) +Ac exp(— yct)]. (7
L1(t)=Tg[(s| W (1))|? The decay constant for the incoherent compongntis con-
sidered the average ¢f,} over the eigenstates ihE.
=Ty > |an*e "'+2>, > |ag?am? For a set of strongly coupled oscillators, the mode cou-
n n<m

plings will split some of degeneracies, shifting the distribu-
tion towards larger spacings. In the extreme limit represented
X co§ (wp— wpy)t]e” Tt (4) by completely random matrices, such as the Gaussian or-
thogonal ensembl€§GOE), the distribution is accurately
where we have included the radiative ratd)f I';, and the  characterized by the Wigner surmise which exhibits “level
longitudinal relaxation rate of the eigenstata), 7y,. repulsion” (P=0 at S=0)*!
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T S x| S)\? The meaning oN is enriched by the observation that
PS)=5pzexn— 7 5) (8)  the time averaged probability of finding the systemshis,
43-45

given the system being ifs) initially,
The distribution has its peak &-=0.8D. This level correla- 1t

tion causes a depression of the fluorescence intensity just — i T 2 44 4

after the decay of the fast componénfThis depression is P(S|S)_T|TL T fo (sIw ) dt_; 2l 14
called the correlation hole, which Hubet al*” have de-

tected in fluorescence decays following excitation of jet-where we have used Eg3) neglecting all the relaxation
cooled butynal. In this case, ekpyt) in Eq. (7) should be ~ constants. Sincé(s|s) can be interpreted to be inversely

replaced witf®3° proportional to the phase space volume explored by the dy-
namics(in general, including electronic and spin degrees of
[1—ba(Dt)Jexp(—»t), freedon), the inverse oP(s|s) is a measure of the number

whereb,(t) is the Fourier transform of the two-level cluster Of participating states, i.eR(s[s) =1/(Ney+1). The defini-

functionY (w)! [the function 1Y ,(w) gives the probability ~tion (13) can be rationalized in this way. _

of observing a level at a distaneefrom a given leve). So far we have mentioned the three casesthe BJ
Some other distribution functions have been proposed t§0del (the level energies are perfectly correlatedi) the

cover intermediate regimes between the two extreme limit§0isson distributiorithe energies are uncorrelated, randomly

(namely, the Poisson and Wigner distributipismong them  distributed; (iii) the Wigner d|str|b_ut|on(the energies are

is the Brody distribution with the “repulsion parameter” correlated to some extentin the time-dependent fluores-

r 3149Given a level aE, let x(S)dS be the conditional prob- Cence signal, the three cas@ (ii), and(iii) characteristi-

ability that the next energy level falls in the range4 S,E cally s_how the strong recurrence, blexponentlal decay, and

+S+dS| when the interval of lengtS contains no levels. the existence of correlation holes, respectively. If the corre-

Then, the nearest-neighbor spacing distribution is expressd@tion hole is difficult to experimentally detect, the decay is
adl approximated by the biexponential form. The observed fluo-

rescence decay can be explained by either ¢aser case
(iii); energy correlation is exaggerated in cdgeHowever,
the meaning oN.¢ remains the same and valid for any of the

three cases. The two manifold BJ model will help us under-

where the exponential factor represents the probability thagisng the magnetic field effect on ISC, since the effect can be
the interval of lengtfS contains no levels. The Brody distri- jiscussed througN (shown in Sec. Il B. We adopt the
bution comes from assuming thgtS) is proportional taS": 5 manifold BJ model in Sec. Il to discuss the magnetic

(1+1)uS ;{ 51+r) field effect while keeping in mind that energy correlation is
exp —u s

S
P(S)=X(S)6XF1(—fO X(S’)dS'), 9

P(S)= DT DI (10 overstated and randomness is completely thrown away.
where
((2+r) 1+r a1 B. Relation of Ng; with observables
_= (1+r) It has been experimentally observed that as the applied

magnetic field strength is increased the slow decay compo-

Forr less than or equal to zero, Brody distributions exhibitnent of the fluorescence decreases in intensity while the fast
level clustering, and for greater than zero they exhibit level . y i
component remains constant. For the moment, we attribute

repulsion. The Poisson distribution and the Wigner distribu—the maanetic auenching of the slow component 1o the effi-
tion are the Brody distributions at=0 andr=1, respec- gnetic qu ng W P !

tively cient increase iNg; by the magnetic field. A full detail of

The ratio of the fast component to the slow oAg/A,, the mechanism is given in Secs. [ll-V. L
is estimated &4 The quantum yield of the slow component at zero field is

given by time integration of the first term in E():

Ac 253, -mlan?lam?
AT sar L/ 2 el (12 By(hy=0)= — L3
| w ’ T m(Ngt 1)

(15

For the Bixon—Jortne(BJ) model, one finds that Xja,|* is
2(mvi/e)? at the limit of v/e>1. Since the number o
s-character distributed states in the FWHME is estimated
asAE/e, the value 2mv/e)? can be regarded as the number
of participating levels(|s) and the effectively coupletb;)
levels. The ratioAc/A, thus provides the number of effec-
tively coupled background leveld|o, which is defined in y1=(ys+Noyr)/(Ng+1), (16)
this paper &€

f whereNg is the number of effectively coupled levels at zero
field andh, represents the Zeeman interaction energy. As-
suming that thes character is equally distributed among
No+1 states, we have the average relaxation rate of eigen-
states,y; 34

where y; is the relaxation rate ofs) and y; is the average
Neg+1=1 /2 ENE (13) _relaxation rat(_e of background levels. Substituting ELf)
n into Eq. (15) yields
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166 H. Kono and N. Ohta: Efficient quenching in two manifold models

@, (hy=0)= — 17 (o
e ¥stNoyr’ 7 :
At the high field limit,N.4 is expected to increase by a factor I's) — :
of the multiplicity M (for a triplet, M =3) N\ _
T v —_— i
O (hy=0)= ———. 18 b)) t—"o
(hy=2) =~ (18) . )
The quantum yield of the fast component is derived from : \Z’zl‘ e
the second term in Eq4) as He & ic.
i
Bo=rt 19
CTAE" (19

o ) FIG. 2. lllustration of the two manifold model. In the absence of external
The fast component is independent of the field strength beeld, a vibronic level inS;, |s), is coupled to the rovibronic leveldb;)}

cause the density of background states, ibicreases but the that satisfy the selection ruleJ=0. The effect of magnetic field on ISC is
couplingv decrease%f?‘z“The overall quantum yield) thus modeled by adding gnqther background manlf{jlq)} tha; is cogpled to

S Lo |b;)} by the magnetic field. The arrows>) and the wavy lines with arrow
diminishes by the reduction in the slow component. In wha eads(+~) indicate the intramolecular interactidhand the Zeeman inter-
follows we relate the three key factors, namely, the ZeemaactionH,, respectively.
energy, quantum yield, andq.

The value ofh, where the reduction in quantum yield

reaches one-half of the total amount of quenching at the high

field limit may be employed as a measure of the efficiency in The total Hamiltonian for the system is written as

magnetic quenching. We denote it hy;,, H=Hy+V+Hgz, (29
®(hz=hyp)=[P(hz=0)+D(hz==)]/2 where H, is the Zeeman interaction and the unperturbed
— Do+ D (hy=hy), (20) HamiltonianH gives the energies of the zero-order levels
where®=® .+ ®, . The definition ofh,,, is thus reduced to Hols)=Edls);  Holbj)=Eujlb;);  Holc))= ECJ'lCJ%'ZS)
@ (hz=hy2) =[P (hz=0)+ P (hz=0)]/2. (21

The absorption band shagéhe distribution of absorption

Using Egs.(17) and(18), one can rewrite Eq(21) as probability) and relevant quantities can be obtained by solv-
1 1 1 1 ing the eigenvalue probleralternatively, one may employ

- - " (220  the Green's function methoftf~*°
YstNipyr 21 ystNoyr  ¥stMNoyr

. _ H[n)=En|n). (26)
whereN,,, is the Nz at h,=h,,,. Rearranging the above ) . ) )
equation, one finds that, ,/N, satisfies fory;#0, The eigenfunction$n) can be expressed as liner combina-

tions of zero-order levels
Niz  2ZMNoyr+(M+1)ys
No (M+1)Noyr+2ys

(23
|n>:an|s)+§j: bnj|bj>+§j: CnjlCj)- (27)

The hy/, can thus be defined as the Zeeman energy at which ] . .

the Ny satisfies Eq(23). For M=3, the value ofN,,,/N, Putting Eq.(27) into Eq. (26) and taking matrix elements
lies between 3/2 and @according to whetheNyy;> ys or with various zero-order states, one obtains the following set
Noyr<7ys). In Sec. IV we treat the right-hand side in Eq. Of equations:

(23) as practically constant: one can obtaip), without ex-

plicitly including the relaxation constants. (Es— En)an+; (s|V[bj)b,;=0, (289
lll. THE TWO MANIFOLD BIXON-JORTNER MODEL (Epj—En)bpnj+(bj|V|s)a,+hzc,j=0, (28b
In the absence of external field, a vibronic levelSp, hzb,j+ (E¢j—Eq)cnj=0, (280

|s), is coupled to the manifold of rovibronic leve{sb;)} where h,=(b,|H,|c,) and we have assumed that the spin

that satisfy thedJ=0 selection ruldwhich are regarded as sublevels of different rovibronic levels are not connected by

those arising from a spin sublevel potential surjacehe g . .
effect of magnetic field on ISC is modeled by adding anothe;[he magnetic fieldby assuming that the sublevel potentials

background manifold|c;)} that is coupled to{|b;)} by a are of the same form and shifted By, that s,
magnetic field. The coupling scheme is illustrated in Fig. 2. (biIHZ|Cj)=<bj|HZ|Cj)5” =hz4;, (29
Although a triplet electronic state has three spin sublevels, E —E.—E (30
we deal with the two sublevel manifold§|b;)} and{|c;)}) ci— =bi =gap

to draw the essence of the magnetic field effect. The modekhereE,, is the zero-field splitting.

allows us to perform mathematical calculations easily and to  Substitution of Eqs(28b) and (28¢) into Eq. (28a then
derive useful analytical expressions. leads to the characteristic equation for the eigenvalues
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|(s|V]b)|?
E.—E. + =
s . 2 En—Epj—h3/(E,—Eg;)

The totalb andc components in thath eigenstateB,, and
C,, can be obtained from Eq&28h) and (280):

0. (3D

[(s|V[bj)|?
B,=2> b2 =a? : - (32
n ; nj n; [En—EbJ_hil(En_ECJ)]Z ( )
hZl(s|Vb;)|?
C,=> c2=a’ § : '
n 2 nj n; [(En—Ebj)(En_Ecj)_h§]2
(33

The absorption probability of the eigenstdte is propor-
tional toa2. The value ofa, is determined from the normal-
ization conditiona?+ B, +C,=1:

o143 |<s|V|bj>|2[<En—Ec,->2+2§] o
" ™ [(En—Ep)(Eq—E¢)—hz]?

(39

We here introduce the following assumptions as in the

pioneering paper of Bixon and Jortrer:

167

0.1 " T T T L B T

0.05f .

Absorption Probability [a,|?

o

|
'|n||I|I||’|||”|l“llll U”]“I“Ulllllln'
-20 0 20

Energy E,.-Eg

FIG. 3. Eigenvalues and absorption probabilities for the two manifold BJ
model at zero field. The parameters used aree =1, Eg,,=10, andh,=0.

(i) The background levels are equally spaced with an

energy difference:
Epj=1e, (39

wherej=0,+1,+2,....

(i) The matrix elements of the intramolecular interaction

V are assumed to be a constantndependent of the index
v=(s|V|b;). (36)

Under these assumptions, infinite summation in Egs.

(31)—(33) can be carried out. The characteristic Eg(l) is
reduced to

mv? ,
Es—Ent—— [cog 6 cotla—B)+sir? 6 cotla+ B)]=0,

(37

whered represents the degree of magnetic field-induced coueters are the same for the three casest =1 andE

pling between the two background manifolds

o= 1 tant 212 (38)
=~ tan
2 Egap
and « and B are defined as
E
a=m| E + ;a") /s, (39)
B= m/Egzaer 4h22/(28). (40

Sincea is a function ofE,,, one must solve Eq37) numeri-
cally to get eigenvalueg,. The absorption probabilitg?

and the background componersg and C,, are given by
analytical forms

) v\ ? _
ap=|1+|— [1+cog 0 cof(a—B)+sir? 6 cob(a
-1
+ﬂ)]} : (419
v\ ?
B”:(Z a2{—sir? 26[cotl e+ B)—cotla— B)]/ B

+(1+cog 26)[coseé(a+B)+coseé(a—B)]

+2 cos X[ coseé(a+ B)—cosed(a—pB)]},
(41b

2 2
4 ( th) a2 cog 26{[cot a+ B)—col(

€ Ega

—B)1/B+coseé(a+ B)+coseé(a—B)]}

n=

(410

which can be evaluated using the eigenvalues obtained.

We now show some numerical exampl&$gs. 3 and %
for the eigenvalues and absorption probabilities. The Zeeman
energies taken are in dimensionless urits=0 in Fig. 3;(a)
h,=10.3 and(b) h,=10.077 82 in Fig. 4. The other param-
gap=10.
In the zero-field caséFig. 3), the intensity profildenvelopé
follows

2

Y,
0(F)=
AB)= [(E—Eg)%+(AE/2)?]’ (42)
where the FWHMAE at zero field is defined as
V2 2
AE=2+\/v2+ T) ~2mv?e. (43

For h,#0, it is evident that there exigtvo intensity
profiles(sequences|In Fig. 4a), a very intense profile and a
very weak one exist; in Fig.(8), an intense one and a rela-
tively weak one existthe profile functions are plotted by
dotted lineg. We call the stronger one the “strong sequence”
and the weaker one the “weak sequence,” though both can
be comparable in intensity at high fields. The classification
into the two sequences is artificial, but it helps our systematic
understanding of the magnetic quenching.

The two profile functions can be obtained by rewriting
Eqg. (37) as
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FIG. 4. Eigenvalues and absorption probabilities for the two manifold BJ
model at(a) h,=10.3 and(b) h,=10.077 82. The other parameters are the

same as in Fig. 3.

(X2+4)sir 2a+4(2 cos P sin 28— X cos 28)sin 2«
— X2 sir? 28+4 cog 26 sir 23

—4X cos 20 sin 28 cos 28=0, (44)
where
2¢(E,—Ey)

Since Eq.(44) is a quadratic equation for sim2 we have

f(0,8,X)=X? sir? 28+4X cos 29 sin 28 cos 28
+4(1—co¥ 26 sir? 28). (47)

The corresponding cos®2are also obtained by deriving the
quadratic equation for cosx2from Eq. (37):

COS 2

_ —X(2 cos ¥ sin 28— X cos 28) * 2/f(6,8,X)
B X2+ 4 '

(48)

The signs of the square roots in E¢46) and (48) are, for

X>0, combined in order of appearance and, 0, in
reverse order. The sim2and cos 2 are regarded as func-
tions of “continuous”X. The profiles ofa2, B,,, andC,, for

the strong and weak sequences can therefore be obtained as
functions of continuous energ¥,—Eg by substituting
sin2¢ and cos # into Egs. (41). The cofta+pB) and
cotla—p) in Egs.(41) are related with sin@ and cos 2 as
follows:

cota cotB+1

-
cota=p) cotB+cota ' (49
) _1+c032a 50
o= "GN 2a (50

IV. NUMERICAL RESULTS AND DISCUSSION

The two casesa) and(b) in Fig. 4 remarkably differ in
the numberNg, although the field strengths are nearly
equal. They are understood as extreme cases and classified
by using the eigenfunctions for the Hamiltoniddy+H
(excluding V). There are two sets of eigenstatéeld
dressed state¢gor this Hamiltonian

|Bj>=cose |bj)+sin 6 |c;);
~ . 51
|¢j|=—sin 6 |bj)+cos b |c;). )

The corresponding eigenvalues for the two s{¢f:§>} and
{Ic;)} are given by

. Epi+Eq+E . Epi+E.—E
Ep= i ;1 gap. o= i ;J gap (52)

where égap denotes the energy difference between the
dressed statd®;) and|c;):

Egag= VEZas+ 4h2. (53)

two sets of solution§ yielding t_he strong and \_N<_361k Sequencepne eigenvalues of the field dressed states shift tjtlithe
(@ pair of characteristic equations for determining the eigeneye| spacings in the same manifold remain constant

values
sin 2«
_ —2(2 cos X sin 28— X cos 28) * VX6, 8,X)
- X?+4 ’
(46)
where

The two extreme cases can be interpreted as the follow-
ing two cases of the dressed state energy structayelhe
eclipsed structureE .=l wherel is an integer, i.e., the two
sets of dressed states overlap in endjyFig. 5a)]. Since
B=Egagmi2e, pB=ml/2. (b) The staggered structure:
Egap=(+1/2e or g=m (1+1/2)/2, i.e., the two sets of
dressed states are staggered so that the nearest-neighbor level
spacing of dressed statesei® [cf. Fig. 5b)].
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(a) eclipsed: (b) staggered: ——— T
_— [ — ) b . 2k |
Ib) —— e gy —— .
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. 16 (=]
l Ie;) - 1€ Z
. S~
— 5
2z
FIG. 5. The two extreme cases of the energy structure of field dressed states:
(a) the eclipsed structure angh) the staggered structure. In the eclipsed
structure, the two setih;)} and{|c;)} of dressed states overlap in energy
and in the staggered structure the two sets of dressed states are staggered so
that the nearest-neighbor level spacing of dressed statg2.is
1 1 " n n 1 " M 1 L 1
0 1 2

Figure 4a) corresponds nearly to the eclipsed structure ha! Egap

anq Fig. 4b) corresponds to the Staggere.d structure. Th, IG. 6. The relation betweeN/N, and h,/E,, for the staggered struc-
eclipsed and staggered structures alternatively appear at ifje. Then, is assumed to be large/e>1).
tervals of about/2 in h5.

does not mean thadtb;)} and{|c;)} are uncoupledsee Eq.

(55)]. The phase spaamlumeexplored is the same as in the
In this case the fine structure of the absorption band izero-field case but the region explored is different. The mix-

the same as in the zero-field casd. Figs. 3 and 4)], ing ratioC,/B, in |¢y) is

irrespective of the field strength. The number of effectively C. 2 si? 0cod o

coupled background levels remains unchanged even at high “"_-~-~"_ * "7 ~ (56)

fields[hz/Egp>1 in Fig. 2a)]. Mathematically it is easy to B, cos g+sin' 6

show that the absorption probabiliig. (413] is classified  which is independent dh). The coupling between the zero-

into two sets{a;=0} and {a’(h,=0)=A(E,)} by putting  order manifolds is enhanced in comparison with that evalu-

p=l/2 into Egs.(46) and (48). ated from the coefficients &f andc components ifib; ), i.e.,
The reason is elucidated as follows. Take a pair of deC, /B,=sir? §/cos 6. At low fields (hz/Egap<1), the value

generate dressed statés) and|C;/) as shown in Fig. &  given by Eq.(56) is twice as large as Sir9/cos 6.

(j" is chosen so that its enerdy;- is equal toEy)). Since When two dressed states are degenerate, it is always

these two states have the same energy, a unitary transformgossible, irrespective their coupling strengttesen if the

tion of them also leads to a diagonal representation otoupling strength fluctuatgsto find a transformation under

A. The eclipsed structure

Ho+Hz (for any value ofz) which one state carries coupling strengthgpand the other
— i P A does not. By setting the conditios|V|¢y=0 in Eq. (54),
|¢0>=S|n77|bj>+cos77|cj,> one finds y g q | |¢O> q ( )
=sin 7 sin 6 |cj)+cos n cosd |c;:) sin 6 (s|V|b,.)
tan 7=

+sin 7 cos @ |b;)—cos 7 sin 6 |b;) (54) Ky (s|V]by)

and
B. The staggered structure

|d1)=cosn [by)=sin 7 |¢;:) The staggered structure changes the situation. In Fig.
=cos 7 cos  |b;)+sin 7 sin 6 |b;) 4(b), N is twice as large ad,. If the level structure is
restricted to the staggered ca®é,s/N, increases with in-
creasingh;/Ey,, as shown in Fig. Gfor v/e>1). Since the
It is possible to determine the parameter so that level structure depends omh,, we have continuously
(s|V| ¢)=0. The series of¢y) can be chosen not to interact changed then, while keeping the structure staggered, i.e.,
with |s) (in the present casg=6). On the other hand, in the setting8=m (I +1/2)/2. The value oh,;, can be determined
series of|¢,), the dressed states are equally spaced, equallgs follows. For the multiplicityM =2, the right-hand side in
coupled to|s) (the spacing iz and the coupling constant is Eq. (23) can take values between 4/3 and 3/2. We treat the
v) as in the zero-field case. The total volume in phase spacealue as a constant 3/B;, is defined as the Zeeman energy
increases at high fields by a factor of 2 but the actual dynamat whichN is one-and-a-half times as large as the zero-field
ics explores only half of it. value No. We have numerically checked thhly is nearly
That the energy structure of the absorption band is unindependent o, and is regarded as a function of the ratio
changed does not mean that the zero-order man{fold} is  v/e only [calculate Eq(13)]. It is found that at the limit of
insulated in the dynamics. It means that the time evolution of//e>1 the valueN,+1 becomes 2£v/¢)? [insert Eq.(42)
the|s) level population behaves as in the zero-field case buinto Eg. (13) and replace summation with integratioe

+cos 7 sin 6 |¢;)—sin 7 cos 6 [c;). (55
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FIG. 7. The relation betweeh, ,/Ey,, and N, for the staggered structure.

: : _ FIG. 9. The envelopes of absorption probabilities for the strong and weak
The hy;, have been obtained by sett /Ny=3/2 [see Eq(23)].
w2 &Y I y 42/No [ a(23)] sequences. The parameters used daig:=2.839 45, Ey,;=10.0, and

v=e =1. The solid line represents the envelopé of the strong sequence
and the dotted line represents the enveldpeof the weak sequence.

have also noted thad.4 is a function of two ratioss/e and
hz/Eqqap[Cf. Egs.(418 and(46)—(50)]. The ratiohy o/ Eg,pis
therefore determined by/e (or No) alone. The relation, nearly proportional to 2'+1. It is probable thaK scram-
shown in Fig. 7, is obtained numerically by finding theat  bling in the triplet caused by Coriolis interaction leads to the
which Ny ,,/N, becomes 3/2. selection ruleAK =anything(the breakdown of the symmet-
The result suggests the possibility that the ratig/Egy.,  ric top approximation may also be responsible for{e>3
can be much smaller than 1. The curve however does not We examine why it is not necessary fbg,, to be as
agree with the experimentally observed tendency that  large asE,,. The disagreement about the dependends gf
drastically decreases with increasinljl,. The magnetic on N, will be discussed in detail in Sec. V. As shown in Fig.
quenching depends strongly on the vibrational level density(b), the absorption band contains the strong sequence and
of the triplet state coupled 18, (i.e., onNy). For instance, in  the weak sequence. Another example is given in Fig. 9 for
magnetic quenching of pyrimidine, the half-quenching fieldh,/E , =2.839 45(E,~=10.0. The solid line represents the
strengthH , for 6a® of S, is less than one-third of that of envelopeA™ of the strong sequence and the dotted line rep-
6a’ (the energy difference between the two levels is aboutesents the envelopg™ of the weak sequence. It is found
600 cm !).?! The magnetic quenching also becomes morehat the sum of the two envelopes is nearly equal to the
efficient with increasing rotational quantum numbénf the  zero-field envelopd’(E), irrespective of the field strength
excited level. In Fig. 8H4, on 0-0 band excitation for N _ o
pyrazine () and pyrazined, (O) are plotted against AT(B)+A(BE)~AT(E) (57)
2J'+1.29%2 The drastic decrease i, implies thatN, is  which means that the decay rate of the fast component re-
mains unchanged. This is the case for high rotational or vi-
brational levels ofS;. For such levelsN, is expected to be
——r————— large and the band envelope smootlidee s-character dis-
] tribution locally averaged for small energy intervyais ex-
pected to be Lorentzian. If the magnetic field increases the
density of states effectively by a factor of 3, the coupling
strengthv? decreases by a factor of(for M =3).
] We have found that the envelope of the weak sequence is
i well approximated by

100}

- N v2 sir? ¢

" [(E—Eg)?+2(AE/2)? sir? 6]

and therefore the strong sequence is well approximated by
AT (E)=A%E)—A (E). (59)

Equation (58) indicates that the envelope of the weak se-
. quence has FWHM of2AE|sin 6| and height of 2¢/AE)?
2J'+1 (=1/Ng). The width increases linearly with,/E,, at low
FIG. 8. Half-quenching field strengthdy, on 0-0 band excitation for fields but the height, which is independent of the field
pyrazine(M) and pyrazined, (O). They are plotted againstJ2+1. strength and a half of the heigh? (E= E,) atzero field is

Hye / Gauss

A" (E)

(58)
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nonzero even at zero field. This suggests that even at low 1 : . .
fields there are chances of fitting eigenstates into the enve- P TTTT N~ oTTTTTTTT .
lope and the magnetic field is more operative than usually
expected from the magnitude of the mixing coefficient #in

For largeNgy, summation in Eq(13) can be replaced 0.5
with integration and only the area of the envelope squared
matters

Neﬁ+1 En for hZZO[AO(En)]2
Not1  Serond A (En)]2t Sueal A (En)]?
N STA%E)J2dE
~ JIAT(E)]’dE+[[A (E)]%dE 0.5

1
~ 1—[sin 0][4(1—v2[sin 6])/cos 20— 1]/vV2’

-
) I 1 | I

1T 17T 1T 17T 177

Probability

1 1 1 ! 11

T T T T T 1 T T
~
=

-
—
1

(60 -20 0 20
where the strong and weak under summation symbols denote Energy E,-E

the eigenvalues belonging to the strong sequence and those

. . . -EIG. 10. The envelopes of the zero-order componaft8,, , andC,, for (a)
to the weak sequence, respectively. The curve in Fig. 6 Igue strong sequence aflo) the weak sequence. Tl envelopes are indi-

identical with Eq.(60). The asymptotic value in Fig. 7 cOr- cated by broken lines and tH@, envelopes are indicated by dotted lines.
responds to the approximate vaIuE/16 ~ 0.26 ob- Thes-component envelopes are indicated by solid lines. The parameters are

tained by setting the last version in E@O) equal to 3/2. the same asin Fig. 9.
As expected, the last version becomes 2hgsE,;—.
[The ratio in area between the two sequences
JAT(E)JE/fAT(E)dE, is estimated to bev2|sin /(2
—v2|sin 4)) by using Egs.(58) and (59).] Equation (60)
means, as shown in Fig. 7, that the rabie/N, can be (Zjbh? (Zeh)?
regarded as a function df,/Eg,, only and independent of BT Ejbﬁj ' ¢ E,-Cﬁj ’

Nop. In what follows we will reveal how the magnetic field )
couples zero-order levels and why it distributesharacter where the numerators are necessary to take into account the

over many eigenstates so efficiently. norm of each cqmponent. Figure(&l shows thg envelopes
We go over the degree of mixing between the two zeroOf these values in the strong sequence and Figh) shows
order manifolds{|b;)} and{|c;)} for each sequence. Figure those in thg weak sequence. The brokenillnes deNgtapd
10(a) shows the envelopes @&, B,,, andC, values in the the do_tted lines denotd . Roughly speaking, as the eigen-
strong sequence and Fig. (bD shows those in the weak se- state lies closer to the band center, the number of zero-order
guence. Tha,, envelopes are indicated by broken lines and
the C,, envelopes are indicated by dotted lines. The . . . ,
s-component envelopes are indicated by solid liitesy are 4+ (@ -
approximated by the envelope functiof®8) and (59)]. The
parameters are the same in Fig. 9. For the strong sequence,
the b component dominates over tliecomponent but the
degree of mixing depends on the eigenvalue. In the far wing
regions (E,—E¢>AE), the mixing is as small as expected
from the coefficients ob andc components inb;) [see Eq.
(51)]; the ratio B,:C, is given by co86:sir’6
(0.935:0.065 However, as the energy approaches the center
of the absorption band, the component grows while thie
component diminishes; at the absorption band center the
zero-order manifolds are fully mixed in terms of subtotal
population, i.e., the ratid,,:C, is 1:1. For the weak se-
guence, the majority is reverséthe major component is
and the minor component ks) but the main feature remains o 1 \ 1 X )
the same. In the far wing regions, the mixing is small and -10 0 10
given by the coefficients df andc components ifc;), i.e., Energy En-Es

B,:C,=sir’ 6:co< 6. At the center of the absorption band,

the zero-order manifolds are fuIIy mixed. FIG. 11. The number of zero-ordeérlevels (Ng) and that of zero-ordec

.. . levels (N¢) for (@) the strong sequence arft) the weak sequence. The
Itis interesting to know how many zero-order levels arepoyen fines denotdl, and the dotted lines denoke. . The parameters are

involved in an eigenstate. The number of zero-otadgvels  the same as in Fig. 9.

{or ¢ levels involved in an eigenstatm), Ng (or N.), may
be defined as

(61)

e — T

Number of Zero-order Levels
o

\\\\\\\
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FIG. 12. Zero-order components in eigenstdtesfor the strong sequence: o

(a) the coefficient ofb;), i.e.,{by;} and(b) the coefficient ofc;), i.e.,{cy;}, FIG. 13. Zero-order components in eigenstdtesfor the weak sequence:
are given as functions of the eigenvallg—E, and the zero-order level (@) the coefficient ofb;), i.e.,{b,} and(b) the coefficient ofc;), i.e.,{c, }-
energyEy; —Eg or E¢j—Es.

presence of the doorway) level (or thes—b intramolecular

levels involved increases (which means more interactionV) distributes theb andc characters more effi-
“ergodic”).*** The fact thatNg in the weak sequence in- ciently (than in the presence of a magnetic field alobg
creases near the band center, shown in Figb)lindicates distributing itself over nearby eigenstates.
that the growth of the weak sequence near the band center is We next make the above summary more tangible by cal-
accompanied with mixing among nearfly) and|c) levels.  culating coefficients ofb;) and|c;) in eigenstate$n), i.e.,
The increase iNg in the strong sequence, shown in Fig. {b,;} and{c,;}. The coefficients for the strong and weak
11(a), is due to intramanifoldb-manifold) mixing via the|s) sequences are plotted in Figs. 12 and 13, respectively. They
level which takes place at zero fielqualitatively, theNg in are given as functions of the the eigenvaklye- E; and the
the strong sequence changes with energy as in the zero-fielgtro-order level energf,;—Eg or E¢;—E. Figures 129)
case. and 13a) show b coefficients{b,;} and Figs. 1fb) and

At this stage we briefly summarize the mixing schemel3(b) show c coefficients{c,;}. The mechanism of zero-
and the mechanism of the growth bif;. In the far wing  order level scrambling can be visualized by the coupling
regions, the field dressed stafé¢ls;)} and{|c;)} are approxi- scheme drawn in Fig. 2.
mate eigenstates of the total Hamiltonidn The former set At zero field, there are no intermanifold mixings; the
corresponds to the strong sequence and the latter set cormenly existing mixing is the intramanifold one induced Yy
sponds to the weak sequence. The mixing between the twbhe interactiorV scrambles; levels lying in the rangé E
levels |b;) and|c;) in a field dressed state is weak, i.e., aroundE;. The intramanifold mixing existing at zero field,
B,:C,=cog #:sirf § for the strong sequence, and which we will call V-induced intramanifold mixing, is re-
sir? @ :cos ¢ for the weak sequence. In the far wing regions,sponsible for the nonzerb coefficients along th&,,=E,
an eigenstate contains only obecharacter level and only line in Fig. 13a). In the far wing regions the positive part of
onec-character leve(a pair of levels connected by the Zee- {b,;} exceeds the negative part overwhelmingly, or vice
man interaction On the other hand, near the absorptionversa, that isNg=1. As the eigenvalue approachEs the
band center, inter- and intramanifold mixings are acceleratedhositive and negative parts become comparableNjen-
that is,Ng and N increase, which concurrently distributes creases as shown in Fig. (&L
the s character to more eigenstatéblere “intermanifold” The Zeeman interaction induces intermanifold mixing. It
means “between thé and ¢ manifolds” and “intramani-  connects the same vibronic levels; andc;} belonging to
fold” means “among levels of thé manifold” or “among  different manifolds(H ,-induced sublevel mixing For the
levels of thec manifold.”) This is an explanation for the strong sequence, as expected from the scheme in Fig. 2, this
growth of the weak sequence. One may also say that theublevel mixing creates nonzecccoefficients along the line
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sy ¢, level® The resulting state is entitied to interact with
= AW . isoenergetidb;} levels throughv. One may say that thie)
1% Hz level triggers isoenergetic mixing between zero-order mani-
{I1bj)} {ic;)} folds.
On the basis of second-order perturbation theoryghe
eclipsed: component in ac-character dominated eigenstate is esti-

] mated by|vh,/Eg{Es—E))[% which explains the feature
Is) staessssassinasiitl { | o) } of the weak sequence that as the eigenvaks&,)) ap-
& proaches the s andb components increase. This expres-
v sion is identical with the second-order expansion form of the
{Id)‘)} envelope functionA™ [see Eqg.(58)], indicating that the
P(s|s)=1/(No+1) Raman-like process is the key one. As shown in Figajl3
in the far wing regions thé component comes mainly from

staggered: the Egqp shifted b level connected byH-induced sublevel
[s) mixing; in the center, however, the madncomponent comes
<> from isoenergetid levels[cf. Fig. 1Qb)]. A reverse flow is

1% also generated by the isoenergetic intermanifold mixing; it

pP(sls)y=1/(2Np+1) rendersc character to thd-character dominated state. It is
shown in Fig. 12b) that nonzera coefficients appear at the

FIG. 14. The accessible phase spaces for the eclipsed and staggered S”HSoenergetic lin€E ..=E. . This type of component grows as
tures. The top represents the sequential coupling scheme. The Gspw ¢ -n

denotes the intramolecular interactivinthat couples the doorway levis) the e_lgenvalue gets closer &. I_t is generally COnCIUded

to theb manifold and the wavy liné<~-) denotes the Zeeman interaction that in the center of the absorption band the miaifor) c

H that couples thé manifold to thec manifold. The size of a box repre- |evels included in an eigenstate are isoenergetic ones and not
sents the phase space volume of the maniftie white area represenis the E.._shifted ones. Th&... shiftedb levels rendes char-
component and the black area representsmponent The eclipsed struc- 9ap ) 9ap . .

ture converts the sequential coupling scheme to that in the middle, wher@Cter_to the zero-ordey levels and mediate petween |sgen—
only half of the overall phase space is accessible ffsmThe accessible ~€rgeticb andc levels. The role of theEy,, shifted level is
region is described by|$y)} and the inaccessible region is described by important in isoenergetic intermanifold mixing but it is

{l4o)} [see Eqgs(54) and (55)]. Each phase space volume is identical with « s .
that of theb manifold. Therefore, the time-averaged probability of finding catalytlc in that near the band center tl%apShlﬁed level

the system injs), P(s|s), remains unchanged, i.€(s|s)=1/(Ny+1). For decreases in population.
the staggered structure case, illustrated at the bottom, all the phase space is
accessible at high fields. The probabilifj(s|s) can be reduced to 2. Intramanifold mixing between gap separated levels

VeNet D). Nonzerob andc coefficients exist aE,;=E,+Egy,,in
Fig. 12a) and atE;j=E,—Eg,,in Fig. 13b), respectively.

at E¢j=E,—Eg, [Fig. 12b)]. The nonzerab coefficients They are virtually regarded as mixings between intramani-
along theE,,;=E, line in Fig. 12a) indicate the companion fold levels separated biy,,. One may interpret the mixing
(parent b levels (these eigenstates atecharacter domi- @S @ virtual second-order perturbation of the Zeeman interac-
nated. For the weak sequence, the eigenstates arlon and the isoenergetic intermanifold mixing. For instance,
c-character dominated. Thelevels appearing along the line NOnzero components &,;=E,+ Egq,in Fig. 13a) are in-
at Epj=E,+Egqp in Fig. 13a) are paired byH, with the ~ duced by processes such lag«c; <b; (the arrow
parentc levels appearing along thE.=E, line in Fig. indicates the isoenergetic intermanifold m|x)ngh|stype of
13(b). virtual second-order process is fourth order in real perturba-

There is nothing new about the mixings we have men_.tion: the intramanifold mixing between gap separated levels
tioned in the above two paragraphs. New types of inter- ané® the smallest.
intramanifold mixings are induced by the coexistence of the . _
intramolecular interaction and the magnetic field. In the fol-C- Results obtained from the two manifold
lowing we give a full detail of them. Bixon—Jortner model

We have examined two extreme energy structures,
namely, the eclipsed and staggered structures. Between the

There is no direct interaction betwedn andc;- (the two cases there is a major difference; with increasing field
chain of existing interactions is like;<>s<bj «~c;: in  strength theN increases for the staggered structure but
Fig. 2), but isoenergetic paths are opened up between theemains unchanged for the eclipsed structure. The difference
zero-order manifolds. The fact that in the weak sequencean be schematically illustrated by coupling schemes in Fig.
[Fig. 13@)] nonzerab coefficients appear at thg,;=E, line  14. The top represents the sequential coupling scheme. The
indicates that a zero-order level can be mixed up witth  arrow (<) denotes the intramolecular interactioh that
levels that are energetically near thelevel. This type of couples the doorway levés) to the manifold{|b;)} and the
mixing indirectly couple, sayb;) and|c;-) in Fig. 2. Thisis ~ wavy line («~~) denotes the Zeeman interacti¢f, that
a novel type of mixing we have never realized before. Thecouples the manifold|b;)} to {|c;)}. The size of a box rep-
key process is the Raman-like second-order oneesents the phase space volume of the manifeltiich
s<bj«~c;» which suppliess character to the zero-order should be taken relatiyeThe eclipsed structure converts the

1. Isoenergetic intermanifold mixing
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174 H. Kono and N. Ohta: Efficient quenching in two manifold models

sequential coupling scheme to that in the middle, where onlyhat if the two systems have the same spacing and coupling
half of the overall phase spa¢flb;)} and{|c;)}) is acces- strength on an average the system with the larger repulsion
sible from|s). The accessible region is described {y,)}  parameter has largeMq.
and the inaccessible region is described{fay)} [see Egs. We here propose a random matrix approach that can take
(54) and (55)]. Each phase space volume is identical withinto account effects of the energy and coupling distributions
that of{|bj>}. Therefore, the time averaged probability of on the magnetic quenching, and then consider possible types
finding the system ins), P(s|s), remains unchanged, i.e., of distributions at zero field and at the high field limit and the
P(s|s)=1/(Ngo+1). The feature thall.; remains the same role of spin—vibration interaction. Let the electronic wave
is independent of the magnetic field strength. On the othefunction for |s) be |A), and let those for thé andc mani-
hand, for the staggered structure, all the phase space is dolds be|B) and|C). The total Hamiltonian can be written as
foeij(lglNeoit]SI_gh fields. The probabiliB(s|s) can be reduced H=|AYHA(A| + |BYHg(B| + |C)Ho(C]

What the staggered structure model suggests is in accord +{|A)V(B|+|B)H(C|+h.c}, (62
with _experlmental results on the magnetic quenching. OfvvhereHA, Hg, andH are the rotation—vibration Hamilto-
special importance are the Raman-lg«eharacter transfer to

indirectly coupled background levels, concurrent isoener. NS for the three electronic stalég, |B), and|C), respec-

. : o tively. We next define the average Hamiltonian and the dif-
getic intermanifold mixing, and resultant weak sequence

They are unique to the energy transfer among three or morfeerence Hamiltonian foHg andHe:

manifolds and are the keys to understanding the reason why H=(Hg+H)/2 (63
the efficiency of magnetic quenching is so high at anoma- d
lously low fields. For the eclipsed structure model, which®"

explains nothing with the magnetic quenching, the Raman- AHgc=Hg—Hc—Egg, (64)
like process is not operative. The energy correlation betvvee{Rlh ere E
the twodressedstate manifoldg|b;)} and{|c;)} prevents a
weak sequence from growing with increasidg .

At any field strength, there is a chance thdbadressed
state energetically coincides with/@ state. The problem is
that if a perfect staggered structure is impossible even a ve
high field will not reduce the quantum vyield to 1{2or
M=2) of the zero-field value contrary to the experimental
fact. Necessary conditions for the complete magnetkg
guenching(that the quantum yield is reduced to 1/2 at high
fields) are:(i) the energy distribution of dressed states at higr}he
fields is the same type as that of themanifold and the _
average spacing is reduceddt2; (i) the coupling distribu- Hlj)=Ejlj). (65)
tion at high fields is the same type of that of thenanifold
and the rms of the coupling is reduced tfY*/?/v2. Our BJ
model does not satisfy the above conditions unless the stag-

gap 1S the zero-field splitting at the equilibrium
nuclear configuration of a sublevel potential. Reversibly,
and H. are expressed in terms oH and AHgc;
Hg=H+(EgaptAHgo)/2 andHe=H —(EgaptAHgc)/2. In
rSec. lll, we have assumed that the energy gap between the
dublevel potentials is a constafy,,, irrespective of the
nuclear configuration, i.eAHg-=0. In general, the gap de-
ends on the nuclear configuration, i.AHg-#0. We will
resent two mechanisms afHg in Secs. V A and V B.

To write down the matrix elements &f, we introduce
eigenfunctions and eigenvaluesHof

The matrix elements dfi for the basis sef|j)} are given as
(i'[AHgclj)

_ _ E
(i"[(BIHIBY|)=E;8; + —2 &;;, +

gered structure is assumed. 2 2 '
(664
, . E (i"|AHgdl})
(I"KCHIC)})=E; 5y — %)5”'— —
V. A RANDOM MATRIX APPROACH (66b)
We have so far used the two manifold BJ model, where  (SIH[B)i)=v;; (J'[(B[H|C)|j)=hzd;; . (660

energy correlations are overstated and fluctuations in thgpe parametergE; ,v; (j"|AHgc|j)} that are inherent in
coupling are disregarded. Caution must be exercised on thie system are provided by considering a variety of energy
interpretation of what the model indicates. In real moleculesgjstributions and coupling strength distributions. The relation

the energy spacings are not equal and the couplings are ngetweerN,/N, andh,/E,is obtained by diagonalizing the
constant. It is therefore impossible for evéby dressed state  matrix at various values di, .

to be paired up with dc) state of the same energy: an o o
eclipsed structure is never reached at any field strength. Mo&t The Vvibrational - AHgc caused by a combination of
of field dressed states do not overlap in energy with eacRPMN—SPIN and vibronic interactions

other. Because of the irregularity of zero-order level energies The spin Hamiltonian generally takes the form
(e.g., the Wigner distribution this is the case at any field B

strength. The features inherent in the staggered structure He=—XS-Y§-28;, (67
model will survive to some extent. The point is the ratio whereSy, Sy, andS; are the projections of the electron spin
between eclipsed structure part and staggered structure paoperator onto the principal axes. The zero-field splittings
which is a matter of level statistics. The basic principle iscaused by spin—spin and spin—orbit interactiofsy, andZ
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H. Kono and N. Ohta: Efficient quenching in two manifold models 175

depend on the electronic stafe® For example, each con-

" T v T (') T
stant of a purém=* is different from that of a purénz*. 2t (@ s 7
These electronic states are vibronically coupled, which leads s ! e S a ® 8 .
to the two adiabatic states < . e _ % 5 0 ;]
V,=aV¥, +b¥_: W,=a¥_—bW¥,, (68) = - 3 ]
where the coefficienta andb are functions of vibronic cou- W
pling modesQ and the subscripte andn refer to the pure ) o ° ]
Sz and °nz* states. The zero-field splittings for these A g 8 5 5 ol
adiabatic states are functions of nuclear coordinates, for o 8 B 0. 5 v 3
instance?® - g o > ‘/'J’:_T_o—x ]
2, 2N 0 ol
X1(Q)=a]?Xy+[b|?X, +;  Y1(Q)=a?Y,+|b[2Y, +. 5 T
(6 =
If only two spin sublevels in the stat#; are considered, A
AHgc can be written as 10 1 2
h,/E
AHpc=[X1(Q) = Y1(Q)]=[X1(0) = Y4(0)] L
=(a2—1)(X RV )+b2(X —Y )+ (70) FIG. 15. Relations betweeN/No and hz/Eg,, in the random matrix
n n ™ ™ .

model. The energies of levels are determined by piling up those spacings

. . . . I that are generated from a Wigner distribution of average spacinthe
As the nuclear configuration is shifted from the equilibrium coupling strengths/; are generated from a Gaussian distribution with dis-
one, the value oA Hgc can change a few times as much aspersion of(4.5)2 (Ega=10Ck). Seven sets of random numbers are gener-

Egap- In this mechanisnithe vibrationalAHgc), AHgc is @ ated for preparing Wigner distributions that have the same average spacing
function of vibrational degrees of freedom. The role ofé and Gaussian distributions that have the same coupling dispe#st?.

. . . The different marks in the figure correspond to different s@jsAHgz-=0
AHg is examined for the following three cases. _—
BC 9 and (b) [(][AHgd i )2=(2¢)2

1. Case M: Nonintegrable, strongly coupled systems . . . .
With AHge=0 9 gy coup 4 increased, the ratio of overlapping levels becomes higher: the

_ valueNq+/N, does not increase as rapid as Ef) and never
Consider theH that hasf vibrational degrees of free- reaches 2 on an average.

dom. If the corresponding modes are strongly coupled, or at
high vibrational energies, the level spacing distribution fits )

the Wigner distribution well. First, we generate energy spac-2 + Case L: Integrable, weakly coupled systems

ings from a Wigner distribution. The average spacing is de- If f degrees of freedom are independent or only weakly
noted bye. The energies of levels are then located in thecoupled(at low vibrational energigs the eigenstate is de-
energy axis by piling up those spacings this sense higher fined by f quantum numbers. Those eigenfunctions of
order level correlations that the GOE should possess are nggughly the same energy typically look very differetitey
taken into account but they do not play the key role in thehave completely different nodal patteyng/here these func-
present context We choose the coupling strengthsfrom a tions overlap in configuration space, they beat violently
Gaussian distributidi®” with dispersion of(4.5¢)> and set against each other: the matrix eleme(jitsAHg(|j') of the
Egap=100. Another condition imposed is thakHgc=0 smooth potentiahHg- are very small, compared to the av-
(this restriction will be released in case).Hrigure 1%a)  erage level spacing\Hgc couples strongly only states that
shows the field dependence M{/N, (N,~120). Seven sets do not differ greatly from each other in the assignment of
of random numbers are generated for preparing Wigner disvibrational quantum numbers; these states are separated at
tributions that have the same average spaeingd Gaussian least by energy of one quantum. Therefore we expect
distributions that have the same coupling dispersibBe)?.  (j|AHgclj’) to be effectively zero.

The different marks in Fig. 18) correspond to different sets. At zero field, the spacing distribution will be a Poisson
Almost all values ofN.4/N, are smaller than the values distribution. At the high field limit, the spacing distribution is
(solid line) given by Eq.(60). Even ath,/E =2, the aver- @ combined distribution of two Poisson distributions mutu-
age value oNg/N, is much smaller than the value of 2 that ally shifted by Eg,, (no interactions between themwhich

is expected from the increase in the background level denremains to be a Poisson distribution. That is, the distribution
sity. This is explained by the level clustering of dressedbecomes a Poisson with=e/2 and the average coupling
states that are coupled {s). At zero field, the spacing dis- strength is reduced twf)l’zl\/i. If the couplings were con-
tribution is a Brody distribution withr =1, i.e., a Wigner stant, N.w/Ny would approach 2 a$y increases. For this
distribution. On the other hand, at the high field limit, the case, we have numerically confirmed ti/N, increases
spacing distribution of dressed states is a combined distriburearly as rapid as Eq60).

tion of two Wigner distributions mutually shifted b, However, for the integrable system, where selection
This distribution is well approximated by a Brody distribu- rules operate, some couplings are expected to be strong and
tion with r ~0.36 (and the average spacilly=¢/2). Ashy is  many others will be very weak. Clustering levels of a Pois-
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176 H. Kono and N. Ohta: Efficient quenching in two manifold models

son distribution will have coupling strengths of different or- magnitude of the dispersiof{j|AHgclj’)|?. A given state
ders of magnitude. Consider two nearly degenerate level$j) couples mainly to states that lie within a rangé,
Since they have completely different nodal pattefother-  aroundE; . Outside the range, the mismatch in local wave-
wise they would repel each otheone of the levels will be length kills the integrakj|AHgd|j’). AE, is defined such
strongly coupled tds) and the other level is not. The levels that (j|AHgc|j’)=0 if |E;—E;/|>AE;. From the sum
that are weakly coupled tfs) can be combed out of the rule®!

background leveld|j)}. The combed background manifold

looks as if level clustering is removed to some extéevel 2 I(j|AHgdl] '>|2=<1|AH§c|i>=O(AH§c) (71
clustering is substantially less effective in the combed back-  j’

ground manifold than in the Poisson distribution with con-y. dispersion m is estimated to be

stant coupling In the level structure at the high field limit, (AH20)(s/AE.). Upon letting AE,=50 cm® and
obtained by superimposing the combed background manifolé)zlof%ccmfl thce'rms of(j|AHgdl} ") biacomes as large as
on the same one shifted tfy,, (note tha_t<J|AHBC|J )=0,  ihe average level spacing.

many levels with relat|vely_larg_e coupling s_trengths cluster. Figure 1%b) is the result forW#Zs)z
The degree of level clustering is larger at high fields than afthe other parameters are the same as inBFiga)]Smooth-
low fields. A.shZ is increasqd,the ratio of overlapping levels ing the fluctuation, one finds that the calculatbid/N,
becomes higher anN.#/N, increases more slowly than Eq. grows as rapid as or more rapidly than E80). This sug-

(60). The maximum value ONeq/No is less thah on an gests that the background dressed states obtained by diago-
average as in Fig. 1%a). These features, which are also ;.7 .
nalization ofH-V form a staggered structure owing to non-

observed in case M, explain why magnetic quenching is in-

efficient for molecules of small energy separation betw®&en zero elements ofj| AHgc|]') (the background dressed state

o . i structure can be revealed by setting=0). We have con-
andT, (except excitation onto high rotational levels firmed that aroundh,/E,,,=2 the background dressed states

a
form a spacing distribL?ti'Z)n represented by a Brody distribu-
tion of r=0.95 (the average level spacing #2) and their
couplings to|s) form a Gaussian random distribution of dis-

The AHgc, which is as small a&y,;,, do not affect the persion (4.5¢)%2. For pyrazine, theS,—T, separation is
energies and coupling strengths for low vibrational levels~4500 cm* and theS;—T, separation is~2900 cm %, At
which are mutually separated at spacings much larger thathe S, origin, the vibrational density of states in the triplets is
AHgc. However, the case is different for strongly coupled2—5x10"2 cm %2 vibrational modes in the triplets are ex-
systems at high energies, i.e., for chaotic systems of whicpected to be rather strongly coupled. The efficient magnetic
average spacings are less than, say, 0.0I'cfor the “i-  quenching in pyrazine is explained by the formation of stag-
regular” regime of phase space where the classical motion igered structure due to the vibration®Hg.

ergodic®® the following assumptions that no integrable sys-  The mechanism that a staggered structure is formed at
tems meet are justified semiclassicaflyi) each eigenfunc- high fields is explained as follows. Because of nonzero ele-
tion is spread over the entire classically allowed region ofments of(j|AHgc|j'), isoenergetic levels belonging to dif-
configuration space appropriate to its ener@y; its coarse-  ferent spin sublevel§b;) and|c;)) have small but nonzero
grained probability density in phase space agrees well witlvibrational overlap. Then, the magnetic field opens up direct
the classical microcanonical density at that enef@y} the  paths between therfwhich is another factor to enhance the
ergodic wave functions should be “Gaussian random” func-efficiency of magnetic quenchingThe interaction energy
tions of the coordinateg, i.e.,(q|j) be Gaussian randof@  between the corresponding dressed stdig$ and{|¢;) is
Gaussian randorq|j) leads to a Gaussian random).**  estimated to be
Heller et al®® have found that an eigenstate in the irregular A
regime can display a networked narrow riddealled (Bj|H|6j,>= —sin 26(j| ﬂ:“ . (72)
“scars”) with enhanced intensities which stands out clearly 2
and appears to be coming from classical periodic orbits. It i the interaction energy is as large as the average spaging
obvious that periodic orbit scar localization contradicts as{eve| repulsion occurs in a wide range of energy. The wide-
sumptions(i) and(ii). Since the ratio of those states to statesyanging level repulsion causes a staggered structure accom-
that satisfy conditionsi), (ii), and(iii) will decrease to mea- panied by isoenergetic intermanifold mixing. For this mag-
sure zero with increasing energy, we do not count eigenstatesgt,de of (j|AHgclj"), |j) is distributed amond|b;)} or
of scar localization, i.e., we use all three assumptions in th?|cj>} over a width of about 1€ which is much less than

following qualitative discussion. Egap: the meaning of the energy gdiy,, is not fully lost.
If the three features are accepted, there are no strong

selection rules for(j|AHgc|j’). For wave functions of ) o

roughly the same energy, these matrix elements are of thig: 1he rotational ‘AHpc caused by a combination of

same order of magnitude. Sinéglj) are Gaussian random spin—rotation and rotation—vibration interactions

functions of the coordinates, the matrix elements Because of the interaction of unpaired electron spins
(j|AHgdj’) (=fdafdq’{jla)XalAHgcla’Xa’|j") of the  with the magnetic fields created by molecular rotatispin—
smooth potentialhHgc would be a Gaussian random with rotation interaction®? the zero-field splittings depend on the
respect to state§) and|j’). Let us estimate the order of rotational state. For simplicity, we use the oblate symmetric

3. Case H: Nonintegrable, strongly coupled systems
with relatively large AHgc-#0
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top approximation and define the rotational state by thevriginates from the spin—spin interacti®hThese constants
guantum numberdN,K. The spin—rotation interaction can also include effects of spin—orbit interactidithe meanings

then be included in thél , andHg as follows: of these constants are the same as those in Refl3he
following, we replacd=g(N,K) andF(N,K) with F,(N,K)
Hg=H,+H,,+ > Fa(N,K)|N,K}N,K|, (73) andF(N,K) whenever it is necessary.
N, K

For the above set of Hamiltonians, the difference Hamil-
tonianAHgc is

He=H,+H,,+ > Fc(N,K)|N,K)}N,K]|, (74)
. AHgc= >, AFgc(N,K)IN,K)(NK], (77)
where H, represents the vibrational HamiltoniaH,,, the N.K

rotation—vibration interaction (Coriolis interaction, where
Fg(N,K) and F-(N,K) the rotational energies for the spin AFan(N.K)=TEa(N.K)—FE~(NK)—[Ea(0.0
sublevels associated with,K). Fz(N,K) andF ¢(N,K) in- pc(NK)=[Fe(N.K)=Fc(N.K)]~[Fs(0,0
clude the spin—spin, spin—orbit, and spin—rotation interac- —Fc(0,0)]. (78
tions. LetFg(N,K) and F-(N,K) correspond to the rota-
tional termsF,(N,K) andF,(N,K), respectively. They have grees of freedom, never mix¢g )} if the rotation—vibration

; 4
been derived by Raynes’ interactions are weak, i.e., when the total wave function can
3K?(a—a) be well approximated as a single product|dfK) and the
Fa(N,K)=E((N,K)+ N(N+1) ° (79 vibrational wave functior¢,) (of Which.energy isE, , .i.e.,
H,|¢,)=E,|¢#,)). However, the rotationahHgz: mixes
3(N+1) {]j)} if a- andb-axis Coriolis couplings caugé mixing to a

This rotationalAHg:, which is a function of rotational de-

FL(N.K)=E, (N,K)— ? (a—ag)(N+1)

2N+3 great extent. Consider two state$e,)|N,K) and
3K? |, )IN,K") that are mixed by the Coriolis interactions as
o
TN+11%7 2NF3) (76) |1)=cos ¢l #,)IN,K) +sin & ¢, )INK'), (79
whereE, (N,K) is the purely rotational energy, the constants [i")=cos&|dy)IN,K") =sin £[4,)[N.K), (80)

ag anda originate from the spin—rotation interaction, and where

e Lt 2N K[{ | Hryl 60} [N.K) |
2 E,+[Fg(N,K)+Fc(N,K)]/12—E,,—[Fg(N,K")+Fc(N,K")]/2

For this caseAHgc mixes the functionsj) and|j’) which are considered eigenfunctions of the average Hamiltdrian
sin 2¢£ 3(K+K')(K'=K) 3a

2 N (a_ 2N+3

It is not so difficult to treat cases where many states are mixed by rotation—vibration interaction. In dgneakés the
form

(81)

i i sin 2¢
<J|AHBC|J’>:T[AFBC(N1K,)_AFBC(N1K)]: . (82

1)=2 141,0IN.K), (83)

where|¢; ) contains only the vibrational degrees of freedom. Using the sum(seke Eq(71)], we find that

_ _ 1 18(N+1)(3N2+3N—1) 3a
n|2_— . . 2 2 ~ 2 — o
; [(j|AHgclj ") ; (& kl &)k “AF5(N,K) SNT1 ; AFgc(N,K) 30N TN
N agmat =] s oNeN+ 1) ag- ok 2|~ (a2 22N (84)
0 2N+3 0 2N+3 0 '

where all theK components are assumed to be equally popunearly degenerate vibrational levels belonging to the same
lated in|j) owing toa- andb-axis Coriolis couplings. Non- polyad.®® The dispersion is thus expected to be

zero matrix elements ofj|AHgc|j’) will be distributed
among (N+1)Np levels that are energetically negp), 2, ovni2
whereNp is the number of vibrational levels mixed by the TAH~Ai 2= (ap+a’)N 85
Coriolis couplings®®® (N, is regarded as the number of (2N+1)Np
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The condition that a staggered structure is formed is that thevith the Zeeman energy,. The eclipsed and staggered
rms of (j|AHgl|j’) is larger than the average level spacingstructures alternatively appear at intervals of algatin h .

including the rotational degrees of freedom, Between the two cases there is a major difference; with
RN increasingh; the number of effectively coupled background
(agt+a“)N € level : .
> , (86) evels,Ng¢, increases for the staggered structure but remains
(2N+21)Np~ 2N+1

unchanged for the eclipsed structure. When two dressed
wheree is the average spacing fdi=0 (the purely vibra- States are degenerdia the eclipsed case, evelly) dressed
tional spacing state energetically coincides with one|oj states, it is al-

Take s-triazine, for examplé% This molecule is kind ways possible, irrespective of their coupling strengths, to

of a small molecule, since the triplet density of vibrationalfind a transformation under which one state carries coupling
statese is ~1 cm ! at the 6 vibrational level ofS,: the  strength tds) and the other does not. This is the reason why
magnetic quenching at this band is inefficient for Iw<5 N remains constant with increasihg if the level structure
(under collision-free conditions, the amount of quenching ais restricted to the eclipsed one.
150 G is 10% of the fluorescence quantum yield at zero  What the staggered structure model suggests is in accord
field). Since the energy separation between theféS; and  with experimental results on the magnetic quenching. In the
the T, origin is only about 1700 cit, the vibrationalAHg:  far wing regions of the absorption band, the field dressed
does not induce a staggered structure. However, in the bultates{|b;)} and{|c;)} are approximate eigenstates of the
gas at 250 mTorr, where the averadeis about 30, the total HamiltonianH. In these regions, an eigenstate contains
amount of quenching at 150 G reaches 40% of the fluorespnly oneb-character level and only orecharacter levela
cence quantum yield at zero field. We attribute this to thepair of levels connected by the Zeeman interadtiand the
formation of a staggered structure due to the rotationamixing between the two leve|®;) and|c;) is determined by
AHgc. The typical values o&, anda for intermediate case  the ratioh,/E,,: the mixing between zero-order levefis-
molecules are expected to be about 0.01£(0.02 cm *for  termanifold mixing is small as long as the ratio,/E gap is
the lowest triplet of HCO of which rotational constants are sma||. On the other hand, near the absorption band center, the
larger than those o§-triazing).5® Consideri.ng anh.arm(.)nic scomponent is transferred to background Ie\{@§)} by the
constantsNp would be less than 50. T/he inequali¥®) is  gecond-order Raman-like process duevtand H, which
fulfilled for the set of these valug®~J"=30). distributes thes character to more eigenstat@stermanifold

mixing isoenergetic tds)). The intermanifold mixing is en-

hanced by the presence of the doorway level (or V).
VI. SUMMARY AND CONCLUSIONS Consequently, if the levels structure is restricted to the stag-

, o gered oneNy increases with increasinj; more rapidly
In this paper, the effect of magnetic field on ISC hasthan expected for the far wing regions.

been modeled by including two background manifd]ds)}

In the two manifold BJ model, energy correlations are
and{|c;)} mutually shifted by the zero-field splitting gy, 9y

) . X i overstated and fluctuations in the coupling are disregarded.
Lhe£{r|]bj)_}tman|flold IIS cptipledtftovthe Z'rl%lett\i’l”ght Ie_\;|es|l>d In real molecules, the energy spacings are not equal and the
y Ihe intramolectiiar Interaction’ and e wWo maniiolds couplings are not constant. It is impossible for evény

are coupled by the Zeeman interactibi . The two mani- : A
fold model features the magnetic field effect on ISC, thoughdresseOI state to be paired withCh state of the same energy.

a triplet electronic state has three spin sublevels. The modéafs. long as spin gnd vibration do not interact with each other
is analyzed on the basis of the two manifold BJ model andt Is also |mp_055|ble for all the dressed states to be nonde-
the random matrix approach. In the two manifold BJ model 9€Nerate. Neither perfect eclipsed structure nor perfect stag-

it has been assumed that the background level spacings afl red structure are pogsible. The problem is that if'a perfept
the couplings tds) are constants andv) and no spin— staggered structure is |m9055|ble even very high fields will
vibration interactions existthe Zeeman interaction connects not reduce the quantum yield to 1for M =2) of the zero-

only the spin sublevels of the same rovibronic leyehnd field value contrary to the experimental fact. )
does not connect the spin sublevels of different rovibronic ~ Neécessary conditions for the complete magnetic quench-

level$. In the random matrix approach that can take intol"d (that the quantum yield is reduced to 1/2 at high figlds
account level statistics, the role of indirect spin—vibration@': (i) the energy distribution of dressed states at high fields
interactions in magnetic quenching has been examined. IS the same type as that of tiemanifold and the average
By analyzing the two manifold BJ model, we have found SP&cing |s_reduced te/2; (ii) the coupling d_lstrlbutlon at
that two extreme energy structures, namely, the eclipsed arfigh fields is the same type of that of themanifold and the
staggered structures, are of special importance. They are dens of the coupling is reduced to{)*/%v2. Our BJ model
fined by using the field dressed states for the backgroundoes not satisfy the above conditions unless the staggered
HamiltonianHy+Hz(=H—V). There are two sets of field structure is assumed. We have solved the problem by using
dressed state§|b;)} and{|c;)} (|b;) and|c;) are liner com-  the random matrix approach that can consider level statistics
binations of|b;) and |c;)). We call the structure eclipsed of background levels and spin—vibration interaction.
when the two sets of dressed states overlap in energy and call In the random matrix approach, the doorway electronic
it staggered when evenyp) state is just between two adja- state|A) and two background electronic sta{@ and|C)
cent|C) states. The energies of the field dressed states shifire introduced. The total Hamiltoniahis constructed of the
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rotation—vibration Hamiltonians for the three electronic becomes higher and /N, increases more slowly than Eg.
states involved, Hy, Hg, and Hc. The difference (60). The maximum value oN/N, is less than 2on an
AHgc=Hg—Hc—Eyyoplays the key role, wherBy,,is the  average These features explain why magnetic quenching is
zero-field splitting at the equilibrium nuclear configuration. inefficient in molecules of small energy separation between
In the presence of spin—vibration interaction, the energy gaf$, andT;.
between the sublevel potentials depends on the nuclear con- For strongly coupled systems, there are no strong selec-
figuration, i.e.,AHg-#0. Two mechanisms oAHgc have tion rules for(j|AHg¢|j’). For wave functions of roughly
been presented: theH g caused by a combination of spin— the same energy, these matrix elements are Gaussian random.
spin and vibronic interactionghe vibrationalAHgc) and the  The dispersion |(j|AHgc|j’}|? is estimated to be
AHgc caused by a combination of spin—rotation andO(AH3.)(e/AE,), whereAE, is the range outside which
rotation—vibration interactionéhe rotationalAHg). the mismatch in local wavelength between wave functions

The vibrationalAHg is a function of vibrational de- kills the integral(j|AHg|j’). Upon lettingAE,=50 cri *
grees of freedom and the rotation&Hg is a function of  ande=10"3cm ™, the rms ofj|AHgc|j’) becomes as large
rotational degrees of freedom. The matrix elementsi@re  as the average level spacing. When the rméjpiHg|j’)
written down in terms of the eigenfunctiofi§)} and eigen- is as large as the average spacing, the calculbtgdN,
values{E;} of the average HamiltonianHg+H¢)/2. The grows as rapidly as Eq.60). Nonzero elements of
role of the vibrationalAHgc depends on the density of vi- (j|AHgc|j’) let isoenergetic levels belonging to different
brational states and on how strongly the vibrational modespin sublevelg|b;) and|c;-)) vibrationally overlap. The ef-
are coupled. fect of AHg is therefore twofold: the\H g, together with

For a system where the vibrational modes are stronglyhe magnetic field causes wide-ranging level repulsion lead-
coupled, the energies of levels are given by a Wigner distriing to a staggered structusgvhich is accompanied by the
bution and the coupling strengths are given by a Gaussiasfficient isoenergetic intermanifold mixihgand opens up
distribution. If the rms of(j|AHgc|j’) is smaller than the isoenergetic paths between the two manifolddich also
average level spacing, the calculated valuedNgf/N, are,  enhance the efficiency of magnetic quenchifithe efficient
on an average, smaller than EO) for the staggered case in magnetic quenching in pyrazine can be explained by the for-
the two manifold BJ model. At zero field, the spacing distri- mation of staggered structure due to the vibratiohblg,
bution is a Brody distribution with the repulsion parametersince theS,—T, separation is as large as 4500 ¢n
r=1, i.e., a Wigner distribution, but at the high field limit, The rotationaAHgc mixes{|j)} if a- andb-axis Cori-
the spacing distribution of dressed states is a combined digiis (in the oblate cagecouplings caus& mixing consider-
tribution of two Wigner distributions mutually shifted by ably. Nonzero matrix elements ¢f|[AHgc|j’) will be dis-
Egap- This distribution is well approximated by a Brody dis- tributed among (R+ 1)N;, levels that are energetically near
tribution with r~0.36. Ash; is increased, the ratio of over- |j), whereNp is the number of vibrational levels mixed by
lapping levels becomes higher: the valbigi/N, does not the Coriolis couplings. Then, the condition that a staggered
increase as rapidly as E¢60) and never reaches 2 on an structure is formed is Eq86), i.e., the inequality that the
average. rms of (j|AHg¢|j ) is larger than the average level spacing

For weakly coupled systems, the spacing distributionincluding the rotational degrees of freedom. It is known for
will be a Poisson distribution. The eigenfunctions of roughlys-triazine that for lowd’<5 the amount of quenching at 150
the same energy typically look very different and they beatG is 10% of the fluorescence quantum yield at zero field but
violently against each other: the matrix elementsin the bulk gasthe average)’~30) it amounts to 40%. We
(j|AHgc|j") are negligible. Consequently, the spacing dis-attribute this to the formation of a staggered structure due to
tribution at the high field limit is a combined distribution of the rotationalAHgc, since the energy separation between
two Poisson distributions mutually shifted W,, which  the S, andT, origins is only about 1000 cit.
remains to be a Poisson distributithe average spacing and The question left to us is a quantitative one: How much
coupling strength are, respectively, reduced to 1/2 and tdo the characteristic mechanisms proposed in this paper
1V2). If the couplings were constant, with increasihg,  function in real molecules? We should employ methods of
Ne#/Ng would approach 2 and./Ng increases nearly as discussing quantitatively without providing energy levels and
rapid as Eq.(60). However, for weakly coupled systems, their couplingsa priori. That is, potential surfaces are input
where selection rules operate, some couplings are expecteldta. In a previous pap&fwe have presented a methttle
to be strong and many others will be very weak. Clusterindiltered energy Lanczos methpdo simulate intermediate
levels of a Poisson distribution will have coupling strengthscase radiationless transitions for given potentials. The strat-
of different orders of magnitude. The levels that are weaklyegy consists of three step&l) computation of an optically
coupled to|s) can be combed out of the background levelsprepared state at a time just after the pump pulse has de-
{|i)}. The combed background manifold looks as if levelcayed;(2) extraction of eigenfunctions from the optically
clustering is removed to some extent. In the level structure ghrepared state(3) calculation of time-dependent quantities
the high field limit, obtained by superimposing the combedsuch as the fluorescence intensity using the eigenfunctions
background manifold on the same one shiftedyy,, many  obtained. The first step can be carried out by time-dependent
levels with relatively large coupling strengths cluster. Themethods for wave-packet dynamf&€® In the second step,
degree of level clustering is larger at high fields than at lomlLanczos vectors are generated, from the prepared state, with
fields. As h; is increased, the ratio of overlapping levels an energy filtered Hamiltonian and diagonalize the unfiltered
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Hamiltonian. Preliminary calculations have been performed*N. Ohta and T. Takemura, Chem. Phg$2, 15 (1992.

for systems of two vibrational degrees of freed¢ime den-
sity of states is~20/cm %): an accuracy of 10° cm™* can
easily be obtained. The long time dynamics up-~tt us is

25D, B. McDonald, G. R. Fleming, and S. A. Rice, Chem. PH§8. 335
(1981).

264, Abe and H. Hayashi, Chem. Phys. L&t06, 337 (1993.

27A. Amirav and J. Jortner, J. Chem. Phye, 1500(1986.

within reach. As shown in this paper, magnetic quenchingsa, amirav, Chem. Phys126 327 (1988; A. Amirav and Y. Oreg,bid.

can be discussed by calculatihg from the eigenfunctions

126, 343(1988; A. Amirav, ibid. 126, 365 (1988.

(also by calculating the time-resolved fluorescence sjgnal #H. Saigusa and E. C. Lim, Chem. Phys. L&8, 455 (1982; J. Chem.

Correlation between energy and coupling will be adequately,
taken into account by putting realistic potential surfaces.

Phys.78, 91 (1983.
H. Baba, M. Fujita, and K. Uchida, Chem. Phys. L&8, 425(1980; H.
Baba, N. Ohta, O. Sekiguch, M. Fujita, and K. Uchida, J. Phys. CB&m.

Work based on these approaches will be reported elsewheregas (1983; 0. Sekiguchi, N. Ohta, and H. Baba, Chem. Phys. L6,
To conclude this paper we would like to point out that 31387 (1984
the problem we are tackling is not restricted to the magnetic I- A- Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M.

guenching of fluorescence but rather general: What happenq_

Wong, Rev. Mod. Phys53, 385(1981); O. Bohigas and M. J. Giannoni,
ecture Notes Phy09, 1 (1984); M. L. Mehta, Random Matrice$Aca-

when three or more sequentially coupled potential surfaces gemic, New York, 1991
are involved in the dynamics? Our model implies that energy?w. Rhodes, in Ref. 5, p. 219.
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