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We have calculated the vibrational relaxation rates for HCl (DCl)/Ar matrix systems. The quantitative
agreement between our calculations and experimental data is fairly good. Our approach based on the

adiabatic approximation can consistently treat the eigenvalue problems and vibrational relaxation processes
for diatomic molecules embedded in monatomic crystals. The adiabatic approximation is used to separate
high (intramolecular vibration) and low frequency modes (molecular rotation and lattice vibration). The

nonadiabatic couplings (the kinetic energy operators for the low frequency modes) induce the vibrational
relaxation processes. Qur numerical calculations support the mechanism proposed by Bondybey and Brus
that for small hydrides molecular rotation is the dominant accepting mode. The 4 ,, totally symmetric lattice
modes in the classification by the irreducible representations of the substitutional site symmetry O, are shown
to be dominant to accept the energy mismatch between initial and final rotational levels. For the DCI/Ar
system, we have found that the mixing of initial rotational levels due to the rotation-lattice vibration coupling
is responsible for the vibrational relaxation. The calculated relaxation rate for DC1 is smaller than that of

HCl by one order of magnitude.

I. INTRODUCTION

The vibrational relaxation processes of guest diatomic
molecules in solid matrices have been studied experi-
mentally'™® and theoretically.? Many authors have exa-
mined the effects of delocalized lattice phonons,
localized modes, molecular rotation, and rotation-
translation coupling, ete., taking into account the inter-
action between a guest molecule and its surrounding
neighbors, Most of the earlier theoretical studies have
dealt with the simplest relaxation mechanism called
the multiphonon relaxation in which the intramolecular
vibrational energy of the guest is released directly into
the delocalized lattice phonons. These works®™!? have
predicted that the vibrational relaxation rate depends
strongly on temperature and decreases exponentially
with the increase of the intramolecular vibrational fre-
quency. It has been reported that heavy diatomics
8,112 ¢35, 1 0,, ™ probably relax via multiphonon pro-
cesses. In contrast, small hydride molecules such
as HC1," OH, '® and NH, ' etc., do not follow the mech-
anism of the multiphonon relaxation: They show very
weak temperature dependence in relaxation rates, and
the hydrides relax faster than the corresponding deu-
terides. To explain these tendencies, Brus and Bondy-
bey, 16 noticing the larger rotational constants for hy-
drides, assumed that the intramolecular vibrational en-
ergy is accepted principally by the rotation of guest
hydride molecules, Later Legay' correlated existing
experimental data with this assumption.

Several groups have developed models to account for
the role of molecular rotations in the vibrational relaxa-
tion processes. Freed ef al.'®'® have employed a two-
dimensional model in which the intramolecular vibra-
tion-rotation coupling is considered. Their model pre-
dicts that the relaxation rate decreases exponentially
with the square root of (intramolecular vibrational
frequency/rotational constant), and depends on tem-
perature weakly. Diestler et al. 20 have studied the
role of molecular rotations in NH, OH, and HCI mole-

2748 J. Chem. Phys. 79(6), 15 Sept. 1983

0021-9606/83/182748-08$02.10

cules by adopting a model similar to that of Freed ef al.
Knittel and Lin?' have extended those models by including
the effect of lattice phonons explicitly. Gerber and
Berkowitz?*~%* have developed a three-dimensional
model. Their calculated relaxation rates of NH and ND
in Ar matrix seem to be in a good agreement with the
experimental results. However, in these studies, the
interaction potential between a guest molecule and its
surrounding host atoms has been estimated based on
some assumptions, especially, the intramolecular co-
ordinate dependence of the interaction potential., More-
over, the treatments of lattice vibration are incomplete
in the sense that the presence of a guest molecule modi-
fies the phonon structure, especially, in its neighbor-
hood.

Another critical point is concerned with perturbations
inducing the vibrational relaxation. The interaction po-
tentials between a guest molecule and its neighbors
have been treated as the perturbations in almost all
theories except for a treatment proposed by Lin ef a
In their treatment, doorway states (initially prepared
states by sources) are written as a single product of
single-mode functions which are obtained from the
case of the adiabatic approximation. Then the non-
adiabatic couplings between high (intramolecular vibra-
tion) and low frequency modes induce the vibrational
relaxation, Usually the adiabatic approximation pro-
vides good “doorway states, %

1. 10

In a previous paper®® (referred to as paper I), we
have proposed a theory based on the adiabatic approxi-
mation for systems of a diatomic molecule embedded
in a monatomic crystal. The adiabatic approximation
is used to separate the numerous degrees of freedom
of the system into the intramolecular vibrational degree
of freedom and the other degrees of freedom (contain-
ing molecular rotation and lattice vibration). The
Green’s function method has been’used to treat lattice
vibration. We have performed the calculation of rota-
tional spectral shifts of HC1 and DCl in rare gas ma-
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trices adopting the M5 potentials proposed by Hutson
and Howard, %"

In this paper, following the idea of the adiabatic ap-
proximation, we calculate the vibrational relaxation
rates for HC1 (DCl)/Ar systems. In Sec. II, an ex-
pression giving the vibrational relaxation rate is pre-
sented. The dominant nonadiabatic coupling inducing
the vibrational relaxation is the kinetic energy operator
for the molecular rotation. As in paper I, the effect of
lattice vibration is taken into consideration appropriately
with the aid of the Green’s function method.?® In Sec.
I, we report the numerical results of the vibrational
relaxation rates for HCI1 and DC1/Ar systems. For
the numerical calculations, we introduce the dependence
on the intramolecular vibrational coordinate into the M5
potentials in a tentative way; the original M5 potentials
do not include the intramolecular coordinate. Finally,
in Sec. V, we summarize and discuss our results.

ii. THEORY

We present a theory to calculate the vibrational relaxa-
tion rate of an intramolecular mode. In paper I, we
have employed the adiabatic approximation in which the
intramolecular vibration of high frequency is sepa-
rated from the lattice vibration and molecular rotation.
The excited intramolecular vibrational states deter-
mined by the adiabatic approximation are regarded as
good doorway states, since the adiabatic eigenvalues
and eigenfunctions are very accurate and since only
the transitions between the levels belonging to different
intramolecular vibrational levels assigned by the adia-
batic approximation are optically allowed in infrared re-
gion. In this paper we adopt the adiabatic basis set as
doorway states and treat the vibrational relaxation as
nonadiabatic processes.

In the adiabatic approximation proposed in paper I the
perturbations to induce the vibrational relaxation are
the nonadiabatic coupling through the kinetic energy
operators of low frequency modes, i.e., molecular
rotation and lattice vibration.” This coupling scheme is
obtained by using the same procedure as in Ref. 10.
We have studied the effects of both kinetic energy opera-
tors. According to our result the nonadiabatic coupling
due to the kinetic operator of molecular rotation is much
larger than that of lattice vibration. Thus, we neglect
the latter in the following treatment. In what follows we
shall recall some results obtained in paper I, which are
necessary for the calculation of the vibrational relaxation
rates.

The adiabatic wave function for the »th intramolecular
vibrational level is as follows:

’ 1/2
In)=( %/2"-7[!)

”Ql IJ.Q'
XH,,( = Q')exp (-7 Q"?), (1)
where €’ and @' are related to the interaction beEween a
guest molecule and its surrounding host atoms, Hy; by

1 [ o%H
Q2 92+—< aé"') (2)
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1 [ef
Q'=Q+W<?$L)Q=D- (3)

Q, 2, and u are the normal coordinate, vibrational
frequency, and reduced mass of the isolated molecule,
respectively. The adiabatic wave function |n) depends
parametrically on the rotational angles, the center-of-
mass of the molecule, and the host atom coordinates
through (8Hy;/3Q)qx0 and (8 2Hy1/9Q%)g-0. For the
HCIDCI1)/Ar systems, Hy, can be expressed as the sum
of the interaction potentials between the HC1 (DC1) and
the host atoms. It will be sufficient in this case to take
into account the nearest neighbor interactions alone
[see Eq. (19)].

The Hamiltonian for molecular rotation and lattice _
vibration in the nth intramolecular v1brat1onal state H
is decomposed into three parts, rotational Hm,, lattxce
vibrational H,, »» and their coupling H,,m,,

H=-H, +H oA, +E%n) , (4)

nirv

where E%») is the energy for the nth intramolecular
vibrational state. We have evaluated I?,, up to the order
of 1/Q%, The diagonal correction term due to the kinetic
energy operators of the low frequency modes has been
neglected, since its order of approximation is higher
than 1/Q%, In paper I, we have shown that the HCI
molecgle trapped in Ar matrix rotates freely. There-
fore, H,;, can be chosen to be the kinetic energy opera-
tor of molecular rotation

A J2

Hn;r=§ ’ (5)

where [ is the _moment of inertia, and the angular momen-
tum operator J?is given by

32=—h'2(-iz+cot6 2 ———2—1 az) (6)
a0 80 " sin g2/

6 and ¢ are the angles for molecular rotation.

The lattice, in our theory, is composed of the center-
of-mass of the molecule and the host atoms. The iso-
tropic interaction between the guest molecule and its
surrounding host atoms, which affects the phonon struc-
ture of the perfect crystal, is regarded as the potential
between the center-of-mass of the molecule and the host
atoms. H,,,,, has been expanded up to the second order
of the small displacements of lattice components (i.e.,
the harmonic approximation). In our theory, instead of
solving the eigenvalue problem for H,;, directly, we em-
ploy an alternative approach, i.e., the Green’s function
method, which turns out to be more convenient and
powerful in the investigation of the lattice vibration of
the solid systems with point defects.

In the HC1/Ar system, the rotation-lattice vibration
coupling H,,; v 8ives considerable shifts and widths to the
rotational levels of the free rotor. 2

A. The relaxation rate constant

In calculating the vibrational relaxation rate, the role
of H,,m, is secondary. The reason is as follows, The
rotation-lattice vibration coupling has little effect on
high rotational levels (which are supposed to be the
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final rotational levels in the vibrational relaxation
processes), because the energy spacings between such
levels are much larger than the phonon frequencies.

In contrast, for low lying rotational levels, which are
supposed to be the initial rotational levels, the rota-
tion-lattice vibration coupling gives rise to the shifts
and widths. The widths of the initial levels do not have
significant effects in the case of the relaxation into
continua, The shifts affect the energy gap between the
initial and final rotational levels. In HCl/Ar system,
the energy of the J =0 level is shifted by about 10 cm™,
which can be included into the energy gap. However, for
simplicity, we do not include these shifts in the present
treatment. Moreover, there is a mixing mechanism due
to the rotation-lattice vibration coupling that mixes the
levels of low lying rotational levels. As will be dis-
cussed later (Sec. III), this mixing is not important for
the HC!/Ar system, Hence we start with the case in
which H,,,, is absent. In this case, the adiabatic basis
set is given by

{|n sy [{wp}, (7
where J and M are the rotational quantum numbers and
{v} denotes the lattice vibrational states. In the basis
set of Eq. (7), the vibrational relaxation rate for the
transition from (nJM) to (n'J'M’), Win,J,M-~n",J', M),
is given by the Fermi golden rule

%ZZ Pns vv
v v

Win,J,M~n',J' , M) =

x [ M [(n' | 5= ) |[TM) | {0})]?

nd?
i
XS(Ep seuri ) — Epauty) 5 (8)

where p,;,, is the Boltzmann factor for the lattice vibra-
tion in the nth intramolecular vibrational state. E,juqy)
represents the eigenvalues of H,. Introducing the inte-
gral representation for the delta function into Eq. (8),
we obtain the generating function form for the relaxation
rate

| ')

Win,J, M=u',J', M')= f @t Tr b, (IM|(n

|21

X exp [—%t ]lJ’M’) (J'Ml|(nl| |n) exp[
(9)

where ﬁ,, is the density matrix of the lattice vibration.
Tr means the trace over the lattice vibrational degrees
of freedom. Applying the Condon-like approximation,
in which the matrix element KJMI{nlJd2/211n"y1J'M")|2
is evaluated at an equilibrium distance between the
center-of-mass of the molecule and the nearest neighbor
host atom j, Rg;, we obtain

Win,J,M~n',J' M) = |c(n J,M~n',J', M")|?

X f dtexp[’t AE®+ —B,,J(J+ 1)—%tBn.J'(J'+ 1)]

n
- it A TR
XTr [pn exP(%Hn;n:) exP(_ % Hn’;v)]’ (10)
where

Bl ,
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Cln,J,M~n',J',M')= (JM|(nl |n’)|J’M’)RGI=Ro

¢j’
(11)
and the intramolecular vibrational energy gap AE® is

AE°=E%n) -E%n") . (12)

B, is the rotational constant in the »th intramolecular
vibrational state. If we let

PS

Iin';vzl}n;u+ ‘7

then we have

1 ! 7 ’
Win,J, M=n",J", M") = =2 |C, J, M ~n', ', M")|?

X f dz‘exp{;ilf [AE*+ BJ(J+1) ~ B,.(J’ +1)] }

XTr{p,,exp.[ ﬁf dTV('r)]}

where exp-[- ++] denotes the usual time ordered expo--

nential, and
iT =& X
V(T) = exP('h—_ Hn;v) VexP ("' % H, v) .

In the case where ¥ is a function containing only the
linear terms of lattice displacements, we find

T'{ﬁ"exp.. [_% f “ar ff(r)]}

~exp[- & [Tan [ arvr)im)]

(13)

(14)

= exp [— flz /(;th(t—T)(f}(T)f})] (15)
where
(17(71)&(72» =T, 5'. ‘7(71)17(72) . (18)

If nonlinear terms exist, then the cumulant expansion
method can be used,?®

B. The effect of the change of host atom equilibrium
position

In this subsection we determine ¥ for the vibrational
relaxation. For this purpose we shall choose {R},} as
the equilibrium distance in the nth intramolecular vibra-
tional state. Retaining only linear terms of the small
displacements {AR,} of host atoms from their equilibrium
positions {Ro} we have [see Egs. (3)-(7) in paper I]

V= 47 [Dy(n") = Dy(m)] D (sin 63 cos ¢ AR
i

+sin 89sin ¢ AR, + cos 6] AR,,) , (17
where
wln' —n) [ ) ( % Vo(Rg, Q)) }
' _ 2
Dy(n') -Dy(n) = 208 5Rg, 90 oy ey
18)

(69, ¢9) represents the direction of {Rf} from the center
of the substltutmnal site. Vj is the isotropic part of
H,L. H, . is expanded in terms of the Legendre poly-
nomials as follows:

J. Chem. Phys., Vol. 79, No. 6, 15 September 1983
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Bp=2_2 _Z_l4_+"_1 Vi(Rg,, Q)Py(cos 8,)

5 =0

1
= ;XZ E VI(RGI’ Q)Y,l.‘m(eh ¢J) Ylm(ea ¢) ) (19)

where B, is the angle between the molecular axis and
the vector Rg,.

Carrying out the summation over j in Eq. (17), we ob-
tain
17':7""'84“ ’ (20)

where

y _wﬂr(n'-n)[ 9 (82V0(RGDQ)) ]
LY 7717) 8R¢ 8Q* @=0JrGeRY,
) 6rigy (21)

and SAx, is the symmetry coordinate belonging to the
A,, representation of the substitutional site symmetry
OM

1
SAI‘ = —\/ﬁ_— (ARlx+ AR1‘+ ARay‘i‘ ARz‘— AR3,+ AR3'

- AR, +AR, +AR;, + AR - AR -AR,,
—ARqy+ ARy, — ARy + ARy —ARy, + ARy,
- ARy, -~ ARy, - ARy, - ARy, - ARy,,) . (22)

The positions of the 12 nearest neighbor atoms numbered
from 1 to 12 are listed in Appendix B of paper I. Due to
the linear term 7, 341, the equilibrium positions of host
atoms change along the SAl. coordinate, depending on the
intramolecular vibrational states. The totally sym-
metric modes of lattice vibration are interpreted as
accepting modes; needless to say, this reminds us of
electronic relaxation in which the totally symmetric
modes of molecules having displacements between two
electronic states are accepting modes in the nonradiative
relaxation of electronic energy.

The correlation function (17(7')17) involved in Eq. (15)
can be evaluated by using the Green’s function meth-
0d.2%%® Taking advantage of the Green’s function of the
A,, symmetry Ga,,, we have

(S 41,( 4, = (— % ) f _: dw exp(- iwT) T eipgg(_wgﬁw)
xImGAll(wz) . (23)

Inserting Eq. (23) into Eq, (15) yields

exp [ [ =15y, 50, =emlote], (20

where
2 ® .
v(t)= % (%)[m dw [—l—:’ - (;é— (exp(-itw) - 1)]
% 1——;3-:—!% 5 G, (o) . (25)

The Green’s function G-41 for the perturbed crystal is
related to that of the perfect crystal G°Al‘,

Gay, (o
G“l:(“’z)=1+_§24€(_cc§ﬁ , (26)

£

with
AA=A'(0,0)-A4,,(0,0), (27)

where A_(0,0) ahd AL(0, 0) are the force constants for
the perfect and perturbed crystals, respectively (see
paper I). Go“u is given by

c&ll(wz) = 2,0, 0; w?) + 22,.(011, 0; w?) - £,,(200, 0; o?)

- 2g,(211, 0; &?) + g,,(002, 0; &%) - 2,,(202, 0; o) ,
(28)
where gas(l,1’; w?)’s are the Green’s functions of the
perfect crystal in the site representation, ’s denote
the positions of lattice atoms. Taking into account only
the contribution from the autocorrelation of lattice dis-
placements, we obtain

. (0, 0; w?)
G‘l,(wz)=m - o

This approximation is justified by the fact that the auto-
correlation of lattice atom displacements is larger than
the correlation between atoms belonging to different
sites. However, the quantitative justification of Eq.
(29) should be examined in future studies.

When g,,(0, 0; »®) which is given by Egs. (4-25) in
paper I is inserted into Eq. (29), the imaginary part of
the Green’s function for the continuous band modes be-
comes

'Fﬂ,, U w?)

7 i
I—Z%A;-i—:’g [1+ S(wz)]} + [-1-‘1;— AAu(wz)]

Imcﬁl": { H
(30)
where My is the mass of host atom, {w?) denotes the
density of states for the perfect crystal per unit «?, and
© 2 ( I2)
S| 2 =Pf w Nw
WI=P | G
For the case in which an 4,, localized mode exists we
have an extra contribution to the Green’s function as

- -ML,, [1+8(a?)]

AT

where w; is the localized mode frequency above the
cutoff frequency of band modes [u(wi) =0] and satisfies
the following equation:

dw' . (31)

1G4 e - i), (32)

A4 2
1—4—Mu_wi— [1+S(u?))=0. (33)
In the presence of localized mode wy, AL(0,0) must be
larger than A,(0,0) because of 1+S(w2)>0.

Using Eqs. (30) and (32), we obtain the vibrational
relaxation rate Win,J, M=n',J’),

Win,J,M~n',J")

1
=77 [”Z |Cln,d ,M~n",J’, M')|2]p(n,J-. n',J’),

where (34)

P(n,J-n',J’):/ dtexp{%t AE(n,J;n',J')—v(t)} R

(35)
AE(n,J;n’,J')=AE°+ B, J(J+1) - B, J'(J' +1) , (36)
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and

v(t)=212""— ) dw _u ——lg[exp(— iwt) = 1] Senw
Mgk- - w w

+_)_/2m:_ . [1+8(w?)]
Myl AA d
# { - o1, [ij S(wz)]

it 1 ; !
‘[«TL - 2 (ewliot) -1 ]IWJJ}/Z”L '

w=wL

AE(n,J;n’,J') is the energy mismatch between the initial
and final rotational levels, which is accepted by the
lattice phonons. v(t) can be obtained from v(w?) by nu-
merical integration with respect to 7,

Ladouceur and Diestler®® have proposed a pseudomole-
cule model consisting of a guest molecule and its sur-
rounding host atoms to treat local lattice modes. The
Green’s function method applied here is believed to be
the best way to include the effect of lattice vibration
(Ventzl and Fischer®! have applied the Green’s function
method to the electronic relaxation of a diatomic mole-
cule embedded in one-dimensional crystal).

To complete the calculation of the vibrational relaxa-
tion rate, it is necessary to show how to evaluate
Cln,J,M~-n',J',M’). We summarize it in the Appendix.

11l. NUMERICAL RESULTS

In this section we report the results of numerical
calculation of vibrational relaxation rates of HCI(DC1)/
Ar systems at T=0 K, p(w?) for Ar crystal is taken
from Ref, 36 in paper I. In paper I, we have used the
M5 potentials proposed by Huston and Howard® as the
rare-gas HC1 potentials, The M5 potential for HCl1 «Ar
seems to be reliable in calculating the rotational levels
of HC1/Ar system, However, since their potentials do
not include the intramolecular vibrational coordinate
(@), they are insufficient to carry out the calculations
for vibrational relaxation rates in our formulation. To
include the @ dependence, we modify their potentials as
follows.,

The M5 potentials have a function R, (B), which is the
distance between the center-of-mass of the molecule and
the position of the potential minimum when the angle be-
tween the molecular axis and the vector from the center-
of-mass of the molecule to the rare gas atom has the
value 8. B=0° corresponds to the linear configuration
rare gas atom.HCL. In order to include the @ depen-
dence we replace R,(B) with R,(Q, B) given by

M M,
R,(Q, B) =R,(B)+ [IWH+—1W:1— o8+ W*-Cﬂl’fc—; ga(ﬁ)] Q,

where (38)
£&(B)=0 for 0°<p<90°
=cos?f for 90°<B<180°, (39)
and
giB)=cos’p for 0°<B<90°
=0 for 90°<B<180°, (40)

1 - exp( - pHw) {1 AA

it 1 ;
} { [‘UL _E—(exp(—zw:.t)‘l)]l_mm

2
- W [1 +S(wz)]} + M_: AAv(wz)]

1

(37)

This model explains the following two features which
have been reported for HF /Ar by Detrich and Conn. *

(i) The position of the potential minimum shifts toward
larger values as @ increases, (ii) The @ dependence at
B=90° is negligible. However, this model cannot
explain the following feature which also has been re-
ported by Detrich and Conn. (iii) The potential miminum
becomes slightly deeper as @ increases.

We use Eq. (38) for evaluating the derivatives of V,’s
with respect to @. An important point to be noted here
is that one can use the formalism developed in this
paper and the previous one for determining the deriva-
tives of V,’s with respect to @ from the measurement
of spectroscopic properties and relaxation rates of im-
purity molecules in solids. In what follows we report
the numerical results for the vibrational relaxation rate
of the HCI/Ar system from the first excited intra-
molecular vibrational state z=1.

The lattice vibrational part P(1,J - 0,J') is shown in
Fig. 1 as a function of the energy mismatch AE(1,J;
0,J’). The integration with respect to ¢ in Eq. (35) has
been done by the saddle point method. The calculated
value of

_4..
g
S -5¢
t
-
i
S
- -6
_.7_

60 70 80 9O
AE(1,J;0,J)  (cm™)
FIG. 1. The lattice vibrational part P(1,J —0,J ) as a function

of the energy mismatch AE(1,J;0,J'). The units of P(1,J
~0,J") are 1/em™,
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[ 9 (BZVO(RG,_Q)> ]
8Rg, 8Q* Q=0 RGj:ROGI

in 70 is -1.33x10* cm™ /A%, We have used 3.85 A as
R?;,. 26 In our numerical calculations, there is no
localized 4,, mode. P(1,J-0,J') decreases very rapid-
ly as AE(1,J;0,J’) increases. This means that the lattice
vibration cannot accept much energy of the initial state.
In contrast to this tendency, according to our calcula-
tions, the change of 3 4.1C(1,J, M~ 0,J',M")|? is rela-
tively small when J’ changes. Thus the dominant transi-
tion is the one to the rotational level J’ whose energy is
the nearest to that of the initial state, i.e., the tran-
sition whose energy mismatch is the smallest, The
probabilities of the other transitions are smaller than
that of the dominant one by several orders of magnitude,
As a result, our calculations support the assumption!+!¢
that molecular rotation is the principal accepting mode
for small hydrides. In the case of the transition from

J =0, the transition to J’' =16 is dominant. In this case,
the mismatch energy AE(1,0;0, 16) is determined to be
71 cm™! from the vibrational energy gap AE® and the ro-
tional energy of J =16 level, E(J=16); the vibrational
energy gap AE? is 2871 cm™ in Ar matrix, % The ro-
tational energy E(J = 16) is 2800 cm™, which includes
the effect of centrifugal force.®* It follows that P(1,0
~0,16) is 0.11x10"*/cm™'. On the other hand, the cal-
culation of €(1,0,0-0, 16, M’) yields \

) 0
W(1,0,0~0,16)=3. 26 x10%x [_Vl.ﬁ(fQG i Q)]
Q=0

XP(1,0-0,16)[s™] . (41)

Since we have evaluated the quantity [8V,,(R%,,9)/8Q)o.0
to be 0.23 cm™ /A, W(1,0,0~0,16) is 1.9x10%/s.
Wiesenfeld and Moore'® have reported that for dilute
sample at 9 K the observed vibrational relaxation rate
of HC1 (n=1) is 8x10? s™'. The agreement between our
calculation and the experimental result is fairly good.

Next we shall briefly report the result for DC1/Ar
system, In the Condon-like approximation, only the
transitions between the rotational levels of the same
parity, i.e., between even J and J’ or between odd J
and J', are allowed. Hence, the transition from J=0
to J' =19, of which energy mismatch is the smallest
in DCI case, is not allowed. However, the rotation-
lattice vibration coupling can mix the levels of J=0 and
J =1, Then the wave function of the lowest rotational
level is written as a linear combination of those of
J=0and J=1 (for the case of allowed transitions such
as HCl/Ar system this mixing mechanism is not impor-
tant). Consequently the lowest rotational level in n=1
can be coupled to J " =19 (for high rotational levels, the
rotation-lattice vibration coupling is negligible). For
the DC1/Ar system, including this mixing of the wave
functions due to the rotation-lattice vibration coupling,
we calculated the vibrational relaxation rate from the
lowest rotational level of =1, The relaxation rate we
obtained is 1. 6x10? s™!, which is smaller than the re-
laxation rate of HC1 by one order of magnitude. This is
due to the fact that 8V,3/8Q and 8V,,/8Q appearing in
the relaxation rate expression for DC1 are smaller than
8V,6/8Q, and the square of the coefficient of J=1 in the
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lowest rotational level is about 0.1. Wiesenfeld and
Moore'® have reported that HCI relaxes 32 times faster
than DCI1 for the relaxation from z=2 to n=1. Diestler
and Ladouceur®™ have employed the intramolecular vibra-
tion-rotation coupling as a perturbation inducing the
vibrational relaxation, In their treatment, the rotation-
lattice vibration coupling gives dampings to the rota-
tional levels. It should be noted that in our theory these
two couplings have already been included in the adiabatic
Hamiltonians giving the eigenfunctions and eigenvalues of
the doorway states.

IV. SUMMARY AND DISCUSSION

In paper I and this paper, we have presented an ap-
proach based on the adiabatic approximation that can
consistently treat the eigenvalue problems and vibra-
tional relaxation processes for diatomic molecules
embedded in monatomic crystals. Inthis paper we
have calculated the vibrational relaxation rates for
HCYDCI)/Ar systems. Our numerical calculations agree
with the experimental result fairly well, though there
are limitations to the interaction potentials, and support
the mechanism proposed by Bondybey and Brus'® that
the molecular rotation is the dominant accepting mode
in the vibrational relaxations of small hydrides.

The energy mismatch between initial and final rota-
tional levels is released into lattice phonons. In our
calculations, the A, totally symmetric modes in the
classification by the O, substitutional site symmetry
have been shown to be dominant to accept the energy
mismatch, The displacement of the A,, modes between
the equilibrium positions of different intramolecular
vibrational states results in the multiphonon relaxation
of the energy mismatch as in the case of nonradiative
relaxation of electronic energy. According to our cal-
culations for HCL(DCI)/Ar systems, there is no localized
Ay, mode.

For the DC1/Ar system, we have proposeda mechanism
in which by the mixing of initial rotational levels due to
the rotation-lattice vibration coupling the lowest rota-
tional state in n=1 is transferred to the final rotational
state of J'=10 in n=0. The calculated relaxation rate
for DC1 is smaller than that of HC1 by one order of mag-
nitude, which seems to be reasonable in comparison with
experimental data,*!®

Our calculations rest on the following three points.

(i) The intramolecular coordinate dependence is ten-
tatively introduced into the M5 potentials; (ii) the Con-
don-like approximation is applied to the evaluation of the
matrix elements C(n,J, M ~n',J’, M')’s; (iii) roles of the
modes except the 4,, modes are neglected. These points
will be examined in future studies.

The intramolecular coordinate dependence of the in-
termolecular potential functions is difficult to deter-
mine; this can be accomplished by applying our for-
malism to analyze the experimental results of spectro-
scopic properties and relaxation processes of impurity
molecules in solids.
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Finally we shall comment on a future study. Usually
the vibrational relaxation rates of molecules take dif-
ferent values in different host matrices. It has been
reported that the vibrational relaxation rates of small
hydride increase with increasing mass of the rare gas
host atoms, while for molecules controlled by multi-
phonon processes such as O, the relaxations are least
efficient in Xe matrix.® To clear the difference be-
tween these two trends will give us better understanding
in the vibrational relaxation processes,
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APPENDIX: EVALUATION OF THE NONADIABATIC
COUPLING ELEMENT C{n,J,M—>n' J . M")

The nonadiabatic couplings relevant to the intra-
molecular vibrational wave functions are expressedas

' 32 ’ ’
O‘Iﬁ'”): [(n |W|n)+2(n| |n) 39
+cot6(n'|-a§ n)+51—ng— (n'l |n)
S—u;z—(n I — |n) a¢>] (A1)

Using the intramolecular vibrational wave function given
by Eq. (1), we obtain, for n'=n-1,

ol 5 ">=Vn—sz%<aa_3:> ; (A2)
e ()
e () - 5)

The derivatives with respect to ¢ can be obtained by
replacing 8’s in the above equations by ¢. By using
Egs. (2), (3), and (19) we can obtain the derivatives of
Q' and ' with respect to 6 and ¢, which are as follows:

, 140
'%‘QG- = '2“._19’2 ‘Z: ylm[% "(l - m)(l+m+ 1) Ylm+1(9’ ¢)e-‘o
V(1 +m)l - m+1) ¥,,,(8,¢) ],

-2 (A4)
140

Zy,,.[‘/(z s mi i —m =1 I+ m+2)

BZQ'
86° 4

X ¥ pea(6, 9)e™24® = 2(1% — m? + )Y,,(6, ¢)

+ Vl+mI-m+1)l+m -1 -m+2) Y, 4],

(A5)
3Q 1 #0
8¢ —Qﬂ Z Vim im Ylm(e ¢) ’ (AG)
BZQ 1#0
8¢ m Z YimM Ylm(e ¢) ’ (A7)
etc., where
~ 8V{Rs;, Q)
Yim= ; [—‘——L—aQ ]M Ym0y, 0, . (a8)
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In our calculations, £’ is replaced by €, and the Condon-
like approximation is employed, in which R¢;, 6, and ¢,
m Y, are replaced by the values at equilibrium, i.e.,
RY,, 65, and ¢9.

In order to calculate C(xn,J,M-n',J’,M’), we haveto
perform the integrations over the rotational angles 6
and ¢. We have carried out the integrations by using

Y,,(6,¢)=(-1)" Zl +1 ((zl m))!l

PP{cos §) ei™® ,

(A9)
where the associated Legendre polynomials P7’s can
be expressed as, for positive m

P’;"(COS e) - (_l)um (Sln 9) E ( 1)'
(1+ m+r)l .0
XA m+nU=m=n1 cos® 3 . (A10)

When m is negative, the following relation is available:
P = (=) (1= |m | A2+ [ m U] P (A11)
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