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The electron addition spectrum A1�k, v� is obtained analytically for the one-dimensional (1D) super-
symmetric t-J model with 1�r2 interaction. The result is obtained first for a small-sized system and its
validity is checked against the numerical calculation. Then the general expression is found which is valid
for arbitrary size of the system. The thermodynamic limit of A1�k, v� has a simple analytic form with
contributions from one spinon, one holon, and one antiholon — all of which obey fractional statistics.
The upper edge of A1�k, v� in the �k, v� plane includes a delta-function peak which reduces to that of
the single-electron band in the low-density limit.
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The concept of spinons and holons, both of which obey
the fractional statistics [1], has turned out to be useful in
approaching 1D electron systems. In terms of these quasi-
particles one can inquire into not only the low-energy and
low-wavelength limit, but the global feature of the dynam-
ics. Hence special interest has been cherished in the global
dynamics from both theoretical and experimental points of
view. For example, angle resolved photoemission [2] has
revealed some evidence of the spin-charge separation by
resolution of holon and spinon contributions. On the theo-
retical side, numerical studies have been performed for the
1D t-J model for a small number of lattice sites [3] and
some structures have been ascribed to spinons and holons.
For deeper understanding of the overall dynamics, demand
is growing for analytic theory which can go to the thermo-
dynamic limit. Partly analytic theory is available for the
single-particle spectral functions of the t-J model in the
J ! 0 limit [4]. A notable feature is that a satellite band
is observed whose intensity is comparable to that of the
main band. It is natural to ask how the finite J influences
the dynamics.

In the supersymmetric t-J model with 1�r2 interaction
[5], spinons and holons appear in the simplest manner. In
fact, exact thermodynamics for the model [6] can be inter-
preted in terms of free spinons and holons. Ha and Haldane
[7] analyzed numerical results for dynamics in finite-sized
systems, and found that only a few elementary excitations
contribute to spectral functions. They proposed a momen-
tum-frequency region where each spectral function takes
nonzero values in the thermodynamic limit, but they did
not obtain the spectral functions themselves. Recently, ex-
act results have been derived for a particular component
[8], and for a particular momentum range of the spectral
weight [9].

In this paper we report on the analytical result of the
electron addition spectrum for the t-J model at zero tem-
perature. The electron addition spectral function is relevant
to the angle resolved inverse photoemission spectroscopy.
Our result constitutes the first analytical knowledge for dy-
3096 0031-9007�01�86(14)�3096(4)$15.00
namical quantities of lattice electrons with no restriction on
the system size, the density, and the momentum-frequency
range. Although we cannot provide the formal proof for
the exactness, the analytic results show complete agree-
ment with numerical results for finite systems with various
sizes. Hence our result in the thermodynamic limit is also
expected to be exact.

We consider the supersymmetric t-J model given by

HtJ � P
X
i,j

"
2tij

X
s�",#

�cy
iscjs 1 h.c.�

1 Jij

√
Si ? Sj 2

1
4

ninj

!#
P , (1)

where cis is the annihilation operator of an electron at
site i with spin s, ni is the number operator, and Si is the
spin operator. The projection operator P excludes double
occupation at each site. The transfer and exchange
energies are given by tij � Jij�2 � tD22

ij where Dij �
�N�p� sin�p�i 2 j��N� with even N being the number of
lattice sites, and the lattice constant is unity. The electron
addition spectral function with the ground state j0� is
defined by

A1�k, v� �
X
n

j�n; Ne 1 1jc
y
ksj0; Ne�j2

3 d�v 2 En�Ne 1 1� 1 E0�Ne� 1 z � ,
(2)

where Ne is the total electron number, z the chemical po-
tential, c

y
ks � N21�2

P
l c

y
lseikl , and jn� denotes an eigen-

state of the Hamiltonian with energy En .
We first give our main result and then its derivation.

The addition spectrum includes the dispersion relations
es�q� of spinons, eh�q� of holons, and ea�q� of antiholons.
They are given in units of t by [6,7] es�q� � q�ys 2 q�,
eh�q� � q�yc 1 q�, and ea�q� � q�2yc 2 q��2, where
ys � p and yc � p�1 2 n̄� with n̄ � Ne�N � 2kF�p.

Analytical expression of A1�k, v� with 0 # k , 2p

consists of the following components:

A1�k, v� � AR�k, v� 1 AL�k, v� 1 AU�k, v� , (3)
© 2001 The American Physical Society
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where

AR�k, v� �
1

4p

Z kF

0
dqh

Z kF2qh

0
dqs

Z 2p24kF

0
dqa d�k 2 kF 2 qs 2 qh 2 qa�d�v 2 es�qs� 2 eh�qh� 2 ea�qa��

3
es�qs�gs21eh�qh�gh21ea�qa�ga21

�qh 1 qa�2�2 , (4)
and AL�k, v� � AR�2p 2 k, v�. In Eq. (4) we have gs �
1�2, gh � 1�2, and ga � 2, which correspond to statisti-
cal parameters of spinons, holons, and antiholons, respec-
tively [6,7]. Thus the matrix element in Eq. (4) can be
interpreted in terms of the fractional statistics as in the
case of correlation functions in related continuum systems
[10]. The third component is given by

AU�k, v� �

s
ea�k 2 2kF�

e0�k�
d�v 2 vaU�k�� , (5)

which contributes only in the region 2kF # k # 2p 2

2kF. Here e0�k� � k�p 2 k�2� describes the spectrum of
noninteracting electrons, and vaU�k� � es�kF� 1 ea�k 2

2kF�. The AU�k, v� can be regarded as contribution from
antiholons with fixed energies of spinons and holons. In
the dilute limit �kF ! 0�, vaU�k� as well as ea�k 2 2kF�
tend to e0�k�. Hence the coefficient in Eq. (5) becomes
unity, and AU�k, v� tends to the spectral intensity of non-
interacting electrons. The other contributions AR,L�k, v�
can be neglected in this limit.

Figure 1 shows the spectral edges by solid lines together
with the spectral intensities for a finite system as explained
later. The threshold behavior in AR�k, v� is derived as
follows: As the frequency approaches an upper edge

FIG. 1. The electron addition spectrum A1�k, v� in the case of
N � 60, Nh � 29, and Ns � 15 with Fermi momentum kF �
p�4. The intensity is proportional to the area of each oval.
The solid lines are determined by dispersion relations of the
elementary excitations in the thermodynamic limit.
given by vs�k� � es�k 2 kF� with kF # k # 2kF,
AR�k, v� diverges as �vs�k� 2 v�21�2. Along the con-
necting upper edge for 2kF # k # 2p 2 2kF, AR�k, v�
has a stepwise discontinuity such as u�vaU�k� 2 v�.
Here u�x� is a Heaviside step function. On the other hand,
near a lower edge given by vh�k� � eh�k 1 3kF 2 2p�
with 2p 2 3kF # k # 2p 2 2kF, AR�k, v� behaves as
�v 2 vh�k��3�2. The feature is in contrast to the result
of Ref. [4] where the spectrum is enhanced near vh�k�.
Finally near another lower edge given by vaL�k� �
ea�k 2 kF� with kF # k # 2p 2 3kF, there is a stepwise
discontinuity such as u�v 2 vaL�k��. We note that the
asymptotic behavior of A1�k, v� is fully consistent with
the conformal field theory [5].

Let us describe derivation of A1�k, v�. We represent a
state vector jc� in the t-J model by

jc� �
X

xh,xs

c�xh, xs�
Y
i[xs

S2
i

Y
j[xh

h
y
j jF� , (6)

where jF� is the fully up-polarized state, S2
i � c

y
i,#ci,", and

h
y
i � ci,". The set of coordinates �xh, xs� � x represents

x � �xh
0 , . . . , xh

Nh
, xs

1, . . . , xs
Ns

� � �x0, x1, . . . , xn� with n �
Nh 1 Ns. Here xh

i is for the ith hole and xs
j is for the

jth down-spin electron. In order to derive eigenfunc-
tions of the system, it is convenient to use the Sutherland
model [11] with the SU(1, 1) supersymmetry as an auxil-
iary [12,13]. The merit of using the Sutherland model is
that much more is known about properties of the eigen-
functions than those for the t-J model. The eigenfunc-
tions with the coupling parameter b � 1 correspond to
such part of the set 	c�xh, xs�
 that belongs to the Yangian
highest weight states (YHWS) with the SU(2, 1) supersym-
metry [14]. In making the correspondence one restricts
the coordinates x to integer variables. It is convenient to
introduce the complex coordinate by zj � exp�2pixj�L�
where L �� N� is the length of the ring-shaped system.
The YHWS can be expressed by polynomials of zj where
the degree of each variable lies in the range �2N�2, N�2�.
The YHWS form a subset of the Fock space and the other
states can be generated by successive actions of Yangian
generators on the YHWS.

The ground-state wave function for the t-J model with
Nh 1 1 holes and Ns � Ne�2 down-spin electrons is
given by [5]

CGS �
Y

i[�0,n�
z

2bn�2
i

Y
i[Is

z
2�Ns21��2
i

3
Y

i,j[�0,n�
�zi 2 zj�b

Y
i,j[Is

�zi 2 zj� , (7)
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where we have introduced the interval Is � �Nh 1 1,
Nh 1 Ns� for the suffixes i and j. We have assumed that
both Ns and Nh are odd so that the ground state is non-
degenerate. In the following we always take b � 1. We
fix a hole position at xh

0 � 0 in CGS which corresponds
to adding an up-spin electron at this site. In terms of the
ground-state wave function C̃GS for the system with Nh
holes and Ns down-spin electrons, we can represent the
resultant state by

CGSjx0�0 �
nX

m�0

�21�mem�z�C̃GS , (8)

where em�z� �
P

i1,i2,···,im[I zi1 · · · zim is the elementary
symmetric function of order m. Note that the interval
�0, n� in Eq. (7) is replaced by another interval I � �1, n�
in Eq. (8).

The spectrum of the Sutherland model HSu is conve-
niently analyzed with the use of a similarity transformation
generated by O �

Q
i,j[I�zi 2 zj�b

Q
i[I z

2�bn1Ns21��2
i .

We obtain Ĥ � O21HSuO as follows:

Ĥ �
1
2

µ
2p

L

∂2 nX
i�1

µ
d̂i 1

bn
2

2
Ns 2 1

2

∂2

, (9)

where d̂i is called the Cherednik-Dunkl operator [15]. It is
known that the set 	d̂i
 can be diagonalized simultaneously
with real eigenvalue l̄i for each d̂i . The resultant eigen-
functions are polynomials El�z; b� of zi and are called
the nonsymmetric Jack polynomials [15]. The polynomial
El�z; b� has a triangular structure with respect to a certain
ordering on the set of 	l
 [13,15]; if one expands El�z; b�
in terms of monomials Piz

ni
i , the expansion coefficient is

zero unless l ∫ n, where ∫ describes the ordering relation
in the set.

Since we are dealing with identical particles, eigen-
functions should satisfy the following conditions of the
SU(1, 1) supersymmetry: (i) symmetric with respect to
exchange of zh

i ’s; (ii) antisymmetric with respect to ex-
change of zs

i ’s. By taking linear combination of El�z; b�,
we can construct another polynomial Kl�z; b� with the
SU(1, 1) supersymmetry [16–18]. We specify the set of
momenta as �lh, ls� � �lh

1 , . . . , lh
Nh

, ls
1, . . . , ls

Ns
� with

l
h
1 $ · · · $ l

h
Nh

, l
s
1 . · · · . l

s
Ns

. In this way we can
parametrize Kl�z; b� by using l � �lh, ls�. At the
ground state with 2Ns 1 1 electrons we have l � l̃GS �
�lh

GS, ls
GS� with l

h
GS � ��Ns 2 1��2, �Ns 2 1��2, . . . ,

�Ns 2 1��2�, and l
s
GS � �Ns 2 1, Ns 2 2, . . . , 0�.

We define the inner product � f, g�0 for complex func-
tions f�z� and g�z� as the constant term in the Laurent
expansion of f�z��g�z�. As is clear from the definition of
the transformation O , Kl�z; b�O �z� is orthogonal with
respect to the above inner product. In order to derive
the norm of Kl�z; b�, we generalize the procedure taken
in Refs. [18–20]. The result of lengthy calculation is
given by

�KlO , KlO �0 � Nh! Ns! r21
l �ElO , ElO �0 , (10)
3098
where �ElO , ElO �0 denotes the norm of the nonsym-
metric Jack polynomials. We refer to the literature [15]
for the explicit form of the latter norm since it requires
many lengthy combinatorial quantities. The quantity rl �
r

h
lr

s
l is given by

rh
l �

Y
i,j[Ih

l̄i 2 l̄j 1 b

l̄i 2 l̄j
,

rs
l �

Y
i,j[Is

l̄i 2 l̄j 2 b

l̄i 2 l̄j
,

(11)

where we use the intervals Is and Ih � �1, Nh� for the
suffixes i and j.

In order to calculate A1�k, v�, we need to know the
expansion coefficient cl which appears in

em�z�C̃GS �
X
l

clKl�z; b�O �z� . (12)

Using the coefficient cl, A1�k, v� can be expressed as

A1�k, v� � Nh

X
l

0

d�v 2 DEl� jclj
2 �KlO , KlO �0

�CGS, CGS�0
,

(13)

where DEl � El 2 E0 2 z , the chemical potential z

for the finite N is given by z�p2 � 2�3n̄2 2 6n̄ 1

4��12 2 �n̄ 2 2���2N� 1 1��3N2�, and the prime means
that the summation over l is restricted by the momentum
conservation jlj � jl̃GSj 1 m with jlj �

P
j lj and k �

2p�m 1 �Ns 1 1��2��N . The norm �CGS, CGS�0 can be
obtained by a procedure similar to that described above.

From the triangular structure inherited to Kl, the
contributions to the excited states are limited to the cases
where ls � l

s
GS 1 �1ls , 0Ns2ls�. Here pa means the

sequence p, . . . , p with the number of p’s being a.
Therefore the spin part can be parametrized by the single
variable ls. We first calculate Kl by a brute force for
small systems (up to Nh � 5 and Ns � 15) in the small
momentum region m # �Ns 2 1��2. In this region, we
have lh � l

h
GS 1 n. The coefficient cl is zero if the

partition n contains s � �2, 2� where s � �i, j� denotes a
square in the Young diagram [15]. We find that the results
for Kl are expressed in the following form:

cl �
Y
s[n

2a0�s� 1 1 1 b0�l0�s� 2 1�
a�s� 1 1 1 b0l�s�

, (14)

where b0 � b��b 1 1� � 1�2, a�s� � ni 2 j (arm
length), a0�s� � j 2 1 (arm colength), l�s� � n

0
j 2 i

(leg length) with n
0
j the length of the column, and

l0�s� � i 2 1 (leg colength). Thus, we can parametrize
n as n � �lh, 1la21, 0Nh2la � in this small momentum
region. Namely A1�k, v� is determined by the three
parameters ls, lh, and la, which are related directly with
momenta of the excitations. We have checked numerically
that the expression given by Eq. (14) can in fact be
extended beyond the small momentum region. Note that
cl is independent of ls which, however, enters A1�k, v�
through the norm �KlO , KlO �0.
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We thus obtain the finite-size version of Eq. (4):

AR�k, v� �
X
l

0

IR�l�d�v 2 DEl� (15)

and similar results with the suffix R replaced by L and U.
In Eq. (15) we have

IR�l� �
1

2�G�1�2��2

G�lh 2 1�2�G�lh 1 Nh�2�
G�lh�G�lh 1 �Nh 1 1��2�

3
la�Nh 2 la 1 1�

�2lh 1 la 2 1� �2lh 1 la 2 2�

3
G�ls 1 1�2�
G�ls 1 1�

G�N�2 2 ls�
G��N 1 1��2 2 ls�

, (16)
with Nk��2p� � lh 1 la 1 ls 1 �Ns 2 1��2, and

DEl �
2p2

N2 �ls�N 2 1 2 2ls� 1 lh�2lh 1 Nh 2 2�

1 �la 2 1� �Nh 2 la�� . (17)

The triangularity leads to 0 # ls 1 lh # �Ns 2 1��2.
The parameter la varies from zero to Nh. For the case
where ls . �Ns 2 1��2, we use the reflection symmetry
about k � p . We obtain IL�l� � IR�l̄� where the compo-
nents in l̄ � �l̄s, l̄h, l̄a� are given by l̄s � Ns 2 ls, and
by the relation lh 1 �0Nh2l̄a , 1l̄a21, l̄h� � l

h
GS 1 �1Nh�.

We obtain the allowed range 0 # l̄s 1 l̄h # �Ns 1 1��2.
Finally we have the case where ls � �Ns 2 1��2

should be considered separately. In this case, the trian-
gular structure requires that cl should be unity, and that
lh � l

h
GS 1 �1la , 0Nh2la� with 1 # la # Nh. We obtain

for this special case
IU�l� �
G��la 1 2��2�G��Nh 2 la 1 2��2�
G��la 1 1��2�G��Nh 2 la 1 1��2�

G��Ns 1 la��2�G��Ns 1 Nh 2 la 1 2��2�
G��Ns 1 la 1 1��2�G��Ns 1 Nh 2 la 1 3��2�

, (18)
where Nk��2p� � la 1 Ns. The excitation energy DEl

is given by Eq. (17) in the case �ls, lh, la� � ��Ns 2

1��2, 1, la�. Thus in terms of IR, IL, and IU we obtain
the finite-size version of A1�k, v�.

In Fig. 1, we present the result for N � 60, Nh � 29,
and Ns � 15. We have checked the validity of Eqs. (16)
and (18) by comparison with numerical results up to N �
16 [21]. In the special case n � �0Nh�, momenta of the
holon and the antiholon are both zero, and we obtain a
form different from Eq. (16). However, this case can be
neglected in the thermodynamic limit. Following the same
procedure as that in the spinless Sutherland model [22,23],
we obtain the expressions (4) and (5) in the thermody-
namic limit.

We hope that the quasiparticle structure discussed in
this paper is found in a future experiment of inverse
photoemission.
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