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Modeling Public Opinion

Arden Baxter ∗

Department of Mathematics, Rollins College, Winter Park, FL

Dated: December 28, 2017

1 Introduction

Population models are used to study the dynamics of a population. In particular, dynamic
population models are applied to populations that gain and lose members, unlike a fixed population.
A dynamic population is said to be stable if the sizes of all subgroups remain constant. Epidemiological
models typically focus on describing the transmission of communicable diseases through individuals.
One well-known epidemiological model is the SIR model, which computes the theoretical number
of people infected with a contagious disease in a closed population by modeling the flow of people
between three states: susceptible (S), infected (I), and resistant (R).

In this paper, we adapt the epidemiological models presented by [1] to model the dynamics of
public opinion. By definition, a public opinion is any view prevalent among the general public. Our
model considers any topic or issue in which the public has two decisive and opposing viewpoints.
In order to understand a certain opinion it is important to ascertain the following: if an individual
has adopted the opinion, their particular level of adoption, and if they are capable of and/or active
in spreading their ideals to other individuals in the opinion population.

Public opinion research developed from market research. In 1935 George Gallup, the American
public opinion statistician, began conducting nationwide surveys in the United States on social and
political opinions. Opinion polls in the United States continued to spread from the 1930s, conducted
by both commercial and academic practitioners. At the same time, polling organizations developed
in countries of Europe, Asia, and Latin America. In 1947 the World Association for Public Opinion
Research was founded and regional studies continued to develop around the world with the support
of NGOs, national governmental agencies, and university research programs [2]. In today’s society,
public opinion research is important in weighing public perception on a particular issue. Public
opinion reflects public concerns, beliefs, and values, and plays a key role in making both local and
national policy decisions [3].

The modeling of social processes began as early as 1952, when Rapoport and Rebhun analyzed
the mathematical theory of rumor spread [4]. In 1965, Daley and Kendall presented a stochastic
model for the spread of rumors. In their model, the population is divided into three social states
defined as “ignorant”, “spreaders”, and “stiflers” and transitions are determined from contacts
between the classes[5]. More recently, Dan and Cook presented a differential equation model capable
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of predicting public opinions and behaviors from persuasive information [6]. In [1], Bettencourt et al
convert the typical SIR model to address the spread of an idea, namely the growth of the adoption
of Feynman diagrams. In their models, the population is divided into five classes: susceptible (S),
incubator (E), adopters (I), skeptics (Z), and immune (R).

In this paper, we modify the epidemiological models presented by Bettencourt et al [1] to create
a system of ordinary differential equations that models the population dynamics of a public opinion
with two opposing sides. In Section 2 we introduce our system and provide information on the
equation dynamics. Section 3 presents a study of the total population. Lastly, in Sections 4-6 we
discuss the mathematical properties of our model and various results.

2 Presentation of the Model

Below is the preliminary system to model public opinion on an issue with two opposing sides.
The developed system is composed of four ordinary differential equations representing each of
the following opinion classes: the adopters (A), the moderately adoptive (B), the moderately
skeptic (Y ), and the skeptics (Z). It is assumed that individuals are entering the system as either
moderately adoptive (B) or moderately skeptic (Y ). Once an individual enters the adoptive (A) or
skeptic (Z) populations, their opinion on the issue is assumed to be solidified until the issue is no
longer a topic of conversation. Parameters are defined in Table 2. The model is presented below:

dA

dt
= αad

AB

N
+ αz (1− e) BZ

N
+ εB − µA

dB

dt
= λ+ βae

AY

N
+ βz (1− d)

Y Z

N
− αa

AB

N
− αz

BZ

N
− εB − µB

dY

dt
= λ+ αze

BZ

N
+ αa (1− d)

AB

N
− βa

AY

N
− βz

Y Z

N
− εY − µY

dZ

dt
= βa (1− e) AY

N
+ βzd

Y Z

N
+ εY − µZ

(1)

We shall further examine each term in more detail, beginning with the equation for the adopters
(A):

dA

dt
= αad

AB

N
+ αz (1− e) BZ

N
+ εB − µA

The first term represents the increase in adopters based on contact with the moderately adoptive
(B) population. The adoptive and moderately adoptive populations interact at a rate of αa and
the probability that a moderately adoptive individual will transition to adoptive given contact with
(A) is represented by d. The following term shows the increase of adopters from contact between
moderately adoptive (B) and skeptics (Z). Moderately adoptive and skeptic populations interact
at a rate of αz with a (1− e) probability that the interaction causes the moderately adoptive to
transition to adoptive. The third term is the rate of increase in adopters due to the moderately
adoptive population manifesting the opinion on their own. Here, the average adoptive time is
represented by ε. Finally, the adoptive population is decreasing at a rate of µ, which represents the
average lifetime of the topic. We now move to the equation for the moderately adoptive (B):

dB

dt
= λ+ βae

AY

N
+ βz (1− d)

Y Z

N
− αa

AB

N
− αz

BZ

N
− µB − εB
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The recruitment rate into thinking about the issue is given by λ. The next term shows the
increase in the moderately adoptive population related to interaction between the adoptive and
moderately skeptic populations. The (A) and (Y ) populations interact at a rate of βa with
probability e that the interaction will cause the moderately skeptic to transition to moderately
adoptive. The third term shows the increase of moderately adoptive from contact between moderately
skeptic and skeptic populations. The (Y ) and (Z) populations interact at a rate of βz with a (1− d)
probability that the contact will cause the moderately skeptic to transition to moderately adoptive.
The next two terms represent the decrease in the moderately adoptive population based on contact
with either the adopters or the skeptics at their respective contact rates, αa and αz. Finally, the
moderately adoptive population is decreasing at a rate of µ for the lifetime of the topic and a rate of
ε for the population that has naturally adopted the opinion and transitioned to (A). The equations
for the moderately skeptic (Y ) and skeptic (Z) populations are similar to those of the moderately
adoptive (B) and adoptive (A), respectively. Below, Figure 1 demonstrates the population dynamics
of the system.

Figure 1: Model Diagram
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Table 1: Parameter List
Parameter Symbol
Total population N = A+B + Y + Z
Recruitment rate λ
Average lifetime of a topic µ
Average adoption time ε
AB contact rate αa
BZ contact rate αz
AY contact rate βa
Y Z contact rate βz
B → A transition probability given contact with A d
Y → Z transition probability given contact with Z d
Y → B transition probability given contact with Z (1− d)
B → Y transition probability given contact with A (1− d)
Y → B transition probability given contact with A e
B → Y transition probability given contact with Z e
B → A transition probability given contact with Z (1− e)
Y → Z transition probability given contact with A (1− e)

3 Total Population

Summing the four differential equations for (A,B, Y, Z) results in the following differential
equation representing the change in total population (N):

dN

dt
= 2λ− µN

Solving the above differential equation, we find that the total population (N) can be modeled by
the following equation, where c represents some constant:

N (t) =

(
2λ

µ

)
+ ce−µt

Setting dN
dt = 0, we find that the total population reaches equilibrium when µN = 2λ. Thus, for

any equilibrium solutions for the entire system, the population will be at 2λ
µ . Since the derivative

of dN
dt is negative, we know that the population equilibrium solution N = 2λ

µ is stable. Given this
information, we can now investigate equilibrium solutions under certain cases.

4 Proportion Model

The total population (N) will be a constant if λ = µ = 0 or N = 2λ
µ . In order to examine the

cases where the total population (N) is a constant, we modify the original system of differential
equations to represent the proportion of the engaged population that is in each of the four opinion
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classes. Proportions for the four opinion classes are represented by:

Â =
A

N

B̂ =
B

N

Ŷ =
Y

N

Ẑ =
Z

N

Each differential equation illustrates the rate of change of the respective proportion. The modified
model is presented below:

dÂ

dt
= αadÂB̂ + αz (1− e) B̂Ẑ + εB̂ − µÂ

dB̂

dt
=

λ

N
+ βaeÂŶ + βz (1− d) Ŷ Ẑ − αaÂB̂ − αzB̂Ẑ − εB̂ − µB̂

dŶ

dt
=

λ

N
+ αzeB̂Ẑ + αa (1− d) ÂB̂ − βaÂŶ − βzŶ Ẑ − εŶ − µŶ

dẐ

dt
= βa (1− e) ÂŶ + βzdŶ Ẑ + εŶ − µẐ

(2)

5 Equilibrium Solutions

If an equilibrium solution exists, then µN = 2λ. Under this constraint, we consider the following
two cases: λ = 0, and λ > 0.

6 Single Outbreak (λ = 0)

If λ = 0, then there are no new people being recruited into the system. Therefore, we can
consider this case a single outbreak of an opinion. Given a recruitment rate of zero, we now analyze
µ > 0 and µ = 0.

6.1 Case 1: µ > 0

If µ > 0 and λ = 0, then a steady proportion of people is leaving the system but no new
people are being recruited into the system. Thus, the equation for the total population (N) is an
exponential decay model and the only equilibrium solution that exists is when N = 0. Therefore, a
stability point will be reached when A = B = Y = Z = 0. The result from this case with the given
parameter values is presented in Figure 2.
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Figure 2: Graphical Representation of Case 1

Parameter Value
λ 0
µ 0.1
A0, B0, Y0, Z0 100
N0 400
ε 0.1
αa, βz 0.1
αz, βa 0.05
d,e 0.7

6.2 Case 2: µ = 0

If λ = µ = 0, then dN
dt = 0 and the total population (N) is a constant. Figures 3 and 4 illustrate

results from Case 2 given different parameter values.

Figure 3: Graphical Representation of Case 2

Parameter Value
λ 0
µ 0
A0, B0, Y0, Z0 100
N0 400
ε 0.1
αa, βz 0.1
αz, βa 0.05
d,e 0.7
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Figure 4: Graphical Representation of Case 2

Parameter Value
λ 0
µ 0
A0, B0, Y0, Z0 100
N0 400
ε 0.1
αa, βa 0.1
αz, βz 0.5
d,e 0.7

Question: What are the sizes of A,B, Y, Z?
Answer: We think that B = Y = 0 and A and Z vary depending on parameters.

6.2.1 Symmetric Case General Equations

Let Â0 = Ẑ0 and B̂0 = Ŷ0. Let αa = βz and βa = αz. Due to symmetry, this causes Â = Ẑ and

B̂ = Ŷ . Define m = αad+αz(1−e)
2 . From (2) we have

dÂ

dt
= αadÂB̂ + αz (1− e) B̂Ẑ + εB̂

dB̂

dt
= βaeÂŶ + βz (1− d) Ŷ Ẑ − αaÂB̂ − αzB̂Ẑ − εB̂

(3)

Substituting in the above parameters to (3),

dÂ

dt
= 2mÂB̂ + εB̂

dB̂

dt
= −2mÂB̂ − εB̂

(4)

Consider the following:

Â =
1

2
− k

2m+ Cekt

B̂ =
k

2m+ Cekt

(5)
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where k = ε+m and C = kÂ0

B̂0
. Substituting these values into (4), we have

2mÂB̂ + εB = 2m

(
1

2
− k

2m+ Cekt

)(
k

2m+ Cekt

)
+ ε

(
k

2m+ Cekt

)
=

mk

2m+ Cekt
− 2mk2

(2m+ Cekt)
2 +

ek

2m+ Cekt

=
2m2k +mkCekt + 2mk2 + 2εkm+ ekCekt

(2m+ Cekt)
2

=
k2Cekt + 2m

(
mk − k2 + ek

)
(2m+ Cekt)

2

=
k2Cekt

(2m+ Cekt)
2

=
dÂ

dt

Notice that in both (4) and (5), dB̂
dt = −dÂdt . Therefore, we have shown that (5) represents the

general equations for Â and B̂ in the symmetric case.

7 Steady Recruitment (λ > 0)

If λ > 0, then there is a steady recruitment of people into the system. Therefore, we can consider
this case a topic of conversation in which opinions are formed over a long period of time. Given a
positive recruitment rate, we now analyze µ > 0 and µ = 0.

7.1 Case 1: µ > 0

In the case that µ > 0 and λ > 0, we have a constant population leaving and being recruited
into the system. For long times, and regardless of the distribution of (A,B, Y, Z), recruitment into
the system and exits from the system from the average lifetime of the topic will balance each other
out so that the limx→∞N (t) = N∗ = 2λ

µ . To examine the equilibrium solutions in this situation,
we consider a symmetric case.

7.1.1 Symmetric Case Equilibrium Solution

Let Â0 = Ẑ0 and B̂0 = Ŷ0. Let αa = βz and βa = αz. Due to symmetry, this causes Â = Ẑ and
B̂ = Ŷ . Define c = αad+ αz (1− e). From (2) we have

dÂ

dt
= αadÂB̂ + αz (1− e) B̂Ẑ + εB̂ − µÂ

dB̂

dt
=

λ

N
+ βaeÂŶ + βz (1− d) Ŷ Ẑ − αaÂB̂ − αzB̂Ẑ − εB̂ − µB̂

(6)
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Substituting in the above parameters to (6),

dÂ

dt
= cÂB̂ + εB̂ − µÂ

dB̂

dt
=

λ

N
− cÂB̂ − εB̂ − µB̂

(7)

Setting dA
dt = 0,

0 = cÂB̂ + εB̂ − µÂ (8)

Given the symmetry of this case, we know that A+B = N
2 . Thus

Â+ B̂ =
1

2
(9)

Solving equations (8) and (9) for Â and B̂ gives us the following solutions:

Â =
−
(
ε+ µ+ 1

2c
)
±
√(

ε+ µ+ 1
2c
)2

+ 2cε

2c

B̂ =
1

2
− Â

Since Â = Ẑ and B̂ = Ŷ , an equilibrium solution exists when the above solutions are positive and
satisfied by the given parameters. Figure 5 illustrates a result of the symmetric case with the given
parameter values.

Figure 5: Graphical Representation of the Symmetric Case

Parameter Value
λ 100
µ 0.1
A0, B0, Y0, Z0 100
N0 400
ε 0.1
αa, βz 0.1
αz, βa 0.05
d,e 0.7

Question: When do you get Â = Ẑ and B̂ = Ŷ as an equilibrium solution?
Answer: We think whenever λ and µ are not zero and αa = βz and βa = αz.
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7.1.2 Extreme-free Equilibrium Solution

Consider a constant population of N = 2λ
µ . Assume αa = βz, which means that Â and Ẑ behave

symmetrically. Let d = e = 1. That is, contact with Â moves B̂ and Ŷ towards Â with probability
of 1 and contact with Ẑ moves B̂ and Ŷ towards Ẑ with probability of 1. Let ε = 0. Substituting
these parameters into (2) we have

dÂ

dt
= αaÂB̂ − µÂ

dB̂

dt
=
µ

2
+ βaÂŶ − αaÂB̂ − αzB̂Ẑ − µB̂

dŶ

dt
=
µ

2
+ αzB̂Ẑ − βaÂŶ − αaŶ Ẑ − µŶ

dẐ

dt
= αaŶ Ẑ − µẐ

(10)

Our reproductive number for (10) is R0 = αa

2µ . In this case, the reproductive number is
interpreted as the average number of people that an extreme individual in the A and Z populations
converts in the next time period. Having R0 = αa

2µ represents the probability of an individual in

either A or Z converting someone in one unit of time,
(
αa

2

)
, multiplied by the amount of time a

person remains in an extreme opinion group,
(

1
µ

)
.

Solving (10) for the extreme-free equilibrium solution, we find

A∗ = 0

B∗ =
1

2

Y ∗ =
1

2
Z∗ = 0

To analyze the local stability of this equilibrium solution, we calculate the Jacobian for (10):
αaB̂ − µ αaÂ 0 0

βaŶ − αaB̂ −αaÂ− αzẐ − µ βaÂ −αzB̂
−βaŶ αzẐ −βaÂ− αaẐ − µ αzB̂ − αaŶ

0 0 αaẐ αaŶ − µ


Plugging in our solution (A∗, B∗, Y ∗, Z∗) to our Jacobian, we have

αa

2 − µ 0 0 0
βa

2 −
αa

2 −µ 0 −αz

2
−βa

2 0 −µ αz

2 −
αa

2
0 0 0 αa

2 − µ
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The eigenvalues for this solution are as follows:

λ1 = λ2 =
1

2
(αa − 2µ)

λ3 = λ4 = −µ

Whenever R0 < 1, the eigenvalues are all negative and the extreme-free equilibrium (A∗, B∗, Y ∗, Z∗)
is locally stable. This implies that more individuals are leaving the extreme opinion groups than
are being converted.

7.2 Case 2: µ = 0

When λ > 0 and µ = 0, then there is a steady recruitment of people into the system, but the
population is never decreasing. Since the total population (N) is never in equilibrium, then no
equilibrium solutions exist for this case. Figure 6 presents a result from this case with the given
parameter values.

Figure 6: Graphical Representation of Case 2

Parameter Value
λ 50
µ 0
A0, B0, Y0, Z0 100
N0 400
ε 0.1
αa, βz 0.1
αz, βa 0.05
d,e 0.7

Question: Is there something interesting to examine when λ > 0 and µ = 0?
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