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The dynamics and tuning of orchestral crotales

Bradley M. Deutsch, Cherie L. Ramirez, and Thomas R. Moore®
Department of Physics, Rollins College, Winter Park, Florida 32707

(Received 8 June 2004; revised 30 June 2004; accepted 13 July 2004

An experimental and theoretical investigation of the acoustic and vibrational properties of orchestral
crotales within the rang€g to Cg is reported. Interferograms of the acoustically important modes

of vibration are presented and the frequencies are reported. It is shown that the acoustic spectra of
crotales are not predicted by assuming that they are either thin circular plates or annular plates
clamped at the center, despite the physical resemblance to these objects. Results from finite element
analysis are presented that demonstrate how changing the size of the central mass affects the tuning
of the instruments, and it is concluded that crotales are not currently designed to ensure optimal
tuning. The possibility of using annular plates as crotales is also investigated and the physical
parameters for such a set of instruments are presented20@ Acoustical Society of America.
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I. INTRODUCTION agreement between predicted and empirical values, and we

. . . L conclude that the presence of the center mass is responsible
In the field of musical acoustics percussion mstrument%r this discrepancy.

are understood especially well. To our knowledge, however, The center mass of a crotale causes it to physically re-

there is a nearly complete absence of discussion of orchestral ) .
. , ) . semble an annular plate that is free to vibrate at the outer
crotales in the literature. The single exception appearsto bea .. . . g X
. . . . adius and clamped at the inner radius. Rigid mounting

short mention of their acoustic properties by Fletcher an

. . . . hrough the center hole reinforces this resemblance. We
Rossing! While the termcrotale can be associated with sev-

. o . therefore develop a model of the crotales as annular plates.
eral different types of percussion instruments, commerciall

V. . ) . . .
available orchestral crotales offer little diversity; they areAga'.n’.W ell es_tabllshed_theory Is used to compare theoret|c_a|
predictions with experimental results, and they are again

small cymbals with a central mass, as illustrated in Fig. 1T8und to be in poor agreement, although the agreement is

These instruments are commonly found in orchestras arouNStter than is found when comparing experimental results to

the world and are commercially produced in the United :
States by at least two large manufacturers of percussion ir;[h n platg theory. - . .
We finally turn to finite element analysis to facilitate an

struments. Each crotale in a set is tuned to one note of the . .
; . ... understanding of the effects of the center mass on the tuning
Western musical scale and the note is stamped onto it for .y . .
. N . L of crotales. Within the model the height and radius of the
identification. The sound is usually produced by striking the :
: : central mass of the crotales are varied. The effect of these
instument with a mallet. . .
. . . changes on the tuning of the crotales is then analyzed.
Crotales have a particularly pleasing sound, owing to the : . ;
. . We conclude by presenting an alternative design for the
fact that the dominant partials are the second, fourth, and
. . manufacture of crotales based on annular plate theory. We
seventh harmonics of a nonexistent fundamental. The fortu- .
resent physical parameters for annular plates such that they

nate arrangement of these partials is clearly the result of thEave similar acoustic properties to crotales. The validity of
presence of the central mass, but to our knowledge there tRis design as an alternative to commercially available cro-

no publ!shed d|scu35|on“of the subject, tales is confirmed using finite element analysis.
While the outer radii of the crotales become smaller as

the pitch increases as one would expect, the radii of the

central masses o_f _the crotales (_Jlo not change bet@gemd Il EXPERIMENT

Cg. The invariability of the radius of the center mass leads

one to question whether the tuning of each crotale is optimalA. ldentification of the acoustically important modes

Here we report on an investigation of the acoustic and vibra-  tha crotales used in this investigation were manufac-

tional properties of a set of crotales in the two octaves from,, qq by Zildjian Co. They span the octaves fr@g to Cg
Cs to Cg, identifying the vibrational modes and assessing, g have diameters ranging from 132.8 to 2605 mm. All

their relative importance to the sound of the instruments¢ he central masses are identical and have a diameter of
Evidence is presented demonstrating that the crotales are iy 2+ 1 mm and a thickness of 13-D.1 mm. The thick-

deed not optimally tuned. ness of the thin plate portion of the crotales is also uniform,

To assess the importance of the center mass on the Nqeasyring 4.20.1 mm. In order to determine the acoustic
mal modes of the crotale well-established thin plate theory I$roperties of the crotales each one was mounted on a one-

used to predict the normal mode frequencies. There is poQhch giameter vibration-damping post that was secured to a
vibration-isolated optical table in an anechoic chamber. The
dElectronic mail: tmoore@rollins.edu crotale was struck with a cork mallet and the sound was
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TABLE I. Diameters and frequencies of acoustically important modes of the

mounting hole 2
g two-octave set of crotales. Frequency uncertaintiestdde25 Hz.

Note Diameter=0.1 mm (2,00 mode (3,0 mode (4,00 mode
center mass

Cs 132.8 1055.5 2117.5 3667.5

c# 130.1 1117.0 2230.0 3849.5

D 125.9 1184.0 2348.0 4049.5

D* 123.8 1259.0 2483.0 4270.0

E 120.8 1333.5 2621.0 4502.5

F 117.8 1411.5 2754.5 47315

F# 114.6 1495.5 2879.0 4927.0

G 1115 1585.5 3021.5 5166.5

G* 108.0 1682.0 31455 5361.0

flat plate A 106.6 1784.5 3357.5 2708.5

A# 104.6 1889.5 3548.5 6033.5

FIG. 1. lllustration of a crotale. B 103.2 1668.5 3743.0 6340.0

(o 101.6 21135 40435 6328.5

digiti . . . c* 98.0 22375 42145 6717.0
igitized. Two time series were recorded .at a sa}mpllng rateg 97.0 2361.0 4343.0 70825
of 40 kHz for each crotale in the set. The first series began b+ 95.8 25215 4640.0 7554.5
the strike time and had a duration of 0.25 s. A power spece 91.6 2682.0 4777.5 8035.5
trum of this time series was used to approximately identifyF# 90.3 2832.5 5072.0 8492.0
the frequencies of many of the normal modes. The seconfi 89.0 3004.0 5400.0 9011.5
time series was begun two seconds after the strike and hadG 86.2 8187.5 5609.0 9519.0
X X > ; @ 84.4 3383.0 6106.0 10112.5
duration of two seconds. Since this time series began aftef 82.9 3584.5 6432.0 10792.0
the transient modes had decayed to negligible relative powes? 81.7 3801.0 6788.0 11224.0
the modes that are important in the steady-state sound of the 79.5 4021.0 7144.0 11664.0
crotales were evident. Cs 76.5 4241.0 7380.0 11992.0

Figure 2 is a typical example of the steady-state power
spectrum of a struck crotale. Three modes are clearly visible,
with most of the power being contained in the first two Was used to characterize the vibrational patterns of the
modes_ As iS Common|y seen in other percussion instrumodes Of the CrOta|é55T0 drive the Vibl’ationS, a Speaker was
ments, the degenerate mode doublets are occasionally S[jmaced in the anechoic chamber containing the crotale. The
due to slight asymmetries in the pldtéhis is clearly evident SPeaker was driven by a high-quality sine-wave generator. It
in one of the modes shown in Fig. 2. Results from the otheWas demonstrated in a similar experiment that the location
crotales within the set are similar, though in some cases thand orientation of the speaker in the chamber does not affect
third mode is negligibly small and often none of the degen-the modal structure of the vibrations of the object under
erate modes exhibit measurable splitting. We define a,investigationz. However, in order to drive the vibrations with
acoustically important mode as one that contains at least orf8€ maximum possible efficiency, the speaker was oriented
percent of the total power, and using this definition there ar@erpendicularly to the face of the crotales. Using this method
at most three acoustically important modes for each crotaldhe three acoustically important modes were identified as the
In excess of 95% of the total power is contained within thesd2.0), (3,0, and(4,0) modes, where the integers represent the
three modes for all of the crotales, with no other single modéumber of diametric and circular nodes, respectively. This
containing more than a small fraction of a percent of the totaProcedure was repeated for each crotale in the set. The fre-
power. quencies of these modes for each crotale are shown in Table

Time-averaged electronic speckle pattern interferometry- Note that the ratios of the frequencies of (30) to (2,0)
modes are approximately 2:1 while the ratios of the frequen-
cies of the(4,0) to (2,00 modes are approximately 7:2 for
2,0) each crotale. Typical electronic speckle pattern interfero-
grams are presented in Fig. 3. The center mass is not visible

(3.0

Power (arb)

4,0)

‘ ‘ ‘ ! ‘ (2,0) (3,0) (4,0)
0 1000 2000 3000 4000 5000
Frequency (Hz) FIG. 3. Typical interferograms of thé,0), (3,0, and (4,00 modes of a
crotale. The light regions indicate places where the crotale is moving. Black
FIG. 2. Typical power spectrum of a crotale. The three acoustically impor-regions indicate positions with litle or no movement. The position of the
tant modes are clearly visible. center mass is indicated by a solid white line.
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FIG. 4. Departure of th€2,0) mode from ideal tuning. If ideally tuned there
would be no difference between tt2,0) mode and the frequency of the '
note according to the Western musical scale. The crotales correspond %
numbers 1 through 25, respectively, with=1 andCg=25. Uncertainties
are smaller than data points.

FIG. 5. Ratios of the frequencies of acoustically important modes. Open
amonds represent the ratios of the frequencies of3t@ to (2,0) modes.
losed diamonds represent the ratios of the frequencies @#fleto (2,0)
modes. The crotales correspond to numbers 1 through 25, respectively, with
Cg=1 andCg=25. Note the departure from ideal tuning of 2:1 and 7:2.
Uncertainties are smaller than data points.
on the interferogram but is indicated by a solid white line in
the figure.
g 2=[Ardn(KD) + Agl o(KP)+ AgY(kr)
+A4K, (kr)]cogno)sin(wt), D

B. Analysis of the tuning of crotales ) ) ) ) )
wheren is an integerz is the deflection of a point from the

Based on the data presented above, we define an idealuilibrium plane of the plateq andr are polar coordinates,
tuned crotale as one for which tl{2,0) mode occurs at the A is a constant,), and |, are Bessel functions of the first
frequency corresponding to the note name stamped on thghd second kinds, respectively, avig andK,, are modified
crotale, and the frequency of (8,0) mode is exactly one Bessel functions of the first and second kinds, respectively.

octave hlghel’ than that of tf(@,O) Furthermore, the ratio of The constank in the argument of the Bessel functions is
the frequencies of thet,0) and(3,0) modes is 7:4, making a defined by

minor 7th. Using this definition, the tuning of each of the

crotales was compared to the ideal. Figure 4 shows the de- 4 12pw?(1—1v?)

tuning in cents of thg2,0) mode of each crotale from the :T- @)

frequency of its corresponding note on the usual chromatic

scale’ Generally, the(2,00 mode becomes less accurately Here, v is Poisson’s ratiop is the volume mass densit, is

tuned as the scale is ascended. Although the ability of &oung’s modulus,w is the angular frequency, ardis the

person to perceive a mistuned interval varies, a good musthickness of the plate. Terms witq, andY,, in Eq. (1) must

cian can discriminat a 5 cents mistuning. Hall opines that it be eliminated in this instance to prevent nonzero displace-

is reasonable to insist that an organ be tuned to within 2 or $nent atr =0, leaving only two unknown parameters in Eq.

cents of the target pitchwe see no reason for this standard (1). Furthermore, for a plate fixed at the center, the0

not to be applied to crotales. terms are absent for the same reason. The boundary condi-
The ratios of the frequencies of the higher-order modesions at the edge of a plate of radiaghat is free to vibrate

to the (2,00 mode show a similar trend as the scale is as-are

cended. Figure 5 is a plot of the ratio of the frequencies of

the (3,0) to (2,0) and (4,0 to (2,00 modes for each of the M(a,0)=0 ©)

crotales, comparing each to the ideal 2:1 and 7:2 ratio. Thigq

demonstrates clearly that the crotales become increasingly

detuned as the musical scale is ascended. V,(a,0)=0, 4
where M, is the bending moment, related to the displace-
IIl. THEORY ment by
A. Comparison to thin plate theory 9’z 1oz 1 ¢z
_ _ . _ Mi(r,0)=—-D|—+v| -+ 5 —| (5
Since crotales appear to be slightly modified thin plates ar ror r2a6

fixed at the center it is reasonable to suspect that they can_t(gj(?]dvr is the Kelvin—Kirchoff edge reaction, defined by
accurately modeled using thin plate theory. Fortunately, thin

plates have been studied for centuries and are well under- 9 10M,,

stood. Following the derivation presented by Lei$#ae so- Vi (r,0)=-D E(VZZ) MY R (6)
lution to the general equation of motion for a thin circular

plate is Here,D is the flexural rigidity, defined as

J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 Deutsch et al.: Dynamics of crotales 2429



TABLE Il. The parameters used in all models to predict modal frequenciesThe frequencies of the normal modes were then experimen-
The plate thicknesgh) and density(p) were measured. Young's modull® 51y determined and identified using the method described
and Poisson'’s rati¢ov) are taken from Ref. 7. . .

above and compared to predicted values for thin plates. The

Physical parameters of crotales experimental values fall within 1.5% of the theoretical values
£ 10 N/ for all but the(4,00 mode of theFg crotale, which deviates
h 4.7 mm by approximately 2.4%. This supports the hypothesis that the
p 8861 kg/m crotales without the center mass may be modeled as thin
v 0.33 plates. This also confirms that it is indeed the presence of the
center mass that is responsible for the proper tuning of the
crotales.
2
pw
- (7)

B. Comparison to annular plate theory
Upon applying these boundary conditions to EL, the ei-
genvalues determine the frequencies of the normal modes 9\1;
the plates. We define a nondimensional frequency paramet
as

Since the crotales are physically clamped at the center
hen mounted for playing, and the interferograms shown in
%rig. 3 indicate minimal movement of the central mass during
play, one may suspect that crotales may be modeled as an-
N=Kka, (8)  nular plates free to vibrate at the outer radius and clamped at
. . the inner radius. To investigate this hypothesis further we
which can be used as a general solution for normal-mode .

model the crotale as an annular plate following the methods

g;?genues, independent of the physical parameters of thgf Vogel and Skinnet.Using an approach similar to the thin

In describing crotales as thin circular plates we assumé)lme theory described above, we begin with EL). this

that the physical parameters of every crotale are identica me, however, the terms containitg, and Y, are allowed,

. . : ) incer=0 is not included as a boundary condition. Vogel
with the exception of the plate radius. Young’s modulus an . : . .
. , X and Skinner define the nondimensional frequency parameter
Poisson’s ratio for yellow brass were taken from the

literature? all other physical parameters were measured. Thtfaor an annular plate to be

values of the parameters used are given in Table II. Table Il 4pa* 12
lists values of\ and predicted frequencies of the acoustically N=w End ; 9
important modes for th€g, C,, andCg crotales, as well as
the error that results by comparing them to measured valuethe relationship betweek and\’ is therefore
Note that it is not only the absolute frequencies that show )
. . A
poor agreement, but the ratios of the frequencies of the N = _ (10)
modes also do not agree with the experimental values. V3(1—17)

Clearly, this model is insufficient to predict the normal
modes of crotales.
One possible explanation for this discrepancy is that th

The boundary conditions for an annular plate clamped at the
énner edge and free to vibrate at the outer edge are

thickness of the plates in question violates the assumption of 325 19z 1 6%z

a thin plate. The thin plate theory outlined above appliesonly —5+ V( Toar 3 —2) = (13)
to plates for which the thickness is much less than the plate r reae

diameter. Although this appears to be a valid approximatiorand

given the physical parameters of the crotales, it is possible ) ) B )

that it is not. In order to confirm the validity of modeling the 7 E+ i f i E 1-v ’?_(f_ E) _
crotales as thin circular plates the center masses of two ofthe dr \ gr2 2 dr 2 542 r2 ge2\or r '
crotales Dg andFg) were milled off to create a thin plate. (12

TABLE llI. Predicted frequencies of the acoustically important modes for three crotales using thin plate theory.
The error when compared to the actual values is also indicated.

Diameter(+0.1 mm) Predicted frequency Actual frequency Ratio with
(Note) Mode N (+0.25 H2 (+0.25 H2 % error (2,0 freq.
132.8 2,0 229 914.0 1055.5 13.40 1
(Ce) (3,0 350 2135.1 21175 —-0.83 2.33
(4,0 4.65 3768.7 3849.5 —2.75 411
101.6 2,0 2.29 1561.6 21135 26.11 1
(Cy) (3,0 350 3647.8 4043.5 9.79 2.33
(4,0 465 6438.8 6328.5 1.74 411
76.5 (2,0 229 2754.4 4241.0 35.05 1
(Cg) (3,0 350 6434.2 7380.0 12.82 2.33
(4,0 465 11357.1 11992.0 5.29 4.11
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TABLE IV. Predicted frequencies of the acoustically important modes for three crotales using annular plate
theory. The error when compared to the actual values is also indicated.

Diameter(+0.1 mm) Predicted frequency Actual frequency Ratio with
(Note) Mode N (£0.25 H2 (+0.25 H2 % error (2,0 freq.
132.8 (2,0 4.04 1150.7 1055.5 -9.02 1
(Ce) (30 764 2178.4 2117.5 -2.87 1.89
(4,0 13.19 3758.9 3849.5 —-2.49 3.27
101.6 (2,0 468 2278.6 2113.5 -7.81 1
(Cy) (30 792 3858.0 4043.5 4.59 1.69
(4,0 13.28 6466.2 6328.5 -2.18 2.84
76.5 (20  6.03 5175.9 4241.0 —22.04 1
(Cs) (30 878 7543.6 7380.0 -2.22 1.46
40 1371 11773.9 11992.0 1.82 2.27
for the free outer edge, and The accuracy of the program was verified by modeling a
70 (13) thin flat circular plate. The predicted values matched those
derived from Eq(1) to within 0.5%. We then created a cro-
and tale model using the physical parameters of @crotale
97 and compared the predicted resonant frequencies to those
E=O, (14 measured in the laboratory. The predicted frequency of the

(2,00 mode using this model agrees to within 6% of the cor-
for the clamped inner edge. When these conditions are apgesponding experimental value, and we believe that this error
plied to Eq. (1), the eigenvalues can be used to find theresults from not knowing the exact values for Young's
frequencies of the normal modes of the plates. The onlyModulus, and to a lesser extent Poisson’s ratio. However, the
physical parameters required to determine the eigenvalugatios of the frequencies of the modes agree to within 0.7%.
are the ratio of the inner to outer radii and Poisson’s ratio, = The first physical parameter investigated within the
assumed here to be 0.380gel and Skinner conclude that model was the height of the center mass. A series of models
the eigenvalues are not sensitive to the value of Poissonsf the Cq andCg crotales were created with the height of the
ratio). center mass ranging from a flat plate to twice the height of
Using this theory, we have predicted the frequencies ofhe actual center mass. The ratios of the acoustically impor-
the (2,0, (3,0, and (4,00 modes for a set of free-clamped tant modes were then determined, and are plotted in Figs. 6
annular plates. The inner radii were chosen to be equal to thend 7. It is evident that increasing the height of the center
radii of center masses of the crotales and the outer radii wengass has little effect on the ratios of the frequencies of the
chosen to be equal to that of the indicated crotales. The vakcoustically important modes of th@g crotale once it has
ues for\” and predicted frequencies are shown in Table IV.reached 100% of the mass height as manufactured. However,
Comparing these predictions to the actual frequencies of ththe data in Fig. 7 indicate that any central mass detunes the
crotales shows better agreement than was found for themallerCg crotale, but with little extra effect after 100%.
model of a flat plate, indicating the superiority of the annular ~ The fact that increasing the height of the center mass
plate model. This is not surprising given the physical simi-beyond a certain point produces little or no change in the
larity between crotales and free-clamped annular plates;
however, the poor agreement between the predicted ratios of

the frequencies of the modes and the actual ratios of the a0l ¢
frequencies demonstrates clearly that annular plate theory is ) ‘.
also insufficient as a model for crotales. " ‘eel. fuoffon
. . . . . 5 35 AR 8 2% 2w 2x 0
Since these simple theories proved to be insufficient for =
predicting the behavior of crotales, we turned to finite ele- E 30
ment analysis to understand the effect of the center mass on °
the tuning. S s
<
‘oo, o fao/ten
C. Modeling the crotales using finite element analysis 20
0 50 100 150 200

A finite element model was developed using Solidworks,
a commercially available software program. The model con-

Height of center mass (% of original)

tained lle to 127620 ”Qdes’ with the actual number. of nOdeISIG. 6. Frequency ratios of the acoustically important modes ofGge
depending upon the size of the center mass relative to th@otale as a function of height of center mass according to the FEA model.
plate. The software calculated the resonant frequencies of tHépen diamonds represent the ratios of the frequencies daftBeto (2,0

normal modes as well as providing a visual confirmation o

Fnodes. Closed diamonds represent the ratios of the frequencies (@f,@he
to, (2,00 modes. The ideal ratios of 2:1 and 7:2 are indicated by horizontal

the mode shapes. This allowed us to compare predicted _arI\Qes. After approximately 100%, the frequency ratios of the modes changes
observed mode shapes as well as the resonant frequenciesery little.

J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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FIG. 7. Frequency ratios of the acoustically important modes ofGhe
crotale as a function of the height of the center mass according to the FE.

Height of center mass (% of original)

4.0
* o
3.5 S
3.0
*
300, fao/fen @ * fuo/tan
8 M R R R R . % ¢
"8 2.5 g 2.5 .
g
L.a 20 oo Qa .
° ©0000006060600000 00 © Q 20 *
= 1.54 f(ao)/f(zo) =l RIS o ¢
< ” " é © &> ¢ * ¢
A 1.0 oyt o * e
1.5 (3,0 12,0 < <
0.5 IR
0 T T T T T T T T T T 1 0
0 20 40 60 80 100 120 140 160 180 200 . 0 2|5 5|0 7|5 160 12‘5 15|0 1%5 2(|)0

Radius of center mass (% of original)

EIG. 9. Frequency ratios of the acoustically important modes ofGpe
crotale as a function of radius of center mass according to the FEA model.

model. Open diamonds represent the ratios of the frequencies (8, édo

(2,00 modes. Closed diamonds represent the ratios of the frequencies of |
(4,0 to (2,00 modes. The ideal ratios of 2:1 and 7:2 are indicated by hori-
zontal lines. Note that tuning worsens with the departure from a flat plate.

Open diamonds represent the ratios of the frequencies af3tbeto (2,0
odes. Closed diamonds represent the ratios of the frequencies (@f,@he

to (2,0 modes. The ideal ratios of 2:1 and 7:2 are indicated as horizontal

lines. Again, tuning worsens with the departure from a flat plate.

frequencies of vibration indicates that the center mass dods. An alternate solution for tuning crotales

indeed act as a clamping mechanism as was postulated While the annular plate model was shown to be insuffi-
above. However, clearly the boundary conditions areé nOfient for describing crotales, certain aspects of the theory
equivalent to those of an annular plate clamped at the Centefeserye more careful consideration. The work of Vogel and
The second |nve§t|gat|on w!th|n the cor}text of the f'n'teSkinner implies that the ratio of the frequencies of (8@
element model entailed changing the radius of the centef, ;> o mode becomes fixed when the ratio of the inner to
mbass and h(jetermlr:|ng éh? r?]odaldfrequenm(e;sf as descr'b%qjter radii is chosen. In most circumstances, the ratio of the
above. In this set of models t € radius ranged from a,pprox'frequencies of these modes corresponds to a unique value for
mately 30% to 200% of the original center mass radius for,[he ratio of radii. This is true in the case of t(&0) to (2,0)
the Cg and Cq crotales. The results of this investigation are mode frequency ratio. Building on the work of Ref 8 we
plotteld ml Flgls. h8 and _9' _-][he radflfus of thhe center mass %have defined the parameters for a series of free-clamped an-
crotzlades ¢ ear.yh asa S|gn|h|cante_z e<|:t on t E_zlrdt_unmg,has Oaﬁular plates that have similar acoustic properties to crotales.
wou fexpect, oY(\;evr(]ar, these S'”l‘(u atlons_(ljn ||c|:ate t 3t & hey have the added advantages of being more ideally tuned
manufacturer could choose to make more ideally tuned €ro;4"containing less metal, presumably leading to lower pro-
tales by choosing the height and radius for each crotale iNguction costs
dividually rather than a single size as they are currently man- To meet t.he criteria for ideal tuning th@,0) modes of
factured. W,h”e, theC, crotale is weIITtur_1ed as manufactured, yno annylar plates must occur at the frequencies correspond-
both investigations of th€4 crotale indicate that a flat plate ing to the desired note, a ratio of 2:1 must exist between the
of the same radius would be better tuned than the aCtue”equencies of thé3,0) and (2,0) modes, and a ratio of 7:2
crotale. must exist between the frequencies of t#0) and (2,0
modes. Since th€2,0) and (3,00 modes contain the most
power, their nondimensional frequency parameters were cho-
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sen to optimize tuning. Using these criteria, the optimal re-
lationship between the inner and outer radii was determined
to be

b
—=0.185, (15
a

whereb is the inner radius. We note that this is a unique
relationship and that it indicates a smaller ratio than exists

154 MEIPIN for any of the crotales investigated if the inner radius is taken
' ‘ . ‘ . ‘ ‘ ‘ ‘ as the radius of the center mass. Once the ratio of radii is
0 25 50 75 100 125 150 175 200 chosen, the ratio of nondimensional frequency parameters

Radius of center mass (% of original)

between any two modes is uniquely specified. The ratio of

0.185 corresponds to valuesXf for the acoustically impor-

FIG. 8. Frequency ratios of the acoustically important modes ofGhe
Feined o 8 fant modes of

crotale as a function of radius of center mass according to the FEA mode

Open diamonds represent the ratios of the frequencies df3tbeto (2,0 N =379 16
modes. Closed diamonds represent the ratios of the frequencies @f@he 2,07 20 (16)
to (2,00 modes. The ideal ratios of 2:1 and 7:2 are indicated by horizontal

lines. N30=7.57, (17)
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and cally have three acoustically important modes, which have

N —1318 (19 _been identified as th@,0), (3,0), and(4,0) modes. However,

4.0 T in some cases only th@,0) and (3,00 modes were found to

This ratio and set of nondimensional frequency parambe acoustically important. The frequencies of these modes
eters ensures that the ratio of the frequencies of3® to  were reported for each crotale in a two-octave set. The cro-
(2,00 modes is 2.00, and that the ratio of tthig0) to (2,0 tales become increasingly detuned as the Western musical
modes is 3.48. This is fortunate, since the latter results in ascale is ascended, which may be explained by the invariance
almost perfect minor seventh relationship and cannot bef the magnitude and radius of the central mass.
changed without affecting the ratio of the frequencies of the ~ Empirical values of the frequencies of the normal modes
(3,0 to (2,00 modes. Note that since the nondimensional fre-of the crotales were compared to predicted values derived
guency parameter is related linearly to the frequency of itfrom a model of a thin plate clamped at the center and a
corresponding mode, the ratios of the frequencies of thenodel of an annular plate clamped at the center. Since both
modes are equal to the ratios of the nondimensional freef these models were shown to be inadequate for describing
guency parameters. the behavior of crotales, a finite element model of the cro-

To finish the design all that remains is to choose thetales was used to investigate the importance of the central
value of the outer radii of the plates such that tB®) modes mass. It was found that decreasing the height of the center
occur at the correct frequencies. This can be accomplishemhass increases the ratios of the modal frequencies while in-

by rearranging Eq(9) to yield creasing the height has little effect. Additionally, increasing
Nho[E| M2 or decreasing the radius of the center mass has a large effect
a= (_ \ﬁ) , (199  onthe tuning of a crotale. It has been shown that the physical
4wt N p parameters of the center mass have been chosen well for the

wheref is the desired frequency of th&,0) mode. lowest crotales, but that the highest crotale would be better

Using Egs.(15) and (19), the radii of a set of free- tuned if the center mass were absent entirely.
clamped annular plates with tuning similar to that of an ideal ~ Finally, a design for a more ideally tuned instrument was
crotale can be found. Values for the inner and outer radii ofPresented. This instrument consists of clamped annular plates
such a set of plates were determined in this manner, andith a ratio of inner to outer radii of 0.185.
finite element models were used to confirm the validity of
these parameters. For both octaves, the ratios of the frequeACKNOWLEDGMENTS
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