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Nondegenerate normal-mode doublets in vibrating flat circular plates

Bradley M. Deutsch, Alexandra R. Robinson, Richard J. Felce, and Thomas R. Moore®
Department of Physics, Rollins College, 1000 Holt Avenue, Winter Park, Florida 32789

(Received 13 March 2003; accepted 6 June 2003

The vibrations of flat circular plates have been studied for hundreds of years and are well
understood. However, when vibrating circular plates are discussed in textbooks, the relation
between pairs of spatially orthogonal vibrational patterns that occur at each of the normal-mode
frequencies often is ignored. Usually these orthogonal solutions are presented to the student as being
degenerate in frequency. However, in practice the degeneracy of the doublet often is broken, and the
two spatially orthogonal solutions are separated in frequency. We show theoretically and
experimentally that the degeneracy can be broken by small density perturbations in the plate, and we
derive a formula for predicting the magnitude of the frequency splitting. We have used electronic
speckle pattern interferometry to investigate the phenomenon of doublet splitting and have
confirmed the validity of the theory. @004 American Association of Physics Teachers.
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[. INTRODUCTION lar patterns appears. If the plate is driven from the center, it
o ) . . is common for both angular solutions to be present simulta-
Investigations into the normal modes of V|b.rat|on of flat neously, as predicted by theory, and circular rings appear on
plates began in earnest over 200 years ago with the work ghe piate. Likewise, sometimes the symmetry is broken for
Ernst Chladni. Since then, these investigations have occupieg, e reasoffor example, the plate is touchednd a single
the minds of some of the greatest names in classical physicgp,q,,jar solution will appear. In this case, the circular nodes

Sarvart, ](irchoff, Rayleigh, and many more havg applied ;i'pe pisected by one or more nodes that extend across the
their genius to the problem of describing the vibrations of aiameter of the plate.

flat plate, and the system continues to be of interest tbday. As early as 1827 Sarvart observed that sometimes the ra-

F!at circular plates occur in many_acoustic and_ mech_anicaaial nodes will rotate between the two orthogonal orienta-
devices, and the symmetry lends itself to relatively S|mpleti

analysis. Therefore, the flat circular plate has been a populalr887 Rayleigh proposed that the two orthogonal solutions

geometry in which to study plate vibrations. Many hlJnOIreOISwould not be degenerate in frequency if the plate is not per-

of articles and book chapters have been written on the anahf'ectly symmetric, and he suggested that the behavior ob-

sis of the normal modes of flat circular plates, and almos erved by Savart was a result of this lack of symmetrv. Rav-
every textbook on acoustics or vibrations reproduces somg: y . ) Y y. Ray
eigh then proposed a perturbative technique to calculate the

version of the derivation of the normal modes of flat circular]c aiff bet the t th | modes. but
plates. Furthermore, articles appear regularly in scholarlyrequency iierence between e two orthogonal modes, bu

journals on special cases of the vibrating circular pfafe. didTﬁot exlpli_citly cfjeﬂvedtheb?ppli(_:abfle equati?)nh. ved
With all of the attention given the subject of vibrating e splitting of the doublets In irequency has receive

circular plates, it is surprising that very little attention has!itllé attention in the past century, probably because in most
been given to the fact that each normal mode is twofomapphcauons the driving mechanism is attached to .the V|t_)rat-
degenerate in its angular solution. That is, the general sol09 Plate, and therefore only one set of modes is excited.
tion for the amplitude of vibration for a flat circular plate |N0S€ involved in research on bells have been responsible
consists of the radial solutions, which are Bessel functionsfor most of the reported work on this phenomenon, because
modulated by the angular solution, which is a linear Superf;lfter the clapper hits a beII., it is free to V|.brate in all of its
position of a sine and cosine function. In most textbooks ondéormal modes. For a bell, if the frequencies of the two or-

of these orthogonal solutions is taken as the applicable soldbogonal modes of the doublet are close together but not
tion, or at best the analysis leaves the superposition of the€generate, the interference between the two modes causes a
two terms explicit® warble in the sound that is considered unpleasant. Although

For most practica| purposes this type of ana|ysis is adbe”S are mor(_e qomplicated than flat circular plates, the inter-
equate, because the position of an antinode on the plate @t in the splitting of the doublets in bells has led to some
determined by the imposition of the driving element, andresearch in the simpler system of the flat circular plateis
therefore the orientation of the angular solution is fixed.interesting to note, however, that probably the most complete
However, although it is seldom mentioned in print, often thework on the vibrations of plates does not mention this
two normal modes are not degenerate in frequency. effect!”

In common laboratory work or in a classroom demonstra- Our purpose here is to present a detailed investigation of
tion of Chladni patterns, the normal modes of a circular platghe doublet splitting in flat circular plates in such a way that
can be visualized by placing sand on the plate while forcingt is accessible to students of physics. We begin with a deri-
it to vibrate. The classic driver is a violin bow, but magnetic vation of the magnitude of the frequency splitting that we
or piezoelectric drivers work well in the modern laboratory. believe is more intuitive and easier to grasp than that out-
(A large collection of these patterns can be found in Ref. 7.lined in Rayleigh’s original work.

When observed in this manner, an antinode appears at the Following a review of the theory, we present an experi-
position of the driving mechanism and only one of the angu-mental verification of its applicability. Specifically, we report
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on observations of the doublet splitting of the normal modes  7(r,0)=2Z.[ « cogn#)+ B sin(nd)]J,(kr). (5)
of vibration of a flat circular plate supported in the center.
The plate vibrations are driven acoustically so that no spe- In the absenpe of some asymmetry of the plate, the fre-
cific position for an antinode is imposed upon the plate, a§lu€ncies at which the two radially orthogonal modes of each

occurs when the driving mechanism actually touches th&°rmal mode solution occur are identical; however, we as-
plate. With this arrangement we can easily determine th&€UMe that the presence of a small perturbation can break this
orientation of the normal modes and their frequencies. Addif€generacy. Note that becausecannot be zero, and the
tionally, this type of driver has a very narrow bandwidth, value ofn is equal to the number of nodal diameters of the
enabling the precise determination of the normal mode fremode, there can be no mode without a nodal diameter when
quencies. While the vibrations of the plate are being driven@ plate is clamped at the center unless the two radial orthogo-
we observe the modal patterns using electronic speckle pafal solutions are degenerate in frequency. If the two solutions
tern interferometry; therefore, the plate is completely unperare not degenerate, a mode with no nodal diameters may be
turbed by the measurement process as well. After demorbserved only if the driving mechanism has a bandwidth that
strating the applicability of the theory, we show that we canexceeds the difference in frequency between the two modes.
determine some fundamental parameters of the plate from To derive a relation between the frequencies of the or-

these measurements. thogonal modes in each doublet, we assume that there is a
small perturbation in the symmetry of the plate. In any given
II. THEORY plate there may actually be many small perturbations in the

density, or the plate may be slightly asymmetrical in shape.

We begin by assuming that the plate is circular in shapewe will treat the aggregate of these perturbations and asym-
flat, thin, and has uniform density. We define a thin plate asnetries as a single mass at a poirg,,). The effect of this
one with a thickness that is significantly smaller than themass will be modified by the presence of the nodal circles
radius of the plate and is much smaller than the wavelengtind diameters. Therefore, we refer to this hypothetical mass
of the sound propagating in the plate. In practice, we take thes themodified perturbative masslote that the angular co-
thickness to be at least an order of magnitude smaller th?ﬁrdinate of the modified perturbative massnidold degen-
both of these parameters. We further assume that any varigrate, and that the effect of any mass perturbation depends
tion from a circular shape or uniform density is not suffi- onjy upon its coordinate with respect to the closest antinode

ciently large to alter the equations of motion that describe theyng not with respect to a single coordinate on the plate.
vibration of a thin, flat, circular plate in cylindrical coordi-

nates.
The derivation of the applicable equation for the deviationA, Relation between resonance frequency and the position
of the plate from equilibrium can be found in any one of of the perturbing mass
numerous textbooks, and the solutions are the solutions to
the Helmholtz equation, that 3, The normal-mode frequencies of vibration are determined
by the boundary conditions, and by the size and density of

(V2:Kk*)Z(r,0)=0, (@) tr?/e plate. Rega¥dless of the actual)/dimensions of the p>llate,
whereZ(r,6) represents the deviation of the plate from its however, the addition of a small mass to some point on the
equilibrium position,r is the radial coordinate measured Plate will always lower the resonance frequency unless the
from the center of the plate) is the angular coordinate, and additional mass is placed on a circular node of the vibra-
the Laplacian operator is assumed to be expressed in polfPnal pattern. Although the addition of a mass can funda-

coordinates. The constaktis given by mentally change Eq(l), if the added mass is significantly
smaller than the mass of the plate, the problem can be treated
sz(l— V2) 1/4

without having to derive an alternative to E@).
7E ' 2) If we assume that the additional mass is indeed signifi-
. o cantly less than the total mass of the plate, the normal-mode
where() is the angular frequency of the vibratiop,is the  sojutions given by Eq(5) are still valid, and the only neces-
density of the platey is Poisson’s ratiof is Young's modu-  sary change is in the normal-mode frequencies.
lus, andx is the radius of gyration, which for a circular plate  To derive a relation between the perturbed resonance fre-

k:

of uniform thicknessh is given by quencyw and the unperturbed resonance frequefigywe
initially assume a thin circular plate of uniform density. We
= L 3) further assume that there is no significant loss due to the
J12 radiation of sound. The differential element of the kinetic
The general solution to Eq1l) is well known and is given energy of a point on the plate is given by
by dT= 3(dm)v?, (6)

Z(r,0)=Zo[a cognd) + B sin(nd) J[In(kr) +14(kr)], wherev is the instantaneous speed of the point éntlis the
(4)  differential element of mass.
where« and 8 are constants, antf, andl, are the ordinary ~ The speed of an arbitrary point on the plate is determined
and hyperbolic Bessel functions of orderrespectively. For Poth by its position on the plate and the mode in which the

our analysis we will assume that the plate is clamped at th@'ate is vibrating. If we assume that all points on the plate
center, and therefore all of the hyperbolic Bessel functions€*€Cuté simple harmonic motion with angular frequetiy

as well as thel, ordinary Bessel function, are not solutions the deviation from the equilibrium position is given by
because they have a nonzero valug at0. Therefore, the Z(r,0,t)=2Zo[ a cognd)+ Bsin(nh) ]I, (kr)cog Qt).
applicable equation for our study is (7)
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We assume that the plate is vibrating in a normal mode and _1 2
: : ; 6T= 3 6mu*, (16)
therefore, for the moment, the choice of the sine or cosine
function as the angular solution is arbitrary. For convenience o o
we choose the cosine function as the applicable angular sdtherev is still given by Eq.(8). The change in kinetic en-
lution, but in reality the angular part of the solution will be ergy of the point averaged over one period is then given by
indeterminate.
The speed of any point on the plate is the time derivative  sT— L ()272 5m co2(n6.)J2(Kr.). 1
Of Eq (7), that |S, 4 0 ( O) n( 0) ( 7)

dz . According to Rayleigh’s principle, the vibrations of the
gt Zofddn(krjcogng)sin(Qt). (®) plate will always reorient such that the point mass is situated

dt
] ) ) on either a radial node or antinof&when the mass is situ-
We substitute Eq(8) into Eqg. (6) and take the time average ated on a radial node, the addition of the mass causes no

over one period and obtain an expression for the differentiathange in the physical situation, and the plate resonates at
average kinetic energy in a single cycle: the natural frequency of the unperturbed plate. When the
dT= 1720232(kr)co(n@)dm. 9) mass is not located on a radial node, a different frequency is
required to induce resonance. In this case the maximum

In cylindrical coordinates the differential element of massamount of energy will be transferred to the plate when the

may be expressed as perturbing mass is vibrating with the maximum displace-

dm=ordrdodz (10) ment. Therefore, if the mass is osciIIating at all, the vibra-

P ' tional pattern of the plate will become oriented such that an

where p is the mass density of the plate. We evaluate theantinode occurs at the position of the perturbing mass.

integral of the average kinetic energy over a plate of radius Hence, cos{d) is either unity or zero. If cos@)=0, the mass

and thicknes$ and obtain is located at a node andlT is identically zero. In the more

_ pZ202 (h [2n a interesting case of casg)=1, there are an infinite number of
T= Z f dzf co§(n0)d0f Jﬁ(kr)r dr. (11 combinations ofSm andr g that can result in the same value
0 0 0 —
of oT.
If we use the fact that Physically, the case casf)=1 presents the possibility of
a different masses at different radial positions on the plate
f Jﬁ(kr)r dr changing the kinetic energy the same amount. When located
0

near a nodal circle, more mass is required to produce the

2 7 n\2 same effect on the resonance frequency as would be pro-

} + 1_(_) }Jﬁ(ka) , (12) duced by a smaller mass located near a circular antinode.
r=a ka (Note that the nodal circles will not significantly shift their

position with the addition of a point mass because the posi-
tion of the circular nodes is primarily determined by the

dJ,(kr)
d(kr)

a2
:?[

Eg. (11) evaluates to

— 1_, ., [[d3n(kr) 2 n\? boundary conditions of the plaje.
=gZo'M d(kn) H11-1g) [Iakayy, In an actual physical system there will be no change in the
r=a total kinetic energy of the plate with the addition of mass,
(13 and the required energy will be compensated by a lowering
whereM is the total mass of the plate. of the resonance frequency. The relation between the change
For ease of calculation we may substitute the recurrencin resonance frequency and the change in kinetic energy is
formula for the Bessel functions into E€L3), that is, straightforward to derive from Eq15), becauseT is qua-
dJn(x) dratic in () except for the weak dependence\@ within k
2=~ In-1(0 = Insa(X). (14)  in the argument of the Bessel functions. Therefore, to better
than first order, the relationship between the change in reso-
Equation(13) then becomes nance frequency and the change in kinetic energy is
=1 202 - 2 J—
T= gZOQ M Z[Jn—l(ka)_Jn+1(ka)] 5O  —6T
— =, (18
n?\]., Q 2
+ l_(ﬁ) Ji(ka) (. (15

We now assume that the plate is modified by the additioyVhere T is the change in the average kinetic energy that
of a small mass at the position 6,). We assume that the would occur with the addition of some mass, provided there
mass is so small that it does not significantly affect the formV@S no change in frequency. We define the change in fre-
of the vibrations. Therefore, the motion is assumed to still bAUENCY as
simply harmonic, and the normal modes are adequately de-
scribed by Eq(7). 60 =0-w, (19

If an infinitesimal point mass of magnitudn is added to
the plate and the frequency of vibration is left unchanged, thevhere w is the resonance frequency of plate that has been
average kinetic energy is changed by an amaéint The  altered by the addition of the small perturbative mass. We
change in kinetic energy of the plate is given by then substitute Eq4$15) and(17) into Eq.(18) and find
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45mJﬁ(kro) radial position of the modified perturbative mass. The only
—=1- 5 ) uncertainty in the location of the intersection will be the

) n difference caused by the addition of nodal circles, and the
M4 [In-1(ka)=JInse(ka) "+ 4| 1— a

2
Jn(ka)J subsequent possibility that a large perturbation in the density
falls near one of them.
For any specific plate the value of the second term on théll. EXPERIMENT
right-hand side of E(20) is directly proportional tadm/M. A Imaging modal patterns
Therefore, we define the constant

g

To experimentally investigate the frequency dependence
432(krg) of the normal modes of vibration of a flat circular plate, we
n\2 , have designed an experiment to view modal patterns in real
1_(_) }‘]ﬁ(ka) time without the driving mechanism touching the plate or
ka asymmetrically perturbing it in any way. Because the mecha-
(21) nism that drives the vibrations does not touch the plate, it

Yn=

[[Jnl(ka) _Jn+1(ka)]2+ 4

and we can rewrite Eq20) as does not impose an antinode on the modal structure. There-
s fore, the modal patterns are free to form based solely on the
©_,_,om o9 characteristics of the plate.
Yn ) (22 - ] L -
Q M The plate used in our investigations was an austenitic

clearly showing that the ratio of the two frequencies variesSt‘f“mless steel circular plate of radius 17@1 cm and )
linearly with m for any given mode number. thickness 0.26:0.01 cm. The plate was mounted on a hori-

zontal 0.25-in.-diameter post attached to the center of the
plate, which was in turn attached to a commercially available
1-in.-diameter vibration-damping post. The entire apparatus
was mounted on an optical table which is isolated from am-
bient vibrations by pneumatic legs inside an anechoic cham-
The position and value of the modified perturbative masder.
depends critically on both the specifics of the plate and the To image the modal patterns we designed and built an
mode in which the plate is vibrating. The dependence on thelectronic speckle pattern interferomeeran electronic
mode results from the fact that the circular nodes will occurspeckle pattern interferometer detects out of plane vibrations
at different parts of the plate as the mode changes, and it By digitally recording the image of the speckle pattern on a
possible that a large fraction of the perturbing masses fall ostructure that is illuminated by coherent light from a laser.
a circular node for one mode but not for others. Also, theThe speckle pattern prior to the onset of movement is then
perturbing mass must be located at an angle associated withigitally subtracted in real time from the speckle image after
a radial antinode for the mode in each doublet with the lowemovement, producing a final image that is black where no
frequency, but it is impossible to know along which antin- movement has occurredue to the subtraction of identical
odal diameter it is located. In other words, even if we canspeckle patternsand light where there has been a change in
find the radial position of the theoretical point mass, the anthe speckle pattern.
gular position is 2-fold degenerate due to the symmetry of The interferometer used in these experiments was built
the modal patterns. from discrete optical components and mounted on the same
It is very difficult to determine the position and magnitude optical table as the plate. The laser used to illuminate the
of the modified perturbative mass either theoretically or ex-system resides on an optical table outside of the anechoic
perimentally; however, it is quite easy to measure the frechamber, which is also isolated from ambient vibrations by
quencies) andw in the laboratory. From this knowledge we pneumatic legs. The 532 nm beam from the laser enters the
can determine the possib|e values for the magnitudém)f anechoic chamber through a small hole in the wall. The pro-

B. Calculating the position of the modified perturbative
mass

and the position, by rewriting Eq.(22) as cessing of the image is accomplished in real time using a
computer outside of the anechoic chamber. The software for
om o 1 23 image subtraction and image recording was written by the

™ Qv 23 authors USINGQABVIEW .

ina Eq. (2 ot th i . The interferometer can image out of plane vibrations on
Using Eq.(23) we may plot the normalized perturbing yhe orger of 100 nm. Therefore, the driving mechanism does
mass versus the radial position, y|eld_|ng the relatlonsh|p berot need to transfer a significant amount of energy to the
tween the necessary mass perturbations and the possible {3z i order for the vibrations to become visible. This sys-
.d'a.l locations of that mass. Note that o.n.ly the radial POsItioley allows us to drive the vibrations acoustically with a
is important because the angular position is determined b¥yeaker mounted on the floor of the anechoic chamber. We
the position of the antinodes, and as noted above this COOfyng that the position of the speaker does not affect the
dinate is I-fold degenerate. _ _ _ structure of the normal modes of vibration of the plate, and
Unless there are multiple perturbations in the density Ofherefore the actual position of the speaker relative to the
the plate that are of similar magnitude, each set of norm%ate is arbitrary.
modes will have the same orientation. We may then assume The vibrations of the plate were driven acoustically using
that the only significant difference among modes withing sine wave generated by a high quality function generator.
these sets are the positions of the nodal circles. For a set §he pandwidth of the driver was less than 0.1 Hz. To ensure
modes in which the number of nodal diameteris the same,  that all of the normal modes of vibration were found, the
but the number of nodal circles differ, the plots@®h/M vs  plate was struck and the resulting acoustic power spectrum
ro/a for each mode should intersect at the magnitude andvas used to determine the normal modes of vibration. Addi-
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0.970
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0.960
0.000 0.001 0.002 0.003 0.004

dm/M

Fig. 2. Plot of the frequency splitting vs the perturbing mass for seven
different masses. The line is a linear fit to the data.

Fig. 1. Series of non-frequency-degenerate modes of a flat circular plate.
The plate is driven acoustically and is viewed using electronic speckle pat-
tern interferometry. mass was added to the edge of the plate. Small amounts of
putty were used to add mass to the plate without significantly
altering the other parameters.
tionally, the function generator was swept through the acous- Figure 2 shows a plot of the ratio of the frequencig§)
tic spectrum from 10 Hz to 10 kHz and all steady-statevs Sm/M as the mas$m was added to the plate. It clearly
modes were noted. All of the normal modes of the plate thathows that the ratio of the two frequencies varies linearly
occur between 10 Hz and 10 kHz were imaged. Some typicakith the addition of mass as predicted by E22). The un-
modes are shown in Fig. 1. certainty in both axes is smaller than the data points, with the
In Fig. 1, the nodes are imaged as black while the antinslight deviation from perfect linearity being attributable to
odes are imaged as white. To distinguish one mode fronthe finite size of the perturbing mass.
another, it is common to refer to the modes by the number of When Sm/M exceeds approximately 0.004, the physical
nodal circles and the number of nodal diameters. For insjze of the perturbing mass exceeds the width of the node
stance, the moden{,n) hasm nodal circleqresulting from  and the plot ofw/Q vs Sm/M becomes slightly nonlinear.
the termJ, (kr)] and n nodal diametergresulting from the  However, even if the physical size of the mass were infini-
term cosfd)]. Using this notation the three modes showntesimal, a similar result would occur if the value &im/M
horizontally across the top in Fig. 1 af8,1), (0,2, and exceeds approximately 0.1, because in this case the assump-
(0,9, respectively. The frequencies associated with theions used in deriving Eq(22) would be violated.
modes shown in Fig. 1 are given in Table I. Note that in the The line shown in Fig. 2 is a linear fit to the data. The
cases shown, as in the majority of cases we observed, thgope, found by linear regression,4s2.49+0.05. Note that
doublets are not degenerate in frequency. The breaking of thg/Q) is not equal to unity when no perturbing mass is at-
degeneracy of the doublets is due to the fact that the mountached to the plate, due to the asymmetry of the plate caused
ing hole for this particular plate was not drilled precisely inpy the slight off-center mounting hole as noted above. A
the center of the plate. This asymmetry caused the doublefserfectly symmetric plate would intercept the vertical axis at
to be nondegenerate in frequency. unity. However, there would be no evidence of the nonde-
generate doublets of the unperturbed plate as shown in Fig.
1. The linear nature of the response to the addition of mass
shown in Fig. 2 clearly indicates that the asymmetry of the
In order to demonstrate that E®2) actually predicts the plate is not significant enough to impede the applicability of
effect of perturbing the mass of the plate, we measured thEg. (22).
frequencies of the resonances for ti€2) mode as a small

B. Effects of mass on doublet splitting

IV. ANALYSIS

Table I. Frequencies of the modes shown in Fig. 1. The uncertainties are
+0.05 Hz. Because the mass that was added to the edge of the plate
was placed on a nodal diameter of the normal mode, the

Mode Yf2m (H) Qf2m (H2) magnitude of the slope of the graph in Fig. 2 is the constant
(0,2 127.20 134.40 v, defined by Eq.(21) with ro=a. Therefore, applying a
0,2 336.30 345.20 linear regression analysis to the data shown in Fig. 2 pro-
0.3 775.30 775.70 vides an experimental value fof,. Oncevy, is known, it can

Eg:g ;gg?:gg ;ggg:gg be _usec_d to determine the value of the _prop_agation cpnlstant
1.2 2132 60 2145 20 W_hlph is a constant of thg plate which is otherwise very
(0,6 2897.30 2898.00 difficult to precisely determine.

1,3 3199.40 3204.00 The theoretical value fok is given by Eq.(2), but calcu-
0,7) 3865.30 3865.80 lating k requires a complete knowledge of the exact shape of
(2,9 3987.80 4055.40 the plate and the material of which it is made. By applying
%'g) 2322'28 jggg'gg mass to the edge of the plate, as was the procedure in our
21'5; £823.30 £828.90 experiments, E¢22) can be fit to the data using.the value of
(0:9) 6176.50 6177.80 k as the only free parameter. However, because propor-

2.3 6736.60 6743.60 tional to the square root of the frequency, it is more conve-

nient to define the constant
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K We hope that this work will encourage educators to dis-
= —. (24 cuss the phenomenon of frequency splitting of the doublet
Vo modes of vibrating symmetrical structures in the classroom.
The data shown in Fig. 2 indicate that for the plate used ift is a fascinating phenomenon that appears to be seldom
our experiments£=0.50+0.02 $4m, which is in good addressed outside of specialized applied physics journals, yet
agreement with the estimated theoretical value of 0'8hs  this phenomenon is easily understood, and a discussion can
for a perfectly circular stainless steel plate. The knowledgée included whenever Chladni patterns are shown to stu-
of this value enables further analysis of the plate, including ajents.
calculation for the position of the modified perturbative mass

using Eq.(23). dE|ectronic mail: tmoore@rollins.edu
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