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Nondegenerate normal-mode doublets in vibrating flat circular plates
Bradley M. Deutsch, Alexandra R. Robinson, Richard J. Felce, and Thomas R. Moorea)

Department of Physics, Rollins College, 1000 Holt Avenue, Winter Park, Florida 32789

~Received 13 March 2003; accepted 6 June 2003!

The vibrations of flat circular plates have been studied for hundreds of years and are well
understood. However, when vibrating circular plates are discussed in textbooks, the relation
between pairs of spatially orthogonal vibrational patterns that occur at each of the normal-mode
frequencies often is ignored. Usually these orthogonal solutions are presented to the student as being
degenerate in frequency. However, in practice the degeneracy of the doublet often is broken, and the
two spatially orthogonal solutions are separated in frequency. We show theoretically and
experimentally that the degeneracy can be broken by small density perturbations in the plate, and we
derive a formula for predicting the magnitude of the frequency splitting. We have used electronic
speckle pattern interferometry to investigate the phenomenon of doublet splitting and have
confirmed the validity of the theory. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Investigations into the normal modes of vibration of flat
plates began in earnest over 200 years ago with the work of
Ernst Chladni. Since then, these investigations have occupied
the minds of some of the greatest names in classical physics.
Sarvart, Kirchoff, Rayleigh, and many more have applied
their genius to the problem of describing the vibrations of a
flat plate, and the system continues to be of interest today.1

Flat circular plates occur in many acoustic and mechanical
devices, and the symmetry lends itself to relatively simple
analysis. Therefore, the flat circular plate has been a popular
geometry in which to study plate vibrations. Many hundreds
of articles and book chapters have been written on the analy-
sis of the normal modes of flat circular plates, and almost
every textbook on acoustics or vibrations reproduces some
version of the derivation of the normal modes of flat circular
plates. Furthermore, articles appear regularly in scholarly
journals on special cases of the vibrating circular plate.2–4

With all of the attention given the subject of vibrating
circular plates, it is surprising that very little attention has
been given to the fact that each normal mode is twofold
degenerate in its angular solution. That is, the general solu-
tion for the amplitude of vibration for a flat circular plate
consists of the radial solutions, which are Bessel functions,
modulated by the angular solution, which is a linear super-
position of a sine and cosine function. In most textbooks one
of these orthogonal solutions is taken as the applicable solu-
tion, or at best the analysis leaves the superposition of the
two terms explicit.5,6

For most practical purposes this type of analysis is ad-
equate, because the position of an antinode on the plate is
determined by the imposition of the driving element, and
therefore the orientation of the angular solution is fixed.
However, although it is seldom mentioned in print, often the
two normal modes are not degenerate in frequency.

In common laboratory work or in a classroom demonstra-
tion of Chladni patterns, the normal modes of a circular plate
can be visualized by placing sand on the plate while forcing
it to vibrate. The classic driver is a violin bow, but magnetic
or piezoelectric drivers work well in the modern laboratory.
~A large collection of these patterns can be found in Ref. 7.!
When observed in this manner, an antinode appears at the
position of the driving mechanism and only one of the angu-

lar patterns appears. If the plate is driven from the center, it
is common for both angular solutions to be present simulta-
neously, as predicted by theory, and circular rings appear on
the plate. Likewise, sometimes the symmetry is broken for
some reason~for example, the plate is touched!, and a single
angular solution will appear. In this case, the circular nodes
will be bisected by one or more nodes that extend across the
diameter of the plate.

As early as 1827 Sarvart observed that sometimes the ra-
dial nodes will rotate between the two orthogonal orienta-
tions after the driver has been removed from the plate. In
1887 Rayleigh proposed that the two orthogonal solutions
would not be degenerate in frequency if the plate is not per-
fectly symmetric, and he suggested that the behavior ob-
served by Savart was a result of this lack of symmetry. Ray-
leigh then proposed a perturbative technique to calculate the
frequency difference between the two orthogonal modes, but
did not explicitly derive the applicable equation.8

The splitting of the doublets in frequency has received
little attention in the past century, probably because in most
applications the driving mechanism is attached to the vibrat-
ing plate, and therefore only one set of modes is excited.
Those involved in research on bells have been responsible
for most of the reported work on this phenomenon, because
after the clapper hits a bell, it is free to vibrate in all of its
normal modes. For a bell, if the frequencies of the two or-
thogonal modes of the doublet are close together but not
degenerate, the interference between the two modes causes a
warble in the sound that is considered unpleasant. Although
bells are more complicated than flat circular plates, the inter-
est in the splitting of the doublets in bells has led to some
research in the simpler system of the flat circular plate.9 It is
interesting to note, however, that probably the most complete
work on the vibrations of plates does not mention this
effect.10

Our purpose here is to present a detailed investigation of
the doublet splitting in flat circular plates in such a way that
it is accessible to students of physics. We begin with a deri-
vation of the magnitude of the frequency splitting that we
believe is more intuitive and easier to grasp than that out-
lined in Rayleigh’s original work.

Following a review of the theory, we present an experi-
mental verification of its applicability. Specifically, we report
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on observations of the doublet splitting of the normal modes
of vibration of a flat circular plate supported in the center.
The plate vibrations are driven acoustically so that no spe-
cific position for an antinode is imposed upon the plate, as
occurs when the driving mechanism actually touches the
plate. With this arrangement we can easily determine the
orientation of the normal modes and their frequencies. Addi-
tionally, this type of driver has a very narrow bandwidth,
enabling the precise determination of the normal mode fre-
quencies. While the vibrations of the plate are being driven,
we observe the modal patterns using electronic speckle pat-
tern interferometry; therefore, the plate is completely unper-
turbed by the measurement process as well. After demon-
strating the applicability of the theory, we show that we can
determine some fundamental parameters of the plate from
these measurements.

II. THEORY

We begin by assuming that the plate is circular in shape,
flat, thin, and has uniform density. We define a thin plate as
one with a thickness that is significantly smaller than the
radius of the plate and is much smaller than the wavelength
of the sound propagating in the plate. In practice, we take the
thickness to be at least an order of magnitude smaller than
both of these parameters. We further assume that any varia-
tion from a circular shape or uniform density is not suffi-
ciently large to alter the equations of motion that describe the
vibration of a thin, flat, circular plate in cylindrical coordi-
nates.

The derivation of the applicable equation for the deviation
of the plate from equilibrium can be found in any one of
numerous textbooks, and the solutions are the solutions to
the Helmholtz equation, that is,11

~¹26k2!Z~r ,u!50, ~1!

whereZ(r ,u) represents the deviation of the plate from its
equilibrium position, r is the radial coordinate measured
from the center of the plate,u is the angular coordinate, and
the Laplacian operator is assumed to be expressed in polar
coordinates. The constantk is given by

k5FV2r~12n2!

k2E G1/4

, ~2!

whereV is the angular frequency of the vibration,r is the
density of the plate,n is Poisson’s ratio,E is Young’s modu-
lus, andk is the radius of gyration, which for a circular plate
of uniform thicknessh is given by

k5
h

A12
. ~3!

The general solution to Eq.~1! is well known and is given
by

Z~r ,u!5Z0@a cos~nu!1b sin~nu!#@Jn~kr !1I n~kr !#,
~4!

wherea andb are constants, andJn and I n are the ordinary
and hyperbolic Bessel functions of ordern, respectively. For
our analysis we will assume that the plate is clamped at the
center, and therefore all of the hyperbolic Bessel functions,
as well as theJ0 ordinary Bessel function, are not solutions
because they have a nonzero value atr 50. Therefore, the
applicable equation for our study is

Z~r ,u!5Z0@a cos~nu!1b sin~nu!#Jn~kr !. ~5!

In the absence of some asymmetry of the plate, the fre-
quencies at which the two radially orthogonal modes of each
normal mode solution occur are identical; however, we as-
sume that the presence of a small perturbation can break this
degeneracy. Note that becausen cannot be zero, and the
value ofn is equal to the number of nodal diameters of the
mode, there can be no mode without a nodal diameter when
a plate is clamped at the center unless the two radial orthogo-
nal solutions are degenerate in frequency. If the two solutions
are not degenerate, a mode with no nodal diameters may be
observed only if the driving mechanism has a bandwidth that
exceeds the difference in frequency between the two modes.

To derive a relation between the frequencies of the or-
thogonal modes in each doublet, we assume that there is a
small perturbation in the symmetry of the plate. In any given
plate there may actually be many small perturbations in the
density, or the plate may be slightly asymmetrical in shape.
We will treat the aggregate of these perturbations and asym-
metries as a single mass at a point (r 0 ,u0). The effect of this
mass will be modified by the presence of the nodal circles
and diameters. Therefore, we refer to this hypothetical mass
as themodified perturbative mass. Note that the angular co-
ordinate of the modified perturbative mass isn-fold degen-
erate, and that the effect of any mass perturbation depends
only upon its coordinate with respect to the closest antinode
and not with respect to a single coordinate on the plate.

A. Relation between resonance frequency and the position
of the perturbing mass

The normal-mode frequencies of vibration are determined
by the boundary conditions, and by the size and density of
the plate. Regardless of the actual dimensions of the plate,
however, the addition of a small mass to some point on the
plate will always lower the resonance frequency unless the
additional mass is placed on a circular node of the vibra-
tional pattern. Although the addition of a mass can funda-
mentally change Eq.~1!, if the added mass is significantly
smaller than the mass of the plate, the problem can be treated
without having to derive an alternative to Eq.~1!.

If we assume that the additional mass is indeed signifi-
cantly less than the total mass of the plate, the normal-mode
solutions given by Eq.~5! are still valid, and the only neces-
sary change is in the normal-mode frequencies.

To derive a relation between the perturbed resonance fre-
quencyv and the unperturbed resonance frequencyV, we
initially assume a thin circular plate of uniform density. We
further assume that there is no significant loss due to the
radiation of sound. The differential element of the kinetic
energy of a point on the plate is given by

dT5 1
2 ~dm!v2, ~6!

wherev is the instantaneous speed of the point anddm is the
differential element of mass.

The speed of an arbitrary point on the plate is determined
both by its position on the plate and the mode in which the
plate is vibrating. If we assume that all points on the plate
execute simple harmonic motion with angular frequencyV,
the deviation from the equilibrium position is given by

Z~r ,u,t !5Z0@a cos~nu!1b sin~nu!#Jn~kr !cos~Vt !.
~7!
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We assume that the plate is vibrating in a normal mode and
therefore, for the moment, the choice of the sine or cosine
function as the angular solution is arbitrary. For convenience
we choose the cosine function as the applicable angular so-
lution, but in reality the angular part of the solution will be
indeterminate.

The speed of any point on the plate is the time derivative
of Eq. ~7!, that is,

dZ

dt
52Z0VJn~kr !cos~nu!sin~Vt !. ~8!

We substitute Eq.~8! into Eq. ~6! and take the time average
over one period and obtain an expression for the differential
average kinetic energy in a single cycle:

dT̄5 1
4 Z0

2V2Jn
2~kr !cos2~nu!dm. ~9!

In cylindrical coordinates the differential element of mass
may be expressed as

dm5rr dr du dz, ~10!

where r is the mass density of the plate. We evaluate the
integral of the average kinetic energy over a plate of radiusa
and thicknessh and obtain

T̄5
rZ0

2V2

4 E
0

h

dzE
0

2p

cos2~nu!duE
0

a

Jn
2~kr !r dr . ~11!

If we use the fact that12

E
0

a

Jn
2~kr !r dr

5
a2

2 H FdJn~kr !

d~kr !
U

r 5a
G2

1F12S n

kaD 2GJn
2~ka!J , ~12!

Eq. ~11! evaluates to

T̄5
1

8
Z0

2V2M H FdJn~kr !

d~kr !
U

r 5a
G2

1F12S n

kaD 2GJn
2~ka!J ,

~13!
whereM is the total mass of the plate.

For ease of calculation we may substitute the recurrence
formula for the Bessel functions into Eq.~13!, that is,

2
dJn~x!

dx
5Jn21~x!2Jn11~x!. ~14!

Equation~13! then becomes

T̄5
1

8
Z0

2V2M H 1

4
@Jn21~ka!2Jn11~ka!#2

1F12S n2

kaD GJn
2~ka!J . ~15!

We now assume that the plate is modified by the addition
of a small mass at the position (r 0 ,u0). We assume that the
mass is so small that it does not significantly affect the form
of the vibrations. Therefore, the motion is assumed to still be
simply harmonic, and the normal modes are adequately de-
scribed by Eq.~7!.

If an infinitesimal point mass of magnitudedm is added to
the plate and the frequency of vibration is left unchanged, the
average kinetic energy is changed by an amountdT. The
change in kinetic energy of the plate is given by

dT5 1
2 dmv2, ~16!

wherev is still given by Eq.~8!. The change in kinetic en-
ergy of the point averaged over one period is then given by

dT̄5 1
4 V2Z0

2dm cos2~nu0!Jn
2~kr0!. ~17!

According to Rayleigh’s principle, the vibrations of the
plate will always reorient such that the point mass is situated
on either a radial node or antinode.13 When the mass is situ-
ated on a radial node, the addition of the mass causes no
change in the physical situation, and the plate resonates at
the natural frequency of the unperturbed plate. When the
mass is not located on a radial node, a different frequency is
required to induce resonance. In this case the maximum
amount of energy will be transferred to the plate when the
perturbing mass is vibrating with the maximum displace-
ment. Therefore, if the mass is oscillating at all, the vibra-
tional pattern of the plate will become oriented such that an
antinode occurs at the position of the perturbing mass.
Hence, cos(nu) is either unity or zero. If cos(nu)50, the mass

is located at a node anddT̄ is identically zero. In the more
interesting case of cos(nu)51, there are an infinite number of
combinations ofdm andr 0 that can result in the same value

of dT̄.
Physically, the case cos(nu)51 presents the possibility of

different masses at different radial positions on the plate
changing the kinetic energy the same amount. When located
near a nodal circle, more mass is required to produce the
same effect on the resonance frequency as would be pro-
duced by a smaller mass located near a circular antinode.
~Note that the nodal circles will not significantly shift their
position with the addition of a point mass because the posi-
tion of the circular nodes is primarily determined by the
boundary conditions of the plate.!

In an actual physical system there will be no change in the
total kinetic energy of the plate with the addition of mass,
and the required energy will be compensated by a lowering
of the resonance frequency. The relation between the change
in resonance frequency and the change in kinetic energy is
straightforward to derive from Eq.~15!, becauseT̄ is qua-
dratic in V except for the weak dependence ofAV within k
in the argument of the Bessel functions. Therefore, to better
than first order, the relationship between the change in reso-
nance frequency and the change in kinetic energy is

dV

V
5

2dT̄

2T̄
, ~18!

wheredT̄ is the change in the average kinetic energy that
would occur with the addition of some mass, provided there
was no change in frequency. We define the change in fre-
quency as

dV5V2v, ~19!

wherev is the resonance frequency of plate that has been
altered by the addition of the small perturbative mass. We
then substitute Eqs.~15! and ~17! into Eq. ~18! and find
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v

V
512

4dmJn
2~kr0!

M H @Jn21~ka!2Jn11~ka!#214F12S n

ka
D2GJn

2~ka!J .

~20!

For any specific plate the value of the second term on the
right-hand side of Eq.~20! is directly proportional todm/M .
Therefore, we define the constant

gn5
4Jn

2~kr0!

H @Jn21~ka!2Jn11~ka!#214F12S n

kaD 2GJn
2~ka!J ,

~21!

and we can rewrite Eq.~20! as

v

V
512gn

dm

M
, ~22!

clearly showing that the ratio of the two frequencies varies
linearly with dm for any given mode numbern.

B. Calculating the position of the modified perturbative
mass

The position and value of the modified perturbative mass
depends critically on both the specifics of the plate and the
mode in which the plate is vibrating. The dependence on the
mode results from the fact that the circular nodes will occur
at different parts of the plate as the mode changes, and it is
possible that a large fraction of the perturbing masses fall on
a circular node for one mode but not for others. Also, the
perturbing mass must be located at an angle associated with
a radial antinode for the mode in each doublet with the lower
frequency, but it is impossible to know along which antin-
odal diameter it is located. In other words, even if we can
find the radial position of the theoretical point mass, the an-
gular position is 2n-fold degenerate due to the symmetry of
the modal patterns.

It is very difficult to determine the position and magnitude
of the modified perturbative mass either theoretically or ex-
perimentally; however, it is quite easy to measure the fre-
quenciesV andv in the laboratory. From this knowledge we
can determine the possible values for the magnitude ofdm
and the positionr 0 by rewriting Eq.~22! as

dm

M
5S 12

v

V D 1

gn
. ~23!

Using Eq. ~23! we may plot the normalized perturbing
mass versus the radial position, yielding the relationship be-
tween the necessary mass perturbations and the possible ra-
dial locations of that mass. Note that only the radial position
is important because the angular position is determined by
the position of the antinodes, and as noted above this coor-
dinate is 2n-fold degenerate.

Unless there are multiple perturbations in the density of
the plate that are of similar magnitude, each set of normal
modes will have the same orientation. We may then assume
that the only significant difference among modes within
these sets are the positions of the nodal circles. For a set of
modes in which the number of nodal diametersn is the same,
but the number of nodal circles differ, the plots ofdm/M vs
r 0 /a for each mode should intersect at the magnitude and

radial position of the modified perturbative mass. The only
uncertainty in the location of the intersection will be the
difference caused by the addition of nodal circles, and the
subsequent possibility that a large perturbation in the density
falls near one of them.

III. EXPERIMENT

A. Imaging modal patterns

To experimentally investigate the frequency dependence
of the normal modes of vibration of a flat circular plate, we
have designed an experiment to view modal patterns in real
time without the driving mechanism touching the plate or
asymmetrically perturbing it in any way. Because the mecha-
nism that drives the vibrations does not touch the plate, it
does not impose an antinode on the modal structure. There-
fore, the modal patterns are free to form based solely on the
characteristics of the plate.

The plate used in our investigations was an austenitic
stainless steel circular plate of radius 17.060.1 cm and
thickness 0.2060.01 cm. The plate was mounted on a hori-
zontal 0.25-in.-diameter post attached to the center of the
plate, which was in turn attached to a commercially available
1-in.-diameter vibration-damping post. The entire apparatus
was mounted on an optical table which is isolated from am-
bient vibrations by pneumatic legs inside an anechoic cham-
ber.

To image the modal patterns we designed and built an
electronic speckle pattern interferometer.14 An electronic
speckle pattern interferometer detects out of plane vibrations
by digitally recording the image of the speckle pattern on a
structure that is illuminated by coherent light from a laser.
The speckle pattern prior to the onset of movement is then
digitally subtracted in real time from the speckle image after
movement, producing a final image that is black where no
movement has occurred~due to the subtraction of identical
speckle patterns! and light where there has been a change in
the speckle pattern.

The interferometer used in these experiments was built
from discrete optical components and mounted on the same
optical table as the plate. The laser used to illuminate the
system resides on an optical table outside of the anechoic
chamber, which is also isolated from ambient vibrations by
pneumatic legs. The 532 nm beam from the laser enters the
anechoic chamber through a small hole in the wall. The pro-
cessing of the image is accomplished in real time using a
computer outside of the anechoic chamber. The software for
image subtraction and image recording was written by the
authors usingLABVIEW .

The interferometer can image out of plane vibrations on
the order of 100 nm. Therefore, the driving mechanism does
not need to transfer a significant amount of energy to the
plate in order for the vibrations to become visible. This sys-
tem allows us to drive the vibrations acoustically with a
speaker mounted on the floor of the anechoic chamber. We
found that the position of the speaker does not affect the
structure of the normal modes of vibration of the plate, and
therefore the actual position of the speaker relative to the
plate is arbitrary.

The vibrations of the plate were driven acoustically using
a sine wave generated by a high quality function generator.
The bandwidth of the driver was less than 0.1 Hz. To ensure
that all of the normal modes of vibration were found, the
plate was struck and the resulting acoustic power spectrum
was used to determine the normal modes of vibration. Addi-
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tionally, the function generator was swept through the acous-
tic spectrum from 10 Hz to 10 kHz and all steady-state
modes were noted. All of the normal modes of the plate that
occur between 10 Hz and 10 kHz were imaged. Some typical
modes are shown in Fig. 1.

In Fig. 1, the nodes are imaged as black while the antin-
odes are imaged as white. To distinguish one mode from
another, it is common to refer to the modes by the number of
nodal circles and the number of nodal diameters. For in-
stance, the mode (m,n) hasm nodal circles@resulting from
the termJn(kr)] and n nodal diameters@resulting from the
term cos(nu)]. Using this notation the three modes shown
horizontally across the top in Fig. 1 are~0,1!, ~0,2!, and
~0,3!, respectively. The frequencies associated with the
modes shown in Fig. 1 are given in Table I. Note that in the
cases shown, as in the majority of cases we observed, the
doublets are not degenerate in frequency. The breaking of the
degeneracy of the doublets is due to the fact that the mount-
ing hole for this particular plate was not drilled precisely in
the center of the plate. This asymmetry caused the doublets
to be nondegenerate in frequency.

B. Effects of mass on doublet splitting

In order to demonstrate that Eq.~22! actually predicts the
effect of perturbing the mass of the plate, we measured the
frequencies of the resonances for the~1,2! mode as a small

mass was added to the edge of the plate. Small amounts of
putty were used to add mass to the plate without significantly
altering the other parameters.

Figure 2 shows a plot of the ratio of the frequenciesv/V
vs dm/M as the massdm was added to the plate. It clearly
shows that the ratio of the two frequencies varies linearly
with the addition of mass as predicted by Eq.~22!. The un-
certainty in both axes is smaller than the data points, with the
slight deviation from perfect linearity being attributable to
the finite size of the perturbing mass.

When dm/M exceeds approximately 0.004, the physical
size of the perturbing mass exceeds the width of the node
and the plot ofv/V vs dm/M becomes slightly nonlinear.
However, even if the physical size of the mass were infini-
tesimal, a similar result would occur if the value ofdm/M
exceeds approximately 0.1, because in this case the assump-
tions used in deriving Eq.~22! would be violated.

The line shown in Fig. 2 is a linear fit to the data. The
slope, found by linear regression, is22.4960.05. Note that
v/V is not equal to unity when no perturbing mass is at-
tached to the plate, due to the asymmetry of the plate caused
by the slight off-center mounting hole as noted above. A
perfectly symmetric plate would intercept the vertical axis at
unity. However, there would be no evidence of the nonde-
generate doublets of the unperturbed plate as shown in Fig.
1. The linear nature of the response to the addition of mass
shown in Fig. 2 clearly indicates that the asymmetry of the
plate is not significant enough to impede the applicability of
Eq. ~22!.

IV. ANALYSIS

Because the mass that was added to the edge of the plate
was placed on a nodal diameter of the normal mode, the
magnitude of the slope of the graph in Fig. 2 is the constant
g2 defined by Eq.~21! with r 05a. Therefore, applying a
linear regression analysis to the data shown in Fig. 2 pro-
vides an experimental value forg2 . Onceg2 is known, it can
be used to determine the value of the propagation constantk,
which is a constant of the plate which is otherwise very
difficult to precisely determine.

The theoretical value fork is given by Eq.~2!, but calcu-
lating k requires a complete knowledge of the exact shape of
the plate and the material of which it is made. By applying
mass to the edge of the plate, as was the procedure in our
experiments, Eq.~22! can be fit to the data using the value of
k as the only free parameter. However, becausek is propor-
tional to the square root of the frequency, it is more conve-
nient to define the constant

Fig. 1. Series of non-frequency-degenerate modes of a flat circular plate.
The plate is driven acoustically and is viewed using electronic speckle pat-
tern interferometry.

Table I. Frequencies of the modes shown in Fig. 1. The uncertainties are
60.05 Hz.

Mode V1/2p ~Hz! V2/2p ~Hz!

~0,1! 127.20 134.40
~0,2! 336.30 345.20
~0,3! 775.30 775.70
~0,4! 1349.20 1350.20
~0,5! 2057.50 2058.50
~1,2! 2132.60 2145.20
~0,6! 2897.30 2898.00
~1,3! 3199.40 3204.00
~0,7! 3865.30 3865.80
~2,1! 3987.80 4055.40
~1,4! 4433.90 4438.80
~0,8! 4958.80 4959.90
~1,5! 5823.30 5828.90
~0,9! 6176.50 6177.80
~2,3! 6736.60 6743.60

Fig. 2. Plot of the frequency splitting vs the perturbing mass for seven
different masses. The line is a linear fit to the data.
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j5
k

AV
. ~24!

The data shown in Fig. 2 indicate that for the plate used in
our experiments,j50.5060.02 s1/2/m, which is in good
agreement with the estimated theoretical value of 0.56 s1/2/m
for a perfectly circular stainless steel plate. The knowledge
of this value enables further analysis of the plate, including a
calculation for the position of the modified perturbative mass
using Eq.~23!.

V. CONCLUSION

We have presented a derivation of the frequency splitting
of the doublet modes of vibrating circular plates. We have
also shown that this derivation is applicable to our experi-
ment by observing the splitting of the doublets while driving
the vibrations of the plate without actually touching the
plate. We have further used this data to measure the value of
the propagation constantk.

Although the experiments described here require extensive
and expensive equipment, it is possible to demonstrate these
effects in the classroom. We have used a thin aluminum plate
clamped at the center and mounted such that the surface is
parallel to a table top; normal mode vibrations can then be
driven by a large public address speaker connected to a func-
tion generator. Although we have found it difficult to make
measurements comparable to those that we have reported
here, Chladni patterns can be observed by sprinkling sand on
the plate just as when the plate is driven by more usual
means. By mounting the plate at the center, patterns with
diametrical nodes will form; slightly perturbing the plate
with a small amount of putty at an antinode will rotate the
pattern byp/2 as described above. An alternative method of
observing such patterns without the driving mechanism
touching the plate is to use dry ice as described by Waller.7

We hope that this work will encourage educators to dis-
cuss the phenomenon of frequency splitting of the doublet
modes of vibrating symmetrical structures in the classroom.
It is a fascinating phenomenon that appears to be seldom
addressed outside of specialized applied physics journals, yet
this phenomenon is easily understood, and a discussion can
be included whenever Chladni patterns are shown to stu-
dents.
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