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A simple method for imaging vibrational motion is proposed. The process consists of capturing two speckled
images of a region illuminated by coherent radiation. One of the images is captured before the onset of motion
and the other during motion. If the mean speckle intensity is below the threshold for detection or above the
saturation intensity of the detector, subtracting the two images produces a high contrast image of the moving
region. A theory is shown to agree well with experimental data. © 2010 Optical Society of America

OCIS codes: 120.7280, 120.6150, 110.6150.

1. INTRODUCTION
The scientific and engineering communities have been in-
terested in imaging small vibrations since the 18th cen-
tury, when Chladni first placed sand on a vibrating plate
to make the modal patterns visible. Other methods were
developed in the latter half of the 20th century that made
it possible to optically image sub-micrometer vibrations,
including laser Doppler vibrometry, holographic interfer-
ometry, and electronic speckle pattern interferometry [1].
Each of these methods is still in common use today, and
they have found wide application in situations requiring
visualization of small-amplitude motion. Unfortunately,
each of these processes requires expensive equipment and
usually requires isolating the object of interest from am-
bient vibrations. Laser speckle contrast analysis (LASCA)
overcomes these problems by calculating the difference in
speckle contrast that results from the relative motion of
different parts of an imaged area, and it can be used in
some cases to differentiate between moving and non-
moving regions in an image [2,3]. However, while LASCA
does not require an extensive investment in equipment, it
does require significant image processing and the reso-
lution of the resulting image is at best 25% that of the res-
olution of the detector.

Here we introduce another method of visualizing vibra-
tions that fundamentally differs from those mentioned
above. This method provides large-area imaging of
micrometer-sized motion in real time without the need for
expensive equipment, extensive signal processing, or iso-
lating the object from ambient vibrations. The necessary
condition to apply this method is that the motion of the
object of interest can be induced on a time scale that is
shorter than that which characterizes the ambient mo-
tion. Surprisingly, this requirement is met in many in-
stances where the more common methods of detecting vi-
brations do not work well. We have tentatively termed the
process speckle subtraction imaging (SSI).

To image vibrations using speckle subtraction imaging,

the area of interest must be illuminated by light with a
narrow enough linewidth that the speckle pattern that re-
sults from imaging the area of interest has a high con-
trast. The region of interest is then imaged onto a detec-
tor and two images are captured. One image is captured
while the motion of interest is ongoing, and the other is
captured either before the motion begins or after it has
stopped. The two images are then subtracted in real time
to produce a difference image. As expected, subtracting
two images of the region will produce a completely black
difference image in regions where no motion was induced.
However, since some motion in the imaged area was in-
duced during the process of capturing one of the images,
the portion subject to motion will produce a speckle pat-
tern with lower contrast than will be seen in regions that
were not moving.

This reasoning may lead one to believe that merely im-
aging an area that is illuminated by coherent radiation
and subtracting subsequent images captured before and
after the onset of motion will result in areas of motion be-
ing visible in the image. Unfortunately, this is not gener-
ally the case because ambient motion usually changes the
speckle pattern slightly during the time needed to record
the two images, or the speckle is not completely resolved
on the detector. Since the mean value of the speckle in-
tensity does not normally change with induced motion, ei-
ther of these situations will result in an inability to easily
differentiate between moving and non-moving regions.

One way to take advantage of the change in the speckle
contrast to unambiguously detect motion within the im-
aged area is to introduce a nonlinearity into the detection
process. In speckle subtraction imaging, it is the fact that
all detectors have a minimum intensity below which they
will not record the image that allows regions of motion to
become visible. A detection threshold is a characteristic of
all detectors, so it is not necessary to specify the type of
detector a priori.

When the mean intensity of the speckle is below the
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threshold for detection (or above the saturation intensity),
only speckle with an intensity that is in the tail of the in-
tensity distribution will be detected. Since a reduction in
speckle contrast occurs when the imaged object is set into
motion, because of a reduction in the standard deviation
of the intensity distribution, a change in speckle contrast
will result in a change in the mean detected intensity.
This will occur even though the mean intensity of the
speckle does not change. Therefore, subtracting an image
with little motion on the time scale of the integration time
of the detector from one where some portion of the image
is moving during the collection process will result in an
image that differentiates the moving portion by a measur-
able change in the recorded intensity. In this way, areas of
little motion (high speckle contrast) can be differentiated
from areas where motion occurs (low speckle contrast)
with only minimal signal processing.

2. THEORY
To investigate the process of SSI theoretically we intro-
duce two correlation times. We refer to the correlation
time of light scattered from the region during the induced
motion as �1, and the longer correlation time that is mea-
sured either before the motion has begun or after it has
ceased as �2. The speckle contrast K1 and K2 will be dif-
ferent for the two cases, but the mean intensity of the
speckle �I� will be the same. The contrast is defined as

K =
�

�I�
, �1�

where � represents the standard deviation of the inten-
sity distribution; therefore, in the case considered here
the contrast is linearly proportional to �.

If the mean value of the speckle intensity is below the
threshold for detection, simply subtracting two images
will produce an image with nonzero intensity if the sta-
tistics of the scattered light have changed between the
two images. Defining the integration time of the detector
as T and the time between capturing the two images as
�t, and assuming that 2T+�t��2, the speckle pattern
from the region where no motion was induced will not
change significantly between the time that the two im-
ages are captured. This condition implies that if there is
no onset of motion between two images then they are
identical, and the subtraction process will result in a new
image with no variation in intensity.

The intensity of any region of interest that is imaged
onto a detector can be approximated by the mean value of
the speckle intensity, which is defined as usual by

�I� =�
0

�

IP�I�dI, �2�

where P�I� is the probability density function for the in-
tensity and I is the intensity. The probability density
function for the intensity of fully developed speckle of fi-
nite bandwith can be written in terms of the speckle con-
trast, and this can be used to approximate the probability
density in the case considered here. In its approximate
form this function is [4]

PM�I� =
�M�MIM−1

�I�M��M�
e−MI/�I�, �3�

where ��M� is the gamma function with argument M, and
M=K−2.

As noted above, since the mean intensity of fully devel-
oped speckle will be the same for all values of M, calcu-
lating the mean value of the speckle intensity of the re-
gion will result in the same value regardless of the
correlation time of the scattered light. In this case a re-
gion that is in motion will not contrast sharply with the
other areas of the image. However, the detector does not
have an infinite response; therefore, the limits of integra-
tion in Eq. (2) do not extend from zero to infinity if one
wishes to calculate the mean value of the intensity re-
corded by the detector. Rather, the intensity measured by
the detector is calculated by assuming a lower limit that
has some value, IL, that is greater than zero. All detectors
also have a saturation intensity, so the upper limit of the
integration must be some value, IU, that is less than in-
finity. Therefore, while the mean value of the speckle in-
cident on the detector is given by Eq. (2), the value that is
recorded by the detector is not.

The intensity of the SSI image, which results from tak-
ing the absolute value of the difference between two im-
ages of the same area with different scattering statistics,
is given by

ISSI�M1,M2� = ���
IL

IU

�I − IL�PM1
�I�dI +�

IU

�

�IU�PM1
�I�dI�

−��
IL

IU

�I − IL�PM2
�I�dI

+�
IU

�

�IU�PM2
�I�dI�� , �4�

where Mn=Kn
−2 and n is either 1 or 2 depending on which

case is under consideration. More succinctly, Eq. (4) can
be written as

ISSI�M1,M2� = ��
IL

IU

�I − IL�	PM1
�I� − PM2

�I�
dI

+ �IU��
IU

�

	PM1
�I� − PM2

�I�
dI� . �5�

If the mean value of the speckle intensity falls between
IL and IU, the effect of having a threshold of detection and
a saturation intensity will be minimal. However, if �I�
�IL, then when M1�M2 the result will be that
ISSI�M1 ,M2��0. A plot of the mean recorded intensity as
a function of speckle contrast is shown in Fig. 1 for three
different values of IL. One can conceivably pick any value
of IL to achieve the desired slope of image intensity versus
speckle contrast; however, if �I��IL the number of speck-
les with a detectable intensity becomes vanishingly small.
In practice, the second term in Eq. (5) can usually be ig-
nored and the intensity of the SSI image can be expressed
as
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ISSI�M1,M2� � ��
IL

IU

�I − IL�	PM1
�I� − PM2

�I�
dI� . �6�

A similar analysis can be performed for the case where
�I��IU.

To theoretically investigate the utility of SSI in imaging
vibrations, it is useful to assume a probability density
function that represents a common situation. Therefore,
we assume that the area being imaged consists of a large
number of independent particles, and that the incident
light is scattered randomly from numerous particles be-
fore being detected. In this case the instantaneous field is
a complex circular Gaussian process. We further assume
that at some point in time the motion of the particles can
be induced, and that the motion of these particles at that
time can be described as being stochastic. This situation
has been studied by Duncan and Kirkpatrick, who have
shown that the speckle contrast of the scattered light is
given by [2]

Kn =�	n −
	n

2

2
�1 − e−2/	n�, �7�

where the normalized correlation time is defined as

	n =
�n

T
. �8�

In practice, it is the visibility of the moving region with
respect to a non-moving region that is of interest. The vis-
ibility is defined as

V = � I1 − I2

I1 + I2
� , �9�

where I1 and I2 are the intensities of the SSI image in the
areas that represent the moving and static regions, re-
spectively. That is, I1=ISSI�M1 ,M2� and I2=ISSI�M2 ,M2�.
It is evident that the visibility of the part of an SSI image
that is in motion is always unity provided 	1�	2, because
I2 is always identically zero. Unfortunately, this is only

true in practice if 2T+�t
�2


1. While this can be arranged in
some cases, it is more instructive to assume that there is
some minimal change in the speckle over the time 2T
+�t that does not result in a change in the contrast or the
mean recorded intensity, but will generally result in
changes in the details of the speckle. This change can
usually be attributed to ambient motion. In this case the
point by point subtraction of the two images will result in
I2 having some small, non-zero value.

For the purpose of theoretically investigating the vis-
ibility of an SSI image, we will assume that in the ab-
sence of any induced motion in the region, the SSI process
produces an image with an average intensity on the order
of one-tenth the mean value recorded by the detector be-
fore subtraction. This value appears consistent with the
experiments described below. The visibility of SSI as a
function of 	1 is plotted for several different values of 	2
in Fig. 2 using this assumption. The threshold for detec-
tion is assumed to be twice the value of the mean inten-
sity of the speckle.

There are two surprising conclusions that can be drawn
from the results shown in Fig. 2. First, the shape of the
curves indicates that regions of motion will be visible in
the SSI image even when the value of 	1 approaches that
of 	2. There is a nonlinear relationship between the vis-
ibility and 	1, but the visibility remains high until 	1
	2. The second interesting result is that it is possible to
detect the motion of an object using SSI even when there
is significant ambient motion. Even when the integration
time of the detector is twice the correlation time of the
light scattered from the region with no induced motion
(i.e., 	2=0.5), the visibility of a moving region within an
SSI image can be as high as 0.5.

3. EXPERIMENTS
To demonstrate that the theory described above accu-
rately describes the process of SSI, a 2 cm diameter piezo-
electric disk was covered with approximately 0.5 cm of
fine sand. The surface of the sand was illuminated with
light from a laser with variable output power having a
wavelength of 532 nm, and the image was projected onto
a CCD array using a commercially available camera lens.
The integration time of the array was specified by the
manufacturer as being 0.0313 s. The piezoelectric disk
was driven by a 295 Hz sinusoidal signal with an ampli-
tude that varied from 0–10 V. The light from the laser
was expanded using a short focal length lens and pro-
jected onto the area at an angle of approximately 10°. The
area of interest was imaged from directly above; however,
there were no discernible effects attributable to imaging
the area at an oblique angle, except for the fact that the
area of interest covered a smaller region on the detector.

To ensure maximum contrast, the mean diameter of the
speckle was chosen to be close to the pixel size of the digi-
tized image, which corresponded to approximately 13 �m
on the CCD array. The mean speckle diameter on the ar-
ray is given by

d = 1.22�1 + m��f, �10�

where m is the magnification of the image, � is the wave-
length of the light, and f is the aperture ratio of the im-

Fig. 1. (Color online) Plot of the mean recorded intensity of the
speckle as a function of speckle contrast predicted by Eq. (5) for
three different values of the detector threshold.
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aging lens. The calculated speckle size was approximately
12 �m.

The amplitude of the oscillation of the piezoelectric disk
as a function of driving potential was determined before-
hand by viewing the disk through an electronic speckle
pattern interferometer while it was driven with a sinu-
soidal signal of several different amplitudes. Measure-
ments of the amplitude of oscillation were recorded as a
function of driving voltage, and a linear regression of the
data revealed the slope to be 297±6 nm/V. In all cases
the light reaching the detector was from the surface of the
sand, not the piezoelectric disk, and although the driving
motion was harmonic it is reasonable to expect that on av-
erage the motion of the top region of the sand can be ap-
proximated as Brownian.

The decay time of the motion of the sand was measured
by recording the speckle pattern reflected from the area
with a high-speed camera having a frame rate of 1 kHz.
The individual images were studied to determine how
long it took for the speckle pattern to become static after

the piezoelectric disk stopped moving. The motion of the
sand ceased within 8±1 ms. The time between capture of
the two images was approximately 300 ms, ensuring that
images taken after the motion had stopped did not exhibit
the effects of residual motion of the sand.

In each experiment an image of the surface of the sand
was stored before the piezoelectric disk was activated. An-
other image was captured after the disk began to vibrate.
The mean and standard deviation of the intensity of the
region was calculated for each case (before motion, during
motion, and after image subtraction) and stored for later
analysis. The region used for analysis encompassed ap-
proximately 57,000 pixels and the results from 50 images
were averaged for each different value of the driving po-
tential.

Once the data had been collected, the visibility of the
SSI image for each driving potential was calculated using
Eq. (9). The intensity I2 was derived from the SSI image
obtained by subtracting two different images of the region
with no induced motion. The intensity I1 in each case was
the average of the SSI intensity in the region that re-
sulted from subtracting an image captured during the
time that the motion was induced from one captured dur-
ing a time with no induced motion. The speckle contrast
recorded by the detector, which is defined by Eq. (1), was
also calculated for each driving potential. Using the same
region to determine both I1 and I2, rather than using
separate moving and non-moving regions in a single im-
age, eliminated the effects attributable to uneven illumi-
nation and ensured that the true value of the visibility
was measured.

The results of these experiments are plotted in Fig. 3
along with the predictions derived from Eq. (5) using the
probability density function shown in Eq. (3). The only
free parameter in the fitting process was the ratio of the
threshold intensity IL to the mean value of the speckle in-
tensity �I�.

Note that to effectively apply SSI to the study of vibrat-
ing objects it is not necessary to know the statistics of the
speckle. All that is required to image a vibrating region in
an image is that the contrast of the speckle change when
the object being imaged is set into motion. Therefore, SSI

Fig. 2. (Color online) Plot of the visibility of SSI as a function of
	1 for three different values of 	2. The threshold for detection is
assumed to be twice the mean intensity of the speckle �IL=2�I��.

Fig. 3. (Color online) Plot of the normalized intensity of SSI im-
age as a function of contrast for three different threshold values.
The curves represent the predictions of Eq. (5).

Fig. 4. Plot of the visibility of the piezoelectric disk as a function
of the amplitude of vibration.
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can be used in many situations for detection and analysis
of vibrations. To demonstrate this, the sand was removed
from above the piezoelectric disk, which was then painted
white. The visibility of the vibrating surface alone was
measured and is plotted as a function of amplitude of vi-
bration in Fig. 4.

4. CONCLUSIONS
The data presented above indicate that speckle subtrac-
tion imaging may be useful in situations where imaging
vibrations is necessary, but the more common imaging
techniques are difficult to implement. As can be seen in
Fig. 2, the integration time of the detector can exceed the
decorrelation time attributable to ambient motion by as
much as a factor of two and still result in high visibility.
In the experiments reported here, no effort was made to
control the integration time of the detector. However, the
addition of a camera with a variable integration time will
provide considerable flexibility in controlling the normal-
ized correlation times 	, and will expand the applicability
significantly.

Speckle subtraction imaging is a simple, inexpensive
method that requires minimal equipment and limited ex-
perience to implement. Yet it can provide high-resolution

images of micrometer-sized motion of objects under a
wide variety of conditions in near real time. Although SSI
does not provide a precise measurement of the amplitude
of vibration, the visibility provides an estimate of the am-
plitude. Furthermore, the motion under study need not be
continuous or harmonic, and therefore SSI can be used to
image transient motion and differential flow.
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