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Previous work has demonstrated that structural vibrations of brass wind instruments can audibly

affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming

perfect coincidence of the frequency of elliptical structural modes with air column resonances. In

this work a mechanism is proposed that has the potential to explain the broadband influences of

structural vibrations on acoustical characteristics such as input impedance, transfer function, and

radiated sound. The proposed mechanism involves the coupling of axial bell vibrations to the inter-

nal air column. The acoustical effects of such axial bell vibrations have been studied by extending

an existing transmission line model to include the effects of a parasitic flow into vibrating walls, as

well as distributed sound pressure sources due to periodic volume fluctuations in a duct with oscil-

lating boundaries. The magnitude of these influences in typical trumpet bells, as well as in a com-

plete instrument with an unbraced loop, has been studied theoretically. The model results in

predictions of input impedance and acoustical transfer function differences that are approximately

1 dB for straight instruments and significantly higher when coiled tubes are involved or when very

thin brass is used. VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4921270]

[JW] Pages: 3149–3162

I. INTRODUCTION

Most makers and players of brass wind instruments are

convinced that wall material, wall thickness, and the posi-

tions of the bends and braces can affect both the sensation

the player experiences and the sound the instrument pro-

duces when played. Because it is not obvious how these

aspects of the instrument could affect the sound, there has

been an ongoing debate concerning the validity of the

claims. An extensive review of the history of this debate has

previously been presented by Kausel et al.1

The results of experiments performed over the past dec-

ade have provided strong evidence that structural vibrations

do indeed influence the radiated sound of certain brass wind

instruments. Specifically, experiments on trumpets have

yielded results that clearly indicate effects attributable to

vibrations of the bell.1,2 Although it is now generally

accepted that structural vibrations can affect the sound pro-

duced by a brass wind instrument, to our knowledge no

theory has yet been presented that can qualitatively explain

and quantitatively predict the effect. However, there does

seem to be a common understanding concerning which

mechanisms do not contribute to the observed effects.

The vibrational modes of brass wind instrument bells

that have shapes with radial nodes, referred to here as ellipti-
cal modes, as well as similar modes that are present in the

cylindrical tubes of woodwinds and organ pipes, have been

studied by Nief et al.3–5 Elliptical modes are easily stimu-

lated mechanically and during performance they can be

stimulated by the vibration of the lips or by the vibrations of

the air column. In either case the displacement of the metal

at the antinodes of these modes can be significant. However,

it can be assumed that elliptical modes are not the source of

the observed timbre differences that become apparent in the

sound produced by the instrument when wall vibrations are

damped.4

The resonances associated with elliptical modes have

quality factors typically exceeding 102 and therefore their

effect is limited to a narrow band of frequencies, which is

not consistent with the broad-band effects observed in sev-

eral recent experiments.1 Also, elliptical modes do not radi-

ate efficiently due to acoustic short-circuiting and therefore

the effects attributable to direct radiation are at least two

orders of magnitude below those of the air column in straight

tubes.6 Similar results have been shown for these mode

shapes occurring in the flaring section of trombone bells.7

Finally, the area of an elliptical cross-section with consider-

able amplitude is very close to that of a perfect circle, mak-

ing periodic variations of the characteristic impedance a

second-order effect at best.1

Bending modes can also be observed in musical instru-

ments and have been investigated by Whitehouse.8

However, these modes can be ruled out as an explanation for

timbre differences for the same reasons. The exception is

that in coiled instruments they can lead to significant longitu-

dinal bell displacements, as will be discussed later.

Mouthpiece vibrations and their interaction with the

player’s oscillating lips have been proposed as an explana-

tion for timbre differences caused by structural vibrations

observed during experiments with both artificial lips anda)Electronic mail: tmoore@rollins.edu
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with real players.2,9 Mechanical feedback of this nature may

indeed have an effect on the sound, and while it is not dis-

cussed in this work it can be studied using the theoretical

framework presented here. However, even without the pres-

ence of oscillating lips, consistent differences between the

input impedance and acoustic transfer function (ATF) meas-

ured with and without damping of the bell of a trumpet have

been observed using excitation by a loudspeaker.1 Therefore,

while it is likely that mechanical feedback to the lips of the

player cannot be ignored, there are significant acoustic

effects that are not associated with this mechanism.

One possible explanation for the origin of the effects

due to vibrations of the walls of wind instruments was sug-

gested by the authors in Ref. 1, where it was proposed that

variations in the diameter of the pipe at the frequency of the

oscillating air column couple to the internal pressure wave.

In the work reported here we expand on this theory and pres-

ent results demonstrating that the presence of structural

resonances associated with circular modes without nodal

diameters explains the broad-band characteristics of the

acoustic effects attributable to wall vibrations. We refer to

these structural resonances as axial modes. These axial

modes are related to a one-dimensional (1D) wall displace-

ment profile in the axial direction. The displacement is due

to longitudinal strain oscillations or whole body motion.

Such resonances can be shown to be broad-band in the flar-

ing bell of a modern brass wind instrument.

In this work we present models of the King Silver Flair

trumpet used in Ref. 1 and of a simplified brass wind instru-

ment consisting of only the straight bell section of a trumpet

with an attached mouthpiece. The models predict that axial

resonances exist and that the axial wall motion that occurs in

a relatively wide range around the first resonance frequency

has the potential to affect the enclosed air column strongly

enough to make an audible difference. It is possible that

other axial resonances affect the air column as well.

Initially, we present a comparison between the calcu-

lated acoustical transfer function of a straight bell when it is

free to vibrate and compare it to the calculated transfer func-

tion when the bell is fixed and unable to vibrate. This com-

parison shows that the wall vibrations can increase or

decrease the amplitude of the radiated sound in a frequency

range containing several air column resonances. Whether an

increase or decrease occurs depends on whether the fre-

quency of oscillation is above or below the structural reso-

nance frequency. We also present a comparison between the

calculated acoustical input impedance in the damped and

undamped case. All of these results predict effects attribut-

able to the proposed vibro-acoustic coupling.

II. STRUCTURAL VIBRATIONS

Using estimates for the local mass and stiffness of a typ-

ical trumpet bell, a 1D model was introduced in Ref. 1 that

demonstrated the plausibility of the hypothesis that axisym-

metric vibrations can affect the radiated sound. Below we

describe a more rigorous structural model, which is global,

2D, and axisymmetric. The bore shape, wall thickness pro-

file, Young’s modulus, and Poisson’s ratio are also included.

This model has been implemented using an implicit finite-

difference scheme of distributed point masses, with forces in

both the axial and radial directions acting upon them.

External masses, springs, and dampers can be added at

any point on the bore profile to represent axisymmetric

approximations of braces and fittings of an experimental

arrangement. These same parameters can also be used to

estimate the effect of the hands, lips, and head of the player.

Initial explorations of this vast parameter space have

revealed a sensitivity of some acoustic parameters to these

boundary conditions, which agrees with the long-held opin-

ions of players and instrument makers.

In what follows we present the results of structural simu-

lations of a straightened trumpet with a physical length of

137 cm and constant wall thickness of 0.4 mm. The bore list

was that of a Silver Flair Trumpet in B[. The wall thickness is

changed only in the region encompassing the rim, where the

mass of a typical rim wire has been added. Predictions of that

model are initially compared to 2D and 3D finite element sim-

ulations performed in COMSOL, a commercial finite element

analysis program that is widely used and often validated.

The model is then extended to include the interaction

with the internal sound field, producing a vibro-acoustic sim-

ulation. This simulation includes the effects of wall vibra-

tions on the acoustical characteristics such as input

impedance and sound pressure transfer function.

A. Proposed vibration mechanism

Structural vibrations that have the potential to influence

the radiated sound of brass wind instruments must exhibit

significant vibration amplitudes over a frequency range as

wide as several hundreds of Hz. Narrow band mechanical

resonances, which are known to exist in brass instruments,

can only affect a single note or partial and only then if

the mechanical resonance frequency coincides with one of

the air column resonances. Although these narrow-band

resonances have been proposed as the causal mechanism for

vibro-acoustic interactions in brass instruments, experiments

have shown that acoustic effects, such as the differences in

timbre that can be attributed to wall vibrations, occur over

bandwidths much larger than those of these high-Q

resonances.10

A second requirement is that these structural vibrations

must be able to effectively modulate the cross-sectional area

of the air column. Unlike pure bending modes or elliptical

modes, which only very weakly translate into bore area fluc-

tuations, mechanical vibrations responsible for the experi-

mentally observed coupling between wall vibrations and the

enclosed air must have no radial nodes.1

It will be shown that mechanical resonances with axi-

symmetric mode shapes, but with no radial nodes, meet both

of these requirements. Figure 1 illustrates how such axial

vibrations can translate into bore area fluctuations. The mag-

nitude of such fluctuations is largest inside steeply flaring

regions such as the bell of a trumpet. The rim is an open end

of the distributed vibratory system and can be expected to be

an antinode of the strongest mechanical resonances. The

region near the rim is also the bore region with the steepest
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flare, and therefore it is reasonable that interaction with the

air column will be most pronounced in this region. This

agrees with the experimental observation that the vibrations

of purely cylindrical tubing do not effectively couple with

the internal air column.

To understand why axial bell vibrations translate into

effective bore diameter oscillations it is convenient to use a

coordinate system that is connected to the ambient air space.

In this coordinate system both fluid particles of the air col-

umn as well as wall segments can have a velocity relative to

the static inertial system. The diameter of an air column slice

inside a flaring bore segment can change dynamically in this

coordinate system, even when the wall velocity is purely

axial.

The model presented here includes viscous losses, but

not the viscous losses due to the additional velocity gradient

inside the boundary layer that axial wall motion may create.

Comparing axial wall velocities induced by the sound pres-

sure to the corresponding air column velocities demonstrates

that this loss component can be ignored in situations typi-

cally found in brass wind instruments.

One problem with using a coordinate system that is in-

dependent of the bell is that the oscillations of the bell cause

the boundary of the last air-column slice to vanish periodi-

cally. This situation results in an undefined cross-sectional

area of the last air column slice. This slice has a thickness

corresponding to the peak-to-peak amplitude of the axial rim

displacement. Fortunately there is a significant difference

between the magnitude of the air velocity of the standing

wave at the open mouth of the bell and the axial velocity of

the rim itself. This difference is approximately an order of

magnitude, therefore, this undefined but very thin final air

column slice can be safely ignored.

As noted above, an appropriate coupling mechanism

must explain acoustical effects which occur over a frequency

range spanning several air column resonances. Axial strain

oscillations can satisfy this requirement. The mechanism

will be discussed qualitatively first, then the effects will be

demonstrated by quantitative simulations described at the

end of this section.

For any axial mode of vibration, the applied forces and

inertial forces of all oscillating mass elements must be in

equilibrium at all times. Therefore, according to Newton’s

second law, the total momentum of all oscillating mass ele-

ments must compensate the external momentum that excites

the system. By accumulating all partial moments left and right

of a single structural node, it can be shown that the equilib-

rium position of that node must shift as the frequency of oscil-

lation changes to maintain the equilibrium of moments. This

movement is due to the gradients of the axial velocity and

mass distribution, both of which increase significantly in the

flaring region near the rim. Therefore, there are many axial

modes within a range of frequencies that contribute to a

broad-band resonance. Mathematically such broad-band

effects can be described as infinitely many axial modes, which

are infinitesimally spaced in the frequency domain and which

exhibit modal shapes with nodes that are infinitesimally

shifted in their axial position. The width of this frequency

range depends on the mass and stiffness distribution along the

axis, which is primarily determined by the bore profile.

This mechanism results in an apparent broadband reso-

nance that can have a considerable amplitude in a frequency

range that can span multiple adjacent air column resonances.

Usually there is more than one such axial broadband reso-

nance for any given bore profile, but typically only the low-

est frequency resonance is below the cutoff-frequency of a

trumpet bell. We will refer to these resonances as axial
resonances.

As will be discussed later, the vibrations described

above can affect acoustical air column properties in the

range of several dB even when there is only an acoustical

stimulus, i.e., the sound pressure in the mouthpiece. If one

assumes additional structural excitation by the vibrating lips,

the effect can be increased or decreased depending on the

force amplitude and the phase relationship between the lip

motion and the wall vibrations.

It can be expected that axial bell vibrations of an instru-

ment with a bend, similar to that shown in Fig. 1, will exhibit

a much larger influence on the acoustical characteristics than

will occur in a straight instrument without bends. This differ-

ence is attributable to the reduced axial stiffness associated

with the bends.

When the mouthpiece is fixed, the strongly flaring end

section of a straight bell can only move when the whole

instrument is stretched or compressed against the axial stiff-

ness of the structure, which is determined by the Young’s

modulus, the wall thickness and the bore profile. Treating

the steeply flaring end of the bell, including the rim wire, as

a mass and the remaining nearly cylindrical part as a spring,

one can estimate this spring constant. Assuming a length of

40 cm, a bore diameter of 12 mm, wall thickness of 0.5 mm,

and Young’s modulus of 100 GPa, the spring constant can be

estimated to be

c ¼ E
A0

L0

¼ 100 GPa� p� 12 mm

� 0:5 mm=40 cm � 4:7 kN=mm:

The equivalent tangential spring constant of a single

coil of the same tube with a coil diameter of 13 cm was

determined experimentally by loading the exit cross-section

tangentially with a mass and measuring the static displace-

ment. The value was determined to be c � 3.4 N/mm. If such

a coil were not stabilized by the manufacturer using a brace,

shown in Fig. 1 as a stiff external spring, this low stiffness

FIG. 1. (Color online) Brass wind instrument with bends and braces.
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would result in significant bell displacement amplitudes and

a very low resonance frequency (<30 Hz in this case). The

predicted influence of a single unbraced coil on the acousti-

cal input impedance is discussed in Sec. IV.

B. Finite difference model

As with the model presented in Ref. 1, the model

described here includes a vibrating structure with distributed

mass and stiffness pairs. But here the elastic forces in both

the radial and axial direction are included. They interact

with the radial and axial displacement components according

to Poisson’s ratio and they are part of the local linear differ-

ential equations of motion. This implicit system of differen-

tial equations is discretized and then solved numerically.

Although both the axial and elliptical modes are sym-

metric about the axis of the bell, for ease of discussion we

will use the term axisymmetric to refer only to mode shapes

that are independent of radial angle. These mode shapes

affect the circular cross section of the bell equally and with a

constant phase.

As previously noted, although the narrow-band elliptical

resonances are easily excited, only axial resonances can

affect the internal air column efficiently enough and in a

wide enough frequency range to account for the observed

effects. In modeling the mechanical motion of the bell we

therefore only consider motion that is independent of the ra-

dial angle. Similarly, all external and internal forces are con-

sidered to be perfectly axisymmetric.

The masses of thin cylindrical slices, or so-called hoop

segments, are represented by point masses. They are con-

nected to adjacent masses by springs representing the resist-

ance of the wall against in-plane stress perpendicular to the

circumference of the hoop segment. Circumferential elastic

forces resist expansion or constriction of the bore due to an

internal or external overpressure. This kind of stiffness is

represented by a spring that keeps the point mass at the dis-

tance from the center of the hoop segment required by the

bore radius.

Both equivalent spring constants can be calculated for

the quasi-static case using Hooke’s law. To obtain the effec-

tive radial spring constant, knowledge of the radial wall dis-

placement of a single hoop segment due to a static inner air

pressure is required. This relationship has been derived in

Ref. 1.

The resulting equivalent spring constants derived below

only depend on the Young’s modulus of the wall material

and some local geometric parameters. The quasi-static

assumption can therefore be dropped since the air pressure is

not relevant. However, discretization of the bore profile must

be fine enough to allow for a sufficient number of mass

points over the wave length of both the structural waves and

sound waves. An axial bore resolution of 1 mm has been

used for the sake of bore accuracy. This resolution also satis-

fies the acoustic sampling restriction.

An external mass attached to the instrument can be

added to any mass point. If the corresponding radial spring

stays unmodified this extra mass changes the local inertia but

does not change the local stiffness. However, a modification

of the local wall thickness will change both the inertia and

the stiffness. The mechanics associated with the rim wire at

the bell can therefore be included by adding extra mass and

radial stiffness.

External springs, forces, and dampers acting on any

mass point in the axial direction can also be added. As long

as these external masses, springs, forces or dampers do not

break the axial symmetry they can be modeled realistically.

In this way braces, hands supporting the instrument, or the

player’s head, all of which are coupled to the instrument, can

be taken into account.

We note that shear stress and bending moments have

not been included in the model as yet. Usually this simplifi-

cation is justified because of the small displacements leading

to still smaller bending angles. But there is one case, where

this assumption obviously fails. This case will be discussed

in Sec. II D.

The discretization of the continuous distribution of mass

and stiffness in the bell using a finite number of masses and

springs for the purpose of numerical treatment is shown in

Fig. 2. The equations of motion in the radial and axial direc-

tions containing all the forces acting on each mass point lead

to two systems of partial differential equations that can be

solved using a finite-difference frequency-domain approach.

The radial and axial displacements are related through

the Poisson effect, therefore both systems of differential

equations cannot be solved independently. However, radial

displacements due to an expansion or constriction of the

bore caused by the internal sound pressure are much smaller

than the axial displacements in brass wind instruments.

Therefore, we solve both systems of equations independently

and take the Poisson effect of the axial displacement on the

radial displacement into account in a post processing step.

Due to the axial symmetry, each lumped mass corre-

sponds to the mass of the equivalent circular segment of

brass and is given by

mi ¼ pqhð2ribþ b2Þ= cos hi; (1)

FIG. 2. Mass-spring model of the vibrating trumpet wall (Ref. 11). The sym-

bols are defined in the text.
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where mi is the mass of segment i, ri its internal radius, b its

thickness, and h the axial distance between the masses. The

distance h is taken to be the axial grid spacing, which is cho-

sen to be 2 mm. The length of each segment at rest is given

by Li¼ h/cos hi, where h is the flare angle. The force due to

the internal pressure p applied on the walls of each segment

is given by

FpðiÞ ¼ 2pripih=cos hi; (2)

and is always perpendicular to the wall. Therefore, the radial

and axial components of the force due to internal pressure

can be calculated as

FrðiÞ ¼ 2pripih; (3)

FxðiÞ ¼ �2pripih tan hi: (4)

The spring constants of the springs between the masses, cal-

culated using Hooke’s law, are given by

ci ¼
2pribE

h=cos hi
¼ 2pribE cos hi=h: (5)

The radial spring constants can be calculated using the defi-

nition of a spring constant as ki¼Fr(i)/si, where si ¼ pir
2
i =

ðEb cos3hiÞ is the amplitude of the radial wall displacement

and Fr(i) the radial pressure force.1 Therefore, the radial

spring constants are given by

ki ¼ 2pbEh cos3hi=ri: (6)

At the rim of the bell the brass is folded around a wire,

referred to as the rim wire. This constitutes an extra mass

that can affect the structural resonances. Including this in the

model requires increasing the mass of the final segment and

modifying the stiffness of the last radial spring.

The model also includes the Poisson effect, which

describes the stretch in one dimension caused by a strain in

another dimension. As noted above, the displacements in the

axial direction are much greater than those in the radial

direction, therefore, only processes in which the radial dis-

placement is affected by the axial displacement are consid-

ered. This simplification allows one to solve for the axial

displacement first, neglecting any effects due to radial dis-

placement. The accompanying radial displacement can then

be calculated using Poisson’s ratio.

One equation of motion for each direction is necessary.

For the axial displacement

mi€x ¼ FRxðiÞ þ FLxðiÞ þ FxðiÞ
¼ FRðiÞ cos hiþ1 þ FLðiÞ cos hi þ FxðiÞ
¼ ciþ1DLiþ1 cos hiþ1 � ciDLi cos hi þ FxðiÞ; (7)

where x is the axial displacement, FRx(i) and FLx(i) are the

axial components of the spring forces to the right and left of

mass mi, and DLi is the deformation of the spring with stiff-

ness ci. Substituting a single-frequency solution of the form

xi¼Xie
jxt and simplifying yields

ciXi�1 þ ðmix
2 � ci � ciþ1ÞXi þ ciþ1Xiþ1 þ FxðiÞ ¼ 0;

(8)

where Xi corresponds to the complex amplitude of the axial

displacement of mass mi and x is the angular frequency.

Similarly, for the radial displacement, the corresponding

equation of motion is

ciYi�1þðmix
2� ci� ciþ1� kiÞYiþ ciþ1Yiþ1þFrðiÞ ¼ 0:

(9)

The total displacement in the radial direction can be calcu-

lated by adding the contribution from the axial displacement,

Ytot ¼ Yi þ YXi ¼ Yi � ri�
Xiþ1 � Xi�1

2h
; (10)

where � is Poisson’s ratio. Solving Eqs. (8), (9), and (10) for

each frequency makes it possible to determine the displace-

ment at any point on the wall. Results of this model are

compared to corresponding finite-element simulations in

Sec. II D.

C. Finite-element analysis

The model introduced in Sec. II B can be used to predict

many of the experimental effects reported previously,1,2,12 as

well as predicting new phenomena that can be tested experi-

mentally. However, it is useful to compare these predictions

with those of a fully 3D finite-element (FE) model. In so

doing it is possible to understand some of the limitations of

the mass-spring model as well as determine how necessary a

fully 3D calculation is to predict the observed effects.

The implementation of a finite element model of the

straight trumpet bell with the attached mouthpiece described

in Sec. II A was performed using COMSOL. The thickness and

bore profile were provided by the manufacturer.

The simplification of using a straight bell eliminates

several degrees of freedom due to the simple symmetry. It

also assists the manufacturer in maintaining precise dimen-

sions and material properties. Both of these should improve

the agreement between modeling and experimental results

compared to the previous attempt reported in Ref. 13, where

modeling results were compared with measurements made

on a complete trumpet.

Due to the axial symmetry, finite element modeling in

2D should be sufficient to capture all of the behavior that

can be compared to the mass-spring model. However, a full

3D frequency domain analysis has also been performed to

show the elliptical modes of vibration. These elliptical

modes can serve as a cross-check of the structural parame-

ters because it is easy to verify those frequencies experimen-

tally. Additionally, while it is known that these vibrational

modes do not significantly affect the radiated far-field sound

of brasses unless they are tuned to an air column reso-

nance,3,5 these modes can be used to validate the material

constants used in the simulations.

One of the most difficult parts of the bell to model is the

rim. This is because the rim is made by folding the metal

J. Acoust. Soc. Am., Vol. 137, No. 6, June 2015 Kausel et al.: Bell vibrations: Theory 3153



back over the rim wire, which is then soldered in place.

Rather than attempting to determine the appropriate physical

parameters, the frequencies of the elliptical resonances of

the bell were measured using decorrelated electronic speckle

pattern interferometry14 and the radius and mass of the rim

enclosing the rim wire was chosen so that the frequency of

the (2,1) elliptical mode, corresponding to two nodal diame-

ters and one nodal circle, matched the measured frequency.

Using a constant bell thickness and standard values for

brass density (8400 kg/m3), Young’s modulus (110 GPa),

and Poisson’s ratio (�¼ 0.35), the frequencies of many ellip-

tical modes were predicted to be close to the frequencies

measured using electronic speckle pattern interferometry.

Any discrepancies can be explained by the imperfect circular

cross-section of the bell.

Variations in the thickness of the walls is especially im-

portant because they are assumed to be constant in the

model. The thickness of the straight bells, while reported as

being constant by the manufacturer, exhibited variations of

up to 17% along the circumference of the bell and up to 12%

along the axis when measured using a Magna Mika 8500
VR

thickness gauge.

These thickness variations should be expected given the

manner in which the bells of brass instruments are manufac-

tured, and they will undoubtedly shift resonance frequencies

and change operating deflection shapes. Along with the sol-

der seam, which adds a line with different material proper-

ties to the contour of the bell, these variations can break the

axial symmetry. Therefore, mode splitting of axial vibration

modes is expected to occur in bells manufactured in the tra-

ditional manner.

D. Results and comparison of different methods

Although the 3D FE model provides a more precise

model of the bell under investigation than the mass-spring

model introduced in Sec. II B, the two models should com-

pare well in situations where the essential physics is captured

by the more simple model. Therefore, it is useful to compare

the results of the two models.

The 3D finite element model of the trumpet bell was

simulated as being stimulated at the mouthpiece plane by a

sinusoidal force acting in the axial direction with an ampli-

tude of 1N. This amplitude is on the order of what is

expected to be present due to lip motion during actual per-

formance. A small perturbation with 1 mN orthogonal to the

main stimulus force was included to break the symmetry of

the model. This perturbation ensured that elliptical modes

could also be excited.

The predicted displacement of the rim of the bell is plot-

ted in Fig. 3, along with the prediction of a corresponding

axisymmetric (2D) finite element simulation. Clearly the

assumption of symmetry along the axis only results in the

failure to predict some narrow-band resonances at a limited

number of frequencies, each of which corresponds to

resonances having elliptic or bending mode shapes.

There is one resonance corresponding to an axisymmetric

mode, which we will term the rim mode, that is predicted by

both of the finite element simulations, but not predicted when

using the finite difference scheme described in Sec. II B. This

deflection shape is characterized by an antinode at the rim

with a nodal circle just a few centimeters away from the rim.

It significantly deforms the structure near the end of the bell

and its frequency is determined primarily by the bending stiff-

ness rather than the strain resistance of the brass sheet. This

deflection shape can be described as a rotational motion of all

rim segments around the circular nodal line. Since this motion

involves rotational forces and rotational moments of inertia,

which are not included in the finite difference model, the

model cannot predict such resonances.

Although the finite difference model cannot predict this

kind of motion, which is shown in Fig. 4, this motion at the

extremity of the bell will not radiate efficiently due to the

dipole nature with dimensions small compared to the wave-

length of excitation. Therefore, we do not expect a significant

acoustic effect. It is, however, possible that this resonance can

coincide with and de-tune the second longitudinal resonance.

FIG. 3. (Color online) Rim displacement amplitude as a function of fre-

quency stimulated by a force applied at the mouthpiece calculated using a

2D axisymmetric (dashed) and a 3D (solid) finite element model.

FIG. 4. (Color online) Second axial resonance deformation, i.e., the rim-
mode, scaled by a factor of 3000 to show the existence of a node very close

to the rim, calculated using a 2D finite element model.
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In this case it will be difficult to predict the frequencies of this

resonance accurately with the simple finite-difference model.

Table I shows predictions of all three models for the first

two longitudinal axial resonances and for the rim mode

described above. Note that the frequency of the second axial

resonance calculated by the FE models varies significantly

from that calculated by the mass-spring model. Presumably

this is because the second resonance has a node very close to

the rim and is therefore affected by rotational motion.

Removing the rim-wire from the simulation detunes this res-

onance significantly, with the result being that the predic-

tions of all three models agree. These results are shown in

the second column of Table I. Animations of the first axial

and (2,1) elliptic mode shapes are shown in Figs. 5 and 6.

As a final test of the simple finite difference model, the

vibrational response to the distributed force stimulus of a re-

alistic acoustic sound pressure profile has been calculated

and compared to a corresponding COMSOL result. The sound

pressure profile of the enclosed air column, calculated using

BIAS,15 was applied as a boundary load to the interior of the

bell walls in the mass-spring model and in a corresponding

axisymmetric 2D finite element model.

A comparison of the axial and radial displacement

amplitudes along the bore profile of the King Silver Flair

trumpet modeled without bends predicted by the two models

is depicted in Fig. 7, where the solid lines represents the

results of the mass-spring model and the dashed lines repre-

sent the results of the 2D FE model. The sinusoidal pressure

in the mouthpiece was 250 Pa. The excitation frequencies of

486 and 1069 Hz correspond to the fourth and ninth peak of

the input impedance.

Clearly the mass-spring model can capture much of the

essential physics of the situation. The fact that the rotational

degree of freedom of the rim is not captured by the mass-

spring model explains the difference between the two meth-

ods in predicting the displacement in close proximity of the

rim. Since the instrument is excited at the frequency of an

air-column resonance, the frequency difference between the

excitation and the second structural resonance, which is a

rim mode in one of the cases, depends on the model used.

This results in different predictions for the displacement

amplitudes, but as noted previously, it is unlikely that this

resonance affects the radiated sound of the instrument.

Figure 8 shows how operating deflection shapes smoothly

vary with frequency, a property of the proposed axial vibra-

tion mechanism which was discussed qualitatively above.

These curves were obtained using the mass-spring model of a

standard trumpet bell without bends, connected to a mouth-

piece with a total physical length of 73 cm and discretized

into bore slices of 1 mm. The graph shows the magnitudes of

the axial vibration amplitudes plotted as a function of the

axial distance from the mouthpiece plane, when stimulated at

the mouthpiece end by an axial, sinusoidally oscillating me-

chanical force of 1 N and an in-phase mouthpiece pressure of

250 Pa. The amplitude and phase relationship have been cho-

sen arbitrarily. The mechanical stimulus represents a conserv-

ative estimate for a possible contact force applied by a

player’s lips.

The model parameters have been chosen to match an

existing standard trumpet bell made from brass by an instru-

ment maker. The bell was straight, without the usual bend. The

simulation parameters were: Young’s modulus E¼ 100 GPa,

density q¼ 8440 kg/m3, Poisson’s ratio �¼ 0.35, and damping

factor tan d¼ 0.05. These results clearly indicate that the pro-

posed vibration mechanism can result in significant motion in

the bell region over a relatively wide frequency band.

The wall thickness of 0.55 mm is slightly larger than

that found in most trumpets, but still typical for some instru-

ments. Since it was expected that wall vibration effects will

TABLE I. First and second axial resonance frequencies for a trumpet with

and without a rim, as calculated using a 2D or 3D finite element model

(FEM) and the presented mass-spring model (MS).

Rim-wire No rim-wire

FEM 3D FEM 2D MS FEM 3D FEM 2D MS

f1 994 991 1018 1133 1134 1125

frim 1799 1754

f2 2648 2658 2413 2519 2546 2543

FIG. 5. (Color online) Animation of the motion of the first axial resonance.

The predicted frequency is 994 Hz (see Ref. 27).

FIG. 6. (Color online) Animation of the (2,1) elliptical mode shape. The pre-

dicted frequency is 472 Hz (see Ref. 27).
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become stronger when wall thickness decreases, a thicker

wall material helps to estimate a lower bound for the magni-

tude of the effect. We expect the effects to exceed these pre-

dictions in real instruments.

The unusually high inner damping factor of 0.05 was

determined experimentally by connecting the bell to a shaker

and sweeping through the expected first axial resonance. The

amplitude of the axial rim displacement relative to that of

the driving point was measured at several different points,

averaged in order to eliminate the effects of elliptic modes,

and plotted against the theoretical curve. The inner damping

factor was then used as a fitting parameter and the value was

chosen to produce the best agreement between theory and

experiment.

This inner damping factor is usually written as tan(d)

and it refers to the tangent of the argument of a complex

Young’s modulus. Its value is normally assumed to be on the

order of 0.001 for brass, which is fifty times smaller than the

value determined experimentally as described above. The

reason for this significant deviation has yet to be determined,

but two possible reasons are discussed below.

First, inner damping of metals is not well addressed in

the literature and to our knowledge there is no report that

posits the dependence of tan(d) on common metal treatments

such as molding, bending and annealing. It is worth noting

that the people who manufacture brass musical instruments

appear to be universally convinced of the importance of

these processes in determining the final sound.

It is also possible that the uneven wall thickness profiles

around the perimeter and along the axis, combined with the

general deviation from a perfect circular symmetry that is in-

evitable in the manufacturing process, may have an overall

effect which can be predicted by adding a factor into the

imaginary part of the complex Young’s modulus. Given the

importance of mechanical resonances and their bandwidth to

the final sound of brass instruments indicated by the work

FIG. 7. (Color online) Axial (top) and radial (bottom) wall displacement amplitude as a function of position, caused by a 250 Pa sinusoidal mouthpiece pres-

sure at (a) 486 Hz and (b) 1069 Hz, calculated using the mass-spring model (solid) and a 2D finite element model (dashed).

FIG. 8. (Color online) Axial vibration amplitude profiles at various frequencies of a straight trumpet bell connected to a mouthpiece when stimulated acousti-

cally and mechanically at the mouthpiece end.
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reported here, it is important that the origin of this discrep-

ancy be determined in the near future.

Finally, it should be noted that other critical parameters,

such as Young’s modulus and the density may vary with com-

position and treatment of the wall material. Reconstructing

the actual values by a parameter matching optimization rou-

tine using measured structural characteristics, as has been

done in this work, may be the only practical way to accurately

determine all of the important parameters.

III. VIBRO-ACOUSTIC INTERACTION

Wave propagation inside a wind instrument has been

extensively studied and successfully modeled in the past.16–18

In these cases, the walls of the instrument are usually consid-

ered to be perfectly rigid, however, this is not the case when

brass wind instruments are actually used in performance.

Apart from the possibility of mechanical feedback to the

player’s lips, there is a coupling between the vibrating walls

and the air column inside the instrument that can affect its

input impedance.3,4,19–22

The structural model described above can be used to

predict wall vibrations induced by the sound pressure inside

the instrument as well as by oscillating forces applied to any

part of the instrument. This allows one to study the effect of

wall material, mechanical damping, mass and stiffness distri-

bution, and oscillating forces exerted by the vibrating lips on

the mouthpiece rim.

In this section we address the question of how to incor-

porate the structural model described above into an algo-

rithm that can calculate the input impedance and ATF of

wind instruments, taking into account the effects of wall

vibrations stimulated by the interior acoustic field as well as

by external oscillating forces.23 A vibro-acoustic interaction

model was proposed by the authors in Ref. 1, but this model

was derived for the isothermal case. Here we address the adi-

abatic case, which is more applicable to the conditions found

in wind instruments.

As noted above and illustrated in Fig. 1, axial vibrations

translate into radial air column boundary oscillations inside

flaring sections of the bore. Additionally, there is a smaller

contribution due to the Poisson effect. These radial boundary

vibrations affect the enclosed air column through two separate

mechanisms. First, they create a parasitic acoustic volume

flow cDu into the vibrating wall as discussed in Sec. III B.

Second, they modulate the volume of all bore segments,

which periodically changes the local air density and therefore

the local air pressure by an amount of cDp, which is addressed

in Sec. III C. All quantities marked by a caret (such as bA) are

complex, frequency-dependent amplitudes; they are the coef-

ficients of the usually omitted term ejxt and represent harmon-

ically oscillating values with a constant magnitude and phase.

Both contributions can be treated as distributed sound

flow and pressure sources with wavelets that propagate and

interfere with each other along the bore to produce an accu-

mulated effect at the mouthpiece plane. Each local point

source cDpðxÞ transmits a wavelet towards the input plane

being modified by its distance-dependent transfer function

bAðxÞ to generate an accumulated extra sound pressure cDp0 at

the mouthpiece plane,

cDp0 ¼
ðL

0

cDpðxÞbAðxÞdx: (11)

The distributed volume flow is accumulated in a similar

way, back-propagated to the entrance plane by the flow

related transfer function bBðxÞ. In a discretized bore profile

consisting of purely cylindrical or conical segments the

transfer functions bAðxÞ and bBðxÞ for sound pressure and flow

can be obtained from the product of the transfer matrices of

all segments,15,16 which back-propagate p and u from the

plane at axial position x to the entry plane at x¼ 0.

As we are integrating both contributions over the axial

length of the instrument, care must be taken so as to not inte-

grate the volume flow u twice. When calculating the flow u, as

shown below, it is the contribution lost into the walls of a short

cylindrical segment of length h. If we wish to integrate this

contribution we first must divide it by the length h to obtain a

flow contribution per unit length. This can then be integrated

dDu0 ¼
ðL

0

cDu xð Þ
h

bB xð Þdx: (12)

A. Modified transmission line model

The starting point of the vibro-acoustic interaction

model is the 1D plane-wave transmission-line model as

implemented in Ref. 23 and reviewed in Ref. 15. It allows

the calculation of input impedance and pressure transfer

function of acoustic ducts such as brass or woodwind instru-

ments when their bore profile and radiation conditions are

known.

The model provides complex, frequency-dependent

transmission matrices

bT ¼ bTa
bTbbTc
bTd

 !
(13)

for each cylindrical or conical slice of the bore profile. The

variable pair pressure bp and volume flow bu are then transmit-

ted from the right side of the element to the left side accord-

ing to

bp1 ¼ bTabp2 þ bTbbu2;bu1 ¼ bTcbp2 þ bTdbu2: (14)

Assuming unity sound pressure at the open mouth of the

bell, a volume flow of buBell ¼ 1=bZ rad is enforced by the radia-

tion impedance bZ rad. Back propagating bp and bu using the trans-

mission matrices of all bore elements, an input pressure bp0 and

volume flow bu0 at the mouthpiece end of the bore can be

obtained. From this result the input impedance bZ in ¼ bp0=bu0

and pressure transfer function bTp ¼ bprad=bp0 can be derived.

Taking the vibrating walls into account can be achieved

by modifying all inner bpi, bui pairs according to bp�i ¼ bpi þ cDpi ,
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with bu�i ¼ bui þ cDui , with cDpi and cDui being the complex

sound pressure and volume flow amplitudes lost due to the

oscillating wall. This addition results in

bp1 ¼ bTaðbp2 þ cDp2Þ þ bTbðbu2 þ cDu2Þ;bu1 ¼ bTcðbp2 þ cDp2Þ þ bTd ðbu2 þ cDu2Þ: (15)

Alternatively the wall vibration effect can be taken into

account by correcting the conventional transfer matrix

elements bTa and bTc by multiplying them by the factor

ðbp2 þ cDp2Þ=bp2. Likewise, the elements bTb and bTd can be

adjusted using the factor ðbu2 þ cDu2Þ=bu2.

B. Flow into the vibrating wall

An effective velocity bvðxÞ ¼ bdðxÞx can be calculated

with the effective wall displacement amplitude

bdðxÞ ¼ bd radialðxÞ � bdaxialðxÞ tanð/ðxÞÞ; (16)

where / is the flare angle and bd is the radial and axial com-

ponents of the local wall displacement amplitudes. Note that

a positive axial displacement in conjunction with a positive

flare angle actually reduces the effective boundary diameter

for a given air column slice, which explains the negative

sign in Eq. (16).

The volume flow cDu into the vibrating wall of a short

hoop segment with length h is given by

cDuðxÞ ¼ bvðxÞ2rðxÞph; (17)

where r(x) is the local bore radius. This contribution has a

positive instantaneous value when the momentary wall ve-

locity v is also positive, which is the case when the hoop seg-

ment expands. A positive instantaneous in-flow into the left

boundary of an element can therefore be either compensated

by a positive instantaneous out-flow out of the right bound-

ary of that element or by some positive parasitic flow into

the walls. If the total flow is not balanced the pressure will

change ðdbp=dt ¼ buLeft � buRight � cDuÞ.
The simplifying assumption made here is that only mass

continuity (in-flow equals total out-flow) is taken into

account while the balance of momentum and energy is

neglected. This is justified because the mean thermal veloc-

ity of air, which is given by vrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=m

p
in m/s, where

kB is Boltzmann’s constant, T is temperature in K, and m is

the mass of an air molecule in kg, dominates all velocities

related to flow that may result in other pressure related

forces.

C. Thermodynamic pressure modulation

During an adiabatic process the ideal gas equation is

given by

pðtÞVcðtÞ ¼ nðtÞRT; (18)

where the pressure p(t), volume V(t), and number of moles

n(t) all vary with time. T is the equilibrium temperature, c
the heat capacity ratio, and R the universal gas constant. In

the presence of the vibrating walls the volume oscillations

with an amplitude bV must be included in the pressure

variation.

Following Ref. 1, but considering adiabatic conditions,

the effective time varying pressure deviation (pþ) can be

obtained from the equilibrium pressure peq by means of a

Taylor series expansion. Neglecting second order terms this

expansion becomes

bp þ ejxt ¼ bpejxt � c
peq

Veq

bVejxt; (19)

where Veq is the equilibrium volume of the air column and bp
the complex amplitude of the oscillating air column pressure

without the presence of wall vibrations. The phase difference

between this internal pressure and the wall oscillations is

reflected in the phase difference between the complex ampli-

tudes bp and bV . Hence the extra pressure amplitude due to

wall oscillations is given by

�cDp ¼ c
peq

Veq

bV ¼ c
peq

pr2h
2prhbsð Þ ¼ 2cpeq

r
bs; (20)

where bs the complex amplitude of the effective radial dis-

placement of the air column boundary and we have sup-

pressed the position dependence for notational clarity. The

negative sign indicates that an in-phase radial wall displace-

ment actually reduces the local sound pressure amplitude.

IV. RESULTS AND DISCUSSION

In all of the vibro-acoustic simulations reported here we

have used parameters and bore shapes derived from two sim-

ilar straight trumpet bells with wall thicknesses of 0.5 mm

and 0.55 mm manufactured by Musik Spiri. Measurements of

the thicker bell were used to produce the curves shown in

Fig. 8, and the material properties stated above were applied

to both bells, unless otherwise stated.

A typical simulation result for the 0.55 mm bell without

a mouthpiece is shown in Fig. 9. The mouthpiece end was

rigidly fixed by adding an extremely heavy mass at that

point. The top plot depicts the two ATF curves representing

the ratio of the sound pressure amplitude in the bell plane to

that in the entrance plane. One calculation takes wall vibra-

tions into account while the other one represents the case of

a completely rigid wall. The differences between the ATF

corresponding to the rigid case and that corresponding to the

case where the bell is allowed to vibrate freely are small but

noticeable. The ratio of the two ATFs is shown in the bottom

plot using a dB-scale.

The results shown in Fig. 9 indicate that the differences

in the ATF below approximately 800 Hz are always positive

while those above that cross-over frequency are always neg-

ative. The magnitudes of these differences reach their maxi-

mum in close proximity to the frequency that corresponds to

the phase transition at the first axial resonance. In this exam-

ple this structural resonance does not coincide with any of

the air resonances, but occurs between the second and third

acoustic resonance. Differences due to wall vibrations are
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small but noticeable over a range of frequencies correspond-

ing to approximately one octave.

Another kind of influence is shown in Fig. 10, where the

calculated difference in the input impedance that results

from bell vibrations is plotted. In this case the 0.5 mm bell

has been chosen with a standard mouthpiece attached to it.

The mouthpiece was loaded with an extra mass of 2 kg to

represent the weight of a horn driver, which may be required

when performing an experiment. To help orient the reader,

the frequencies of the maxima of the underlying input im-

pedance curve have been shown in the plot as vertical lines.

This plot is the result of two vibro-acoustic finite element

simulations run in COMSOL, again one with a rigid bell and

one with a bell free to vibrate.

In the finite-element model used to produce the curves

in Fig. 10 a thin boundary layer next to the wall, where the

flow is retarded due to frictional losses,13 was discretized

using a boundary layer mesh with each element’s thickness

being approximately 1 lm. The air domain was discretized

using a frequency-dependent mesh-size, ensuring that at

least ten elements per wavelength are present. A detail of

the mesh is shown in Fig. 11, where the sound pressure

level is also plotted for the first air resonance of the straight

bell. Finally, a perfectly matched layer was simulated as

surrounding the semi-spherical radiation space to enforce

anechoic conditions. A baffle was also simulated to avoid

feedback to the input pressure, as is often the case when

performing experiments.1,2,12,24

The relative size of the differences at the third and fourth

air resonance in Fig. 10, where the input impedance is

approximately 150 MX, is again on the order of one decibel.

However, in this case the effect of the cross-over frequency

between the third and the fourth air resonance is different.

We can observe an alternating influence below the structural

resonance (minus-plus-minus) and an alternating influence

above it (minus-plus-minus). Around the structural resonance

this alternation is toggled, which leads to two adjacent peaks

with the same negative difference surrounding the cross-over

frequency corresponding to the first axial resonance.

These observations lead to the question of why there are

two, and possibly more, fundamentally different kinds of

influences on acoustical characteristics which are obviously

due to the same structural resonance. To answer this question

we must consider all possible excitation mechanisms and

their effects on the acoustic field inside the instrument.

FIG. 10. (Color online) Input impedance of the free and damped bell (top)

and the difference between the two curves (bottom) calculated numerically.

The dashed lines indicate the locations of the impedance peaks and the dot-

ted line indicates the frequency of the axial structural resonance of the bell.

FIG. 9. (Color online) Simulated ATF of a straight bell without a mouth-

piece from the entrance plane to bell plane as a function of frequency, for

the case of a free vibrating bell (solid) and completely damped bell (dashed).

The bottom plot shows the difference in dB.

FIG. 11. (Color online) Sound pressure level for a free vibrating bell, show-

ing details of the underlying finite-element mesh.
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A brass wind instrument bell is an acoustic duct with

one end closed and the other end open. This means that the

sound pressure magnitude profile must have a maximum at

the mouthpiece and a minimum near the open end of the

bell. At the lowest resonance frequency the mouthpiece pres-

sure and the pressure inside the bell are in phase. At the next

resonance frequency a second pressure minimum finds its

place inside the instrument. This inverts the phase relation-

ship and causes the pressure at the mouthpiece and bell to be

out of phase. At still higher resonances each new pressure

minimum inside the instrument again alternates the phase of

the sound pressure in the steeply flaring part of the bell rela-

tive to the sound pressure present in the mouthpiece.

A longitudinal structural stimulus at the mouthpiece will

cause an in-phase displacement of the bell if the frequency is

low. Near DC there will be whole-body motion and all parts

of the bell will move synchronously and at the same veloc-

ity. At higher frequencies periodic stress will cause axial

strain which adds length oscillations. Below a structural res-

onance the bell displacement will still be almost in phase

with the mouthpiece stimulus. At a structural resonance,

however, the phase changes and above the resonance fre-

quency the axial bell motion will be out of phase with the

motion at the mouthpiece.

The internal sound field is mainly affected in the flaring

bell region, but there are two possibilities to stimulate struc-

tural vibrations by the interior sound pressure. In the mouth-

piece the sound pressures may be up to a factor of 103 higher

than in the bell region and the area that the pressure can act

on is approximately 60 times smaller than the comparable

area in the bell region. Therefore, the dominating structural

stimulus can be situated either in the mouthpiece or in the

bell region, or it can be a combination of the two depending

on the frequency-dependent parameters related to the bore

profile and boundary conditions.

If the dominating structural stimulus mechanism is in

the bell region there will be an acoustical effect exhibiting

the same phase for all air resonances below structural stimu-

lus, with the opposite phase for air resonances above it. The

structural resonance frequency will be the cross-over fre-

quency for any effect of wall vibrations on any acoustic

characteristic. In the simulation shown in Fig. 9 this behavior

has been enforced by applying a large mass to the entrance

plane, thus fixing it in place.

In the case where the mouthpiece is attached to the bell

but is free to vibrate it is possible that the structural stimu-

lus of the sound pressure inside the mouthpiece cup domi-

nates the effects attributable to the bell motion. This may

occur if the mouthpiece diameter is large and the axial me-

chanical admittance of the mouthpiece is much higher than

that of the bell. In this case, the behavior shown in Fig. 10

is expected because the alternating phase of the effect is

related to the alternating phase of the sound pressure in the

bell compared to the sound pressure in the mouthpiece,

which is synchronously exciting both the acoustical and

mechanical systems.

For the time being, only straight axisymmetric bells

can be simulated using the mass-spring model presented

here. However, an application to a complete instrument

with a single loop similar to that shown in Fig. 1 is shown

in Fig. 12. Using a coiled brass tube with a coil diameter of

14 cm, a bore diameter of 10.8 mm, and a wall thickness of

0.4 mm, the effective stiffness of a spring linking the lead

pipe and the straight part of the bell in axial direction was

determined experimentally to be 3400 N/m. A spring with

this spring constant was added to the model by adjusting

the stiffness of the cylindrical tube section between 19 and

90 cm. This has been accomplished by reducing the wall

thickness in this region to 1 lm and compensating for the

removed mass of the wall. A crosscheck of the equivalent

spring constant yields c¼ 100 GPa� p� 10.8 mm� 1 lm/

71 cm� 4.6 kN/mm which is close to what was measured.

The first axial resonance of this arrangement was deter-

mined to be approximately 30 Hz.

Figure 12 shows that the acoustic influence of the

vibrating bell potentially can make a more significant dif-

ference in this configuration. In this case the vibrating bell

acts to damp all resonances above the structural resonance

and it is likely that an instrument maker will try to shunt

that spring using a brace with much higher stiffness. The

behavior is consistent with Fig. 9 because a vibrating bell

which transmits better above the structural resonance does

FIG. 12. (Color online) Input imped-

ance of a trumpet with one coil for the

case of a bell free to vibrate (solid) and

when the vibrations are completely

damped (dashed).
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not reflect well in the same frequency range, which lowers

the input impedance.

V. CONCLUSIONS

The model discussed here predicts that axial resonances

have a measurable effect on the sound of brass wind instru-

ments. It is likely that these effects explain the sensitivity to

construction details that are commonly claimed by musicians

and makers of musical instruments. As presented, the model

can predict most aspects of the essential structural behavior

of axisymmetric brass wind instrument bells and their effect

on the acoustical characteristics. This model can predict the

acoustical and mechanical transfer functions as well as the

acoustical input impedance in the presence of vibrations

induced by external sources or by the pressure fluctuations

of the internal air column.

The model can include external structural excitations,

such as those of the player’s vibrating lips, and allows one

to include external masses, springs, and damping at any part

of the bore profile to reflect how the instrument is held,

clamped, or stimulated. Subtle details like a non-constant

wall thickness profile along the axis, a mouthpiece mass pro-

file, or a unique rim wire construction can also be specified.

Exploring this vast parameter space is beyond the scope of

this work, but as a preliminary result it can be stated that

most of these external influences, such as mechanical stimu-

lation by player’s lips, braces that stiffen loops and bends,

different rim wire constructions, and extra masses attached

to the mouthpiece can have an even stronger influence on

acoustical parameters than what is shown in the simulations

reported here.

We expect that this model will aid in understanding the

effects of the different kinds of influences that wall vibra-

tions have on acoustic characteristics of brass wind instru-

ment bells. To facilitate these investigations, the model has

been implemented in the Brasswind Instrument Analysis

System (BIAS)25 and can be downloaded from Ref. 26.

Within this implementation of the simulation it is possible

to specify arbitrary bore and wall thickness profiles as well

as user-specified boundary conditions and material

constants.

Using such hybrid models, which combine measured

mechanical transfer functions and physical structural models

of some axisymmetric parts, the effect of wall vibrations on

the sound of real instruments can be predicted. This can

even include structural excitation by the player’s lips. Once

the vibration state of the mouthpiece can be predicted it will

be possible to study its effect on the lip oscillator and there-

fore on the oscillation threshold and response of an

instrument.

Predictions of this model have yet to be completely

validated by experiments. Of particular importance is the

prediction that the acoustical effects of wall vibrations

should be inverted at the frequencies of axial resonances

due to the change in phase between the oscillating air col-

umn and the oscillating wall that occurs at these frequen-

cies. Preliminary experimental results indicate that this does

indeed occur.12
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