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IRREGULAR COLORINGS OF REGULAR GRAPHS

MARK ANDERSON, RICHARD P. VITRAY, AND JAY YELLEN

Abstract. An irregular coloring of a graph is a proper vertex coloring that distinguishes
vertices in the graph either by their own colors or by the colors of their neighbors. In
algebraic graph theory, graphs with a certain amount of symmetry can sometimes be
specified in terms of a group and a smaller graph called a voltage graph. In [3], Radcliffe
and Zhang found a bound for the irregular chromatic number of a graph on n vertices.
In this paper we use voltage graphs to construct graphs achieving that bound.

Keywords: Irregular Coloring, Graph Coloring, Voltage Graph

1. Irregular Colorings

A (vertex) k-coloring of a graph G is a mapping c : V → Γ that assigns to each vertex
of G a color from the set Γ = {0, 1, . . . , k − 1}. A proper coloring is one in which adjacent
vertices are assigned different colors, that is, for every edge {v, w} in G, c(v) 6= c(w). Thus,
a proper coloring distinguishes each vertex from each of its neighbors.

Definition 1. Given a k-coloring c of a graph, the color code of a vertex v is the k-tuple

cv = (c0
v, c

1
v, . . . c

k−1
v ), with cjv = |c−1(j) ∩N(v)|, the number of neighbors of v assigned the

color j.

Definition 2. A proper coloring c is an irregular coloring if no two like-colored vertices
have the same color code, i.e., for every pair of vertices v and w, cv 6= cw whenever
c(v) = c(w). Thus, an irregular coloring distinguishes each vertex from each other vertex
either by its color or by its color code.

In [1], irregular colorings of cycles and direct products of complete graphs were explored.
Both types of graphs are examples of regular graphs. Our focus on regular graphs follows
from the observation that two non-adjacent vertices of different degrees automatically sat-
isfy the irregularity condition. Consequently, for a given number of colors and vertices,
it is harder to find irregular colorings of regular graphs than of graphs in general. In [3],
the following bound is given for the number of vertices of degree r in a graph that has an
irregular k-coloring.

Theorem 1. If a graph has an irregular k-coloring, where k ≥ 2, then the number of
vertices of degree r is at most k

(
k+r−2
r

)
.

Proof. Given a color for a vertex v, there are
(
k+r−2
r

)
ways to distribute the r neighbors of

v to the k − 1 other colors. �
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In this paper, we show that the bound given in Theorem 1 is tight for all r ≥ 0 and
k ≥ 3 (k = 2 is easily handled with a K2). Our approach makes use of voltage graphs from
topological graph theory.

2. Voltage Graphs

We now define a few concepts pertaining to voltage graphs. Voltage graphs and their
derived graphs are defined in [2].

Definition 3. A voltage graph V G over a group Γ is an ordered pair V G =< G,φ >,
where G is a directed graph with vertex-set V and arc-set A, and φ : A→ Γ is a mapping
that assigns to each arc a voltage from a finite group Γ.

The directed graphs used to build voltage graphs may have loops and may have multiple
arcs. We say that each arc is directed from a vertex and to a vertex. If the arc is a loop
incident on a vertex v, we consider it to be directed both from v and to v. We use voltage
graphs to create larger undirected graphs. We will give conditions on a voltage graph to
insure the graph we derive from it is a simple graph, without loops or multiple edges.

Definition 4. Let < G,φ > be a voltage graph over Γ with vertex-set V , and arc-set A.

The derived digraph, denoted
−→
Gφ, is the digraph with vertex-set V ×Γ and arc-set A×Γ

defined as follows: if d is an arc in G from vertex v to vertex w, then < d, g > is an arc

in
−→
Gφ from vertex < v, g > to vertex < w, g ∗ φ(d) >, where ∗ is the group operation. The

arc d could be a loop incident on v (i.e., v = w).

To simplify the notation for vertices and arcs in the derived digraph, we use vg and dg to
denote the vertex < v, g > and the arc < d, g >, respectively. In all of our constructions, Γ
will be the finite cyclic group Z|Γ| = {0, 1, 2, . . . , |Γ|−1} with the group operation (addition
mod |Γ|) denoted by the ordinary “+” symbol. Thus, if d is an arc in G from vertex v to

vertex w, then dg is an arc in
−→
Gφ from vertex vg to vertex wg+φ(d). Figure 1 shows two

voltage graphs over Z4 and their derived digraphs.
Our focus is on constructing undirected graphs, and following the normal convention, our

construction of the derived (undirected) graph, denoted Gφ, starts with the underlying

graph of the derived digraph
−→
Gφ (obtained by suppressing the direction of each arc). If the

voltage graph < G,φ > does not contain any loop d whose voltage is an involution (i.e.,

φ(d) = |Γ|/2), then Gφ is simply the underlying graph of
−→
Gφ. However, if a vertex v in G

has a loop d with φ(d) = |Γ|/2, then for each g ∈ Γ, d gives rise to a pair of oppositely

directed arcs in
−→
Gφ between the vertices vg and vg+|Γ|/2. Each such pair becomes a multi-

edge in the underlying graph, which is then merged into a single edge to obtain the derived
graph Gφ. For example, the derived (undirected) graph for the voltage graph on the right
in Figure 1 consists of two vertex-disjoint paths of length 3.

If e is an edge in Gφ between vertices vg and wg+j , then it is generated in one of three

ways: 1) from a pair of arcs dg and dg+j in
−→
Gφ; 2) from a single arc dg in

−→
Gφ; or 3) from a
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Figure 1. Two voltage graphs over the group Z4 and their derived digraphs.

single arc dg+j in
−→
Gφ. In the first case, e is generated by a loop d in G with φ(d) = j = |Γ|

2 .
In the second case, e is generated by an arc d in G from v with φ(d) = j. In the third case,
e is generated by an arc d in G to v with φ(d) = −j.

If Gφ has a loop, then this loop came from a loop in the voltage graph with voltage 0. If
Gφ has two different edges between vertices vg and wg+j , then either there are two directed
edges in G between v and w with the same direction and the same voltage, or there are
two oppositely directed edges in G between v and w whose voltages are inverses of each
other. This motivates the following definition and justifies the ensuing lemma.

Definition 5. A voltage graph < G,φ > is said to be simple if for any arcs d and e and
any vertices v and w the following hold.

(1) If d is a loop, then φ(d) 6= 0.
(2) If d and e are both from vertex v to vertex w, then φ(d) 6= φ(e).
(3) If d is from v to w and e is from w to v, then φ(d) 6= −φ(e).

Lemma 2. The derived graph of a simple voltage graph is a simple graph.

In light of the three ways an edge can arise in a derived graph, we define the number φjv
as follows. If j = |Γ|

2 , then φjv is the number of arcs in G incident on v with voltage j. If

j 6= |Γ|
2 , then φjv is the number of arcs in G from v with voltage j plus the number of arcs

to v with voltage −j. Analogous to the definition of color code, we define the voltage code
of a vertex.

Definition 6. The voltage code of a vertex v in a voltage graph V G over Γ is the |Γ|-
tuple φv, whose jth component is φjv for j = 0, . . . , |Γ|−1. The voltage degree of a vertex
is the sum of the coordinates of its voltage code.

The voltage codes for each vertex in the voltage graph in Figures 2 are given; there are
two vertices with voltage degree 2 and one with voltage degree 3.
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Figure 2. A voltage graph over Z4 with its voltage codes.

3. Irregular Colorings of Derived Graphs

Our goal is to construct voltage graphs, whose derived graphs achieve the bound given
in Theorem 1. In particular, for each r ≥ 0 and each k ≥ 3, we will construct a voltage
graph contained in the set M(r, k), where M(r, k) is defined as follows.

Definition 7. Let M(r, k) denote the set of voltage graphs whose derived graphs are r-

regular graphs on k
(
k+r−2
r

)
vertices and have irregular k-colorings.

Each vertex in the derived graph of a voltage graph has a subscript which is a group
element. We use this to obtain a vertex coloring of the derived graph in a natural way.

Definition 8. Let < G,φ > be a voltage graph over Γ. The natural (vertex) coloring
of the derived graph Gφ (with the elements of Γ as the colors) is given by the mapping
c(vg) = g.

Observe that if the voltage graph contains no arc with voltage 0, then the natural coloring
of the derived graph is a proper coloring. A voltage graph whose arcs all have nonzero
voltage is called a proper voltage graph.

Lemma 3. Let < G,φ > be a simple voltage graph over Γ and Gφ its derived graph. For
any vertex v in G, group element g ∈ Γ, and voltage j, the jth component of the voltage

code of v equals the (g + j)th component of the color code of vg, i.e., φjv = cg+jvg .

Proof. Let V j
vg = {x : x ∈ c−1(g + j) ∩ N(vg)} = {wg+j : wg+j ∈ N(vg)}, (i.e., V j

vg is the

set of neighbors of vg in Gφ whose color is g + j). Since the voltage graph is simple, each

vertex wg+j in V j
vg corresponds to exactly one edge in the derived graph between vg and

wg+j and that edge corresponds to exactly one arc d in the voltage graph between v and

w, where 1) j = |Γ|
2 and d is incident on v; or 2) d is from v to w with φ(d) = j; or 3) d is

from w to v with φ(d) = −j. Conversely, each such arc in the voltage graph gives rise to

exactly one edge in the derived graph, corresponding to exactly one vertex in V j
vg . �

The next two propositions are immediate consequences of Lemma 3.

Proposition 4. Let < G,φ > be a proper, simple voltage graph over Γ and Gφ its derived
graph. For any vertex v in G and group element g ∈ Γ, the voltage degree of v equals the
degree of vg in Gφ.
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Proposition 5. Let < G,φ > be a proper, simple voltage graph. The natural coloring of
the derived graph, Gφ, is irregular if and only if no two vertices in G have the same voltage
code.

Proposition 5 motivates the following definition.

Definition 9. A voltage graph is irregular if its voltage codes are all distinct.

Using this definition we state a theorem which justifies the use of voltage graphs to generate
graphs achieving the bound of Theorem 1.

Theorem 6. If V G is a simple, proper, irregular voltage graph over Zk with
(
k+r−2
r

)
vertices, each with voltage degree r, then V G ∈M(r, k).

Proof. Proposition 4 implies Gφ is r-regular since V G is simple and proper and each vertex
of V G has voltage degree r. By Proposition 5, the natural coloring of Gφ is irregular. By
the definition of voltage graph, the number of vertices in Gφ is k times the number of
vertices in V G; hence, Gφ has k

(
k+r−2
r

)
vertices. �

In the remainder of this paper, we construct a set of voltage graphs, {V Gr,k : r ≥ 0
and k ≥ 3}, each satisfying the conditions of Theorem 6. For each such voltage graph,
we denote its directed graph by Gr,k and its voltage mapping by φr,k. These voltage
graphs are defined recursively, using a product to be defined shortly. First we give the base
constructions. Figures 3 and 4 illustrate these voltage graphs.

Construction 1. V G0,k consists of a graph with a single vertex and no arcs. V G1,k

consists of a graph with k− 1 vertices. For k odd, the vertices are numbered 1 to k− 1 and
for each i, 1 ≤ i ≤ k−1

2 , there is an arc from vertex i to vertex k − i, with voltage i. For k

even, the vertices are numbered 0 to k − 2 and for each i, 1 ≤ i ≤ k−2
2 , there there is an

arc from vertex i to vertex k − i− 1, with voltage i, and there is a loop incident to vertex
0 with voltage k

2 .

VG0,k

1

2

(k-1)/2
.
.
.

VG1,k 
k odd

1

2

(k-1)/2

k-1

k-2

(k+1)/2

1

2

k/2-1
.
.
.

k/2

VG1,k
k even

1

2

(k-2)/2

k-2

k-3

k/2

0

Figure 3. Voltage graphs over the group Zk for r = 0 and 1.

Lemma 7. For all k ≥ 3 and r ∈ {0, 1}, V Gr,k ∈M(r, k).
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Proof. In all three cases, V Gr,k is proper, simple, and irregular by the construction. For

k ≥ 3,
(
k+0−2

0

)
= 1 and

(
k+1−2

1

)
= k−1; hence, V Gr,k has

(
k+r−2
r

)
vertices. By construction,

each has voltage degree r. The result follows from Theorem 6. �

We now construct the voltage graph V Gr,3 for r ≥ 2.

Construction 2. For r ≥ 2, V Gr,3 consists of a graph with r+1 vertices, labeled 0, 1, . . . , r

and
(
r+1

2

)
arcs: for each i < j, an arc from vertex i to vertex j with voltage 1.

(0,0,2)

VG2,3

1 1

1(0,1,1)

(0,2,0) (0,3,0)

1

1

1

1

1

VG3,3

(0,0,3)

(0,2,1) (0,1,2)

1

Figure 4. Two voltage graphs over Z3 showing the voltage codes.

Figure 4 shows V Gr,3 for r = 2 and r = 3.

Lemma 8. For all r ≥ 2, V Gr,3 ∈M(r, 3).

Proof. V Gr,3 is proper and simple by the construction, and since the voltage code of the
vertex labeled i is (0, r − i, i), the voltage graph is irregular, the number of vertices is

r + 1 =
(

3+r−2
r

)
, and each vertex has voltage degree r. The result follows from Theorem

6. �

The inductive step in our argument uses the following definition of a product of two
voltage graphs. Notice that the first voltage graph in the product must be over a group
with odd order.

Definition 10. Given two voltage graphs < G1, φ1 > and < G2, φ2 >, with voltages
from Zk1 and Zk2, respectively, where k1 is odd, we define their voltage product as the
graph < G1 × G2, φ1 × φ2 > having vertex set V (G1 × G2) = V (G1) × V (G2) and arc set
A(G1×G2) = (A(G1)× V (G2))∪ (V (G1)×A(G2)). If a1 is an arc in G1 from x to y and
v2 is a vertex in G2, then (a1, v2) is an arc from (x, v2) to (y, v2) and if v1 is a vertex in
G1 and a2 is an arc in G2 from x to y, then (v1, a2) is an arc from (v1, x) to (v1, y). The
voltage assignment, φ1 × φ2 : A(G1 ×G2)→ Zk1+k2−1, is defined as follows.

• (φ1 × φ2)(a1, v2) = φ1(a1), if 0 ≤ φ1(a1) ≤ k1−1
2

• (φ1 × φ2)(v1, a2) = φ2(a2) + k1−1
2

• (φ1 × φ2)(a1, v2) = φ1(a1) + k2 − 1, if k1+1
2 ≤ φ1(a1) ≤ k1 + k2 − 1
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(0,1,0,2,0)

VG1,3 x VG2,3

(0,0,3,0,0)

2 2

2

2

2

2

2

2

(0,1,1,1,0)

(0,1,2,0,0)

VG0,3 x VG3,3

(0,0,0,3,0)

(0,0,2,1,0) (0,0,1,2,0)

(0,0,0,2,1)
2

2

2
(0,0,1,1,1)

(0,0,2,0,1)

1

1
1

2

Figure 5. Two products with voltage codes shown.

Informally, the voltage product is the Cartesian product of the two digraphs G1 and G2

where the voltages assigned to the “copies” of G1 are either less than or equal to k−1
2 or

greater than or equal to k2 − 1 + k+1
2 and the voltages assigned to arcs in the “copies”

of G2 are between k1−1
2 and k2 − 1 + k−1

2 . We require k1 to be odd to avoid changing
a voltage which is an involution into one that is not, or vice versa. Also, if the voltage
graphs are proper then none of the voltages assigned to the arcs in copies of G2 are equal
to k−1

2 , so the voltages assigned to the two types of arcs are disjoint. Figure 5 illustrates
two examples of the product of two voltage graphs over the Z3 resulting in a voltage graph
over Z5.

With this definition, the voltage code for a vertex (u, x) in the voltage product is

(φ1 × φ2)(u,x) = (0, (φ1)1
u, (φ1)2

u, . . . , (φ1)
(k1−1)/2
u ,

(φ2)1
x, (φ2)2

x, . . . , (φ2)k2−1
x ,

(φ1)
(k1+1)/2
u , (φ1)

(k1+3)/2
u , . . . , (φ1)k1−1

u ).

Notice that (φ1 × φ2)(u,x) = (φ1 × φ2)(v,y) if and only if (φ1)u = (φ1)v and (φ2)x = (φ2)y,
i.e., the voltage code for u in G1 equals the voltage code for v in G1 and the voltage code
for x in G2 equals the voltage code for y in G2. This establishes the following lemma.

Lemma 9. If V G1 and V G2 are irregular voltage graphs over Zk1 and Zk2, respectively,
where k1 is odd, then the product voltage graph V G1 × V G2 is irregular.

Lemma 9 enables us to recursively define the voltage graphs V Gr,k for all r ≥ 2 and
k ≥ 4. Two constructions are used depending on whether k is odd or even.

Construction 3. For r ≥ 2, k ≥ 5, and k odd,

V Gr,k =

r⋃
ρ=0

(V Gρ,k−2 × V Gr−ρ,3).

See Figure 6 for an illustration of V G2,5 as the union of three voltage products and
Figure 7 for an illustration of V G3,5 as the union of four products.
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VG0,3 x VG2,3

2 2

2 1

22

1

1 1

1

VG1,3 x VG1,3 VG2,3 x VG0,3

Figure 6. V G2,5 =
⋃2
ρ=0(V Gρ,k−2 × V G2−ρ,3).

(0,0,2,0,2)

VG2,3 x VG1,3

(0,0,3,0,0)
1 1

1
1

1

1

1

1
(0,1,1,0,1)

(0,2,1,0,0)

VG3,3 x VG0,3

(0,0,0,3,0)

(0,0,2,1,0) (0,0,1,2,0)
(0,0,0,1,2)

1
1

1
(0,1,0,1,1)

(0,2,0,1,0)

2

2
2

(0,1,0,2,0)

VG1,3 x VG2,3

(0,0,3,0,0)

2 2

2

2

2

2

2

2

(0,1,1,1,0)

(0,1,2,0,0)

VG0,3 x VG3,3

(0,0,0,3,0)

(0,0,2,1,0) (0,0,1,2,0)

(0,0,0,2,1)
2

2

2
(0,0,1,1,1)

(0,0,2,0,1)

1

1
1

1

2

Figure 7. V G3,5 =
⋃3
ρ=0(V Gρ,k−2 × V G3−ρ,3).

To count the vertices in the graph obtained in Construction 3 we use the following
combinatorial identity.

Lemma 10. For all r ≥ 0 and m ≥ 0,(
r +m+ 2

r

)
=

r∑
i=0

(
i+m

i

)
(r − i+ 1)

.
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Proof. If we let k = r − i, then the equation becomes
(
r+m+2

r

)
=
∑r

k=0

(
r−k+m
r−k

)
(k + 1).

When r = 0, both sides of the equation equal 1. When m = 0, we get(
r+m+2

r

)
=
(
r+2

2

)
=
∑r

k=0 k + 1 =
∑r

k=0

(
r−k+m
r−k

)
(k + 1). We assume the statement holds

when m < M and r ≤ R.

(
R+M + 2

R

)
=

(
R+M + 1

R

)
+

(
R+M + 1

R− 1

)
=

R∑
k=0

(
R− k +M − 1

R− k

)
(k + 1) +

R−1∑
k=0

(
R− k +M − 1

R− k − 1

)
(k + 1)

=

(
M − 1

0

)
(R+ 1) +

R−1∑
k=0

(
R− k +M

R− k

)
(k + 1)

=

R∑
k=0

(
R− k +M

R− k

)
(k + 1)

=
R∑
i=0

(
i+M

i

)
(R− i+ 1).

�

Using the identity, we show V Gr,k has the desired number of vertices.

Proposition 11. If k ≥ 3 and k is odd then V Gr,k has
(
r+k−2
r

)
vertices.

Proof. When k = 3, the result holds by Lemma 8. Assume the result holds for odd k′ less
than k. In particular, the result holds for k− 2 and for k = 3. Therefore, by Construction
3, the number of vertices in V Gr,k is

∑r
ρ=0

(
ρ+k−4
ρ

)(
r−ρ+1
r−ρ

)
=
∑r

ρ=0

(
ρ+k−4
ρ

)
(r−ρ+ 1), and

the result follows from Lemma 10 by setting k − 4 equal to m. �

The case when k is even requires an additional construction. Given a voltage graph V G
with n vertices numbered from 0 to n− 1, we obtain the voltage graph V G+ by adding an
arc from vertex i to vertex n − i − 1, where 0 ≤ i ≤ bn−1

2 c, and assigning a voltage of k
2

to each of these additional arcs. When n is even, every additional arc is a proper arc, but
when n is odd, exactly one of the additional arcs is a loop incident on vertex n−1

2 . By this

construction, for every vertex v in V G+, φ
k/2
v 6= 0.

In our recursive construction we use the labeling of V G1,k given in Construction 1 as

our initial numbering to obtain V G+
1,k; but, subsequent numberings are made arbitrarily

as the size of the graph increases. In particular, the numberings have nothing to do with
the group Γ but instead are a reflection of when a vertex was added to the voltage graph.

Construction 4. Assume the numbering of V G1,k given in Construction 1. For r ≥ 2,
k ≥ 4, and k even, assume the n vertices in V Gr−1,k are numbered 0 to n−1 and arbitrarily
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number the m vertices in V Gr,k−1 × V G0,2 with the numbers n to n + m − 1. We define
V Gr,k by

V Gr,k = V G+
r−1,k ∪ (V Gr,k−1 × V G0,2),

.

Notice that taking the voltage product of V Gr,k−1 with V G0,2 does not alter the directed
graph but does change Γ from Zk−1 to Zk and restricts voltages to be either less than or
equal to k−1

2 or greater than or equal to k+1
2 . Thus, for every vertex v in V Gr,k−1×V G0,2,

φ
k/2
v = 0. Figures 8 and 9 illustrate G2,4 and G3,4, respectively.
We use induction to count the number of vertices in V Gr,k for k even.

Lemma 12. If k ≥ 4 and k is even then V Gr,k has
(
r+k−2
r

)
vertices.

Proof. We induct on r. By Lemma 7 the result holds for r = 0 or r = 1. For r ≥ 2, we

assume V Gr−1,k has
(

(r−1)+k−2
r−1

)
=
(
r+k−3
r−1

)
vertices. Also, by Proposition 11, V Gr,k−1 has(

r+(k−1)−2
r

)
=
(
r+k−3
r

)
vertices which implies V Gr,k−1 × V G0,2 also has

(
r+k−3
r

)
vertices.

Hence, V Gr,k has
(
r+k−3
r−1

)
+
(
r+k−3
r

)
=
(
r+k−2
r

)
vertices. �

VG2,3 x VG0,2

1 1

11

2

2
2

VG1,4
+

v0

v1 v2

v5

v4 v3

Figure 8. V G2,4 = V G+
1,4 ∪ (V G2,3 × V G0,2)

Theorem 13. For all r ≥ 0 and k ≥ 3, V Gr,k ∈M(r, k).

Proof. Lemmas 7 and 8 establish that if r = 0 or 1 or if k = 3, then V Gr,k ∈ M(r, k).
Assume r ≥ 3 and k ≥ 4. As an inductive hypothesis we assume that for each ρ ≤ r and
κ < k and for all ρ < r and κ ≤ k, V Gρ,κ ∈M(ρ, κ). By the construction, V Gr,k is proper
and each of its vertices has voltage degree r.

Suppose k is odd. By Construction 3, the voltage graph V Gr,k is simple. To show V Gr,k
is irregular, we let v and w be any two vertices in V Gr,k =

⋃r
ρ=0(V Gρ,k−2 × V Gr−ρ,3). If

v, w ∈ V Gρ,k−2 × V Gr−ρ,3, for some ρ, then φv 6= φw by Lemma 9. If v ∈ V Gρ1,k−2 ×

V Gr−ρ1,3 and w ∈ V Gρ2,k−2 × V Gr−ρ2,3, where ρ1 6= ρ2, then φ
k−1
2

v1 + φ
k+1
2

v1 = r − ρ1 6=

r−ρ2 = φ
k−1
2

v2 +φ
k+1
2

v2 , which implies φv 6= φw. Therefore, V Gr,k is irregular. By Proposition

11, V Gr,k has
(
r+k−2
r

)
vertices; hence, by Theorem 6, V Gr,k ∈M(r, k).
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1 1

1

1

2

2

2

VG2,4
+

v0

v1 v2

v5

v4 v3
2 2

2

1

1

1

1

1

VG3,3 x VG0,2

v6v7

v8 v9

1

Figure 9. V G3,4 = V G+
2,4 ∪ (V G3,3 × V G0,2)

Suppose k is even. The only arcs which could be duplicated are those added with
voltage k

2 when creating V G+
r−1,k. However, these arcs are added so that the labels of the

two vertices add to n− 1, where n is the number of vertices in Gr−1,k. Since for different

values of r, the number of vertices in Gr−1,k differs, no multiple arcs with voltage k
2 are

added. Therefore, V Gr,k is a simple voltage graph.
By the induction hypothesis, the voltage codes of vertices in V Gr,k−1×V G0,2 are distinct,

as are the voltage codes of vertices in V G+
r−1,k. Moreover, φ

k/2
v = 0 for every vertex v in

V Gr,k−1×V G0,2, and φ
k/2
v 6= 0 for every vertex v in V G+

r−1,k. Hence, V Gr,k is irregular. By

Proposition 11, V Gr,k has
(
r+k−2
r

)
vertices and thus, by Theorem 6, V Gr,k ∈M(r, k). �

By Definition 7, V Gr,k ∈ M(r, k) implies that the natural coloring of its derived graph
achieves the bound given in Theorem 1. Hence, Theorem 13 establishes the sharpness of
the bound for k ≥ 3.
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