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1 INTRODUCTION 
 
In a previous report1 we described an investigation into the normal modes of an 18 inch crash 
cymbal. Various experimental methods were used in turn including electronic speckle pattern 
interferometry (ESPI), laser vibrometry and Chladni sand patterns as well as more conventional 
approaches involving transducers and accelerometers. Over 100 modes, plus many split 
“degenerate” partners, were found and identified. The results were compared with the predictions of 
a finite-element model and the requirements of group representation theory. Although overall 
agreement was good it was found that, contrary to prediction, the vast majority of patterns produced 
were of mixed symmetry types. This could not be explained by conventional mode coupling 
because all the modes involved had high Q values, of the order of 103 as measured by the decay 
method. We have further investigated some of these mixed modes by using ESPI and laser 
vibrometry simultaneously. Additionally the combination of ESPI and laser vibrometry has been 
used to study the modes of a 12” ridged cymbal. This is stiffer than the cymbal previously 
investigated and its profile does not include the ‘lip’ formed by a sharp change in slope close to the 
outside of the 18” cymbal. Profiles are illustrated in Figure 1. After reviewing some background 
theory and the previous results, we shall discuss some of the findings of these new experiments 
and their interpretation. 
 

 
Figure 1: Profiles of the two cymbals investigated. The 18” cymbal has a sharp change in slope at 
the radius indicated P. 
 
1.1 SOME BACKGROUND THEORY 

 
Cymbals can be regarded as perturbed flat circular plates with retained axial symmetry. The 
consequences are, as for any axially symmetric system2 that the normal modes occur in degenerate 
pairs whose modal functions vary like sin(mθ) and cos(mθ) where θ is the polar angle and m = 
0,1,2,... The nodal patterns therefore consist of m equally spaced “diameters” and n circles 
concentric with the rim. The value of m determines the symmetry type of a mode. Those with m = 0 
(axisymmetric) are exceptional in being singlets, the other modes all being doublets. Any 
degeneracies beyond these doublets are “accidental”, having no connection with the symmetries, 
and are expected to be rare. In practice the axial symmetry will always be broken, at least slightly, 
so the doublet frequencies are non-degenerate and the locations of the nodal diameters become 
fixed with those of one member being exactly midway between those of its partner. For the flat 
circular plate the label (m,n) identifies a doublet uniquely. While the label is also useful for cymbals 
it transpires that, as for bells3, the value of n can lead to ambiguities; for instance, two modes can 

Vol. 30. Pt.2 2008 
Page 460



Proceedings of the Institute of Acoustics 
 
 

have equal numbers of circles but located in different places. In the present report, when needed, 
we use subscripted labels A and B to differentiate between doublet members. 
 
 
2 REVIEW OF RESULTS 

 
 
2.1 MODAL FREQUENCIES 
 
The finite element model we used was fully described in the previous paper1, as were the 
experimental methods employed and the detailed process of mode identification. In Figure 2 we 
show an overall summary of the experimental data up to about 3000Hz for the 18” cymbal. A similar 
data set for the 12” cymbal is illustrated in Figure 3. 
 
We emphasise that, in line with the symmetry requirements, the model predicted all modes to be of 
pure symmetry types with those having m > 0 in exactly degenerate orthogonal pairs. The 
experiments confirmed that most of these modes were actually in the form of split pairs. The 
convention of always using the higher of the two, usually close, frequencies has been adopted in 
Figure 2 and other comparisons with theory presented later. Many of the gaps in the experimental 
data for the 12” cymbal are due to the presence of mixed modes which make the identification of 
modal frequencies very difficult as described below. 
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Figure 2: Summary of experimental data for 18” cymbal 
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Figure 3. Summary of experimental data for 12” cymbal. 

 
 

2.2 EXPERIMENTAL NODAL PATTERNS 
 
AN ESPI system4 was used to obtain nodal patterns using acoustic drive at low amplitude. Typical 
maximum amplitudes of oscillation for the strongest modes were of the order of 20μm with most 
modes having maximum displacements of  <  5μm.  Selections of  modal patterns for  the  18” 
cymbal are shown in Figure 4 and the 12” cymbal in Figure 5.  

 

 

 

 

 

 

 

 

 

Figure 4: Modes of the 18” cymbal 

(3,0) at 64 Hz (4,0) at 99 Hz (5,0) at 145 Hz (6,0) at 188 Hz

 
  Mixed (9,0) and (2,1) 

 
Mixed modes at 977 Hz 

 
       (8,0) at 285 Hz     (23,0) at 1864 Hz 

 
It is clear from Figure 2 that the n = 0 modes are the lowest frequency family. They are also the 
easiest to excite and differ from those with higher values of n in that they are subject to a more 
extreme form of inextensibility5. In Figure 4 we show the patterns of the n = 0 modes for m = 3-6, 8 
and 23 for the 18” cymbal. The lower modes are clearly all of pure symmetry types. As m increases 
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the evanescent region grows until, by about m = 8, the pattern has become restricted to the outer 
rim of the cymbal. This is just a reflection of the analytical forms of the Jm(kr) and is why they are 
sometimes called “rim modes”. For m > 8 the rim modes still appear but are usually accompanied 
by a pattern of lower symmetry type in the main body of the cymbal. Thus, for example, the (9,0) 
appears mixed with the (2,1). For m = 9–14 the mixing is always with a lone (m,1) mode. For m > 14 
mixing almost always occurs, sometimes with a mode of higher n or even with some indecipherable 
combination of higher modes. Only rarely are pure modes observed and the most common patterns 
are complicated mixed modes as in the 977 Hz example. 
 
The 12” cymbal displays a similar pattern but the mode spacing is greater, see Figure 3, leading to 
a greater number of observable pure modes. The same type of behaviour of the n = 0 modes is 
observed but, in this case mixing involving (m,0) modes is rare until m > 13. It is however observed 
for the (8,0) mode, see Figure 5. In the 12” cymbal many unusual, and theoretically impossible if 
pure, modes with 3-fold, 5-fold symmetry etc. are observed. Two of these are illustrated in Figure 5.  
 

 
2.3 THE MIXED MODES 

    (2,0) at 62 Hz (3,0) at 135 Hz     (5,0) at 459 Hz 
 

(10,0) at 971 Hz 

 (13,0) at 1421 Hz 
 

Mixed (8,0) and (1,1) 
 

Mixed modes 781Hz 
 

Mixed modes 1744 Hz 

Figure 5: Modes of 12” cymbal 

 
A study of all the nodal patterns obtained by ESPI shows that, especially for the 18” cymbal where 
the mode spacing is closer, there are actually very few pure symmetry type modes present. Careful 
examination of the data shows that modes only couple with others that are close in frequency, and 
usually only with their nearest neighbours. The pure modes are always ones that have no near 
neighbours at all. Figures 4 and 5 show that the low (m,0) modes are all of this type. Looking at the 
n = 0 curve in Figure 2 we see that, as m increases beyond its lowest values, new modes appear at 
regular small frequency intervals. The density of modes is quite high and, as the frequency reaches 
points where higher n values occur, further similar sets of contributions become apparent. The fact 
that most modes are split doublets will make the density higher still. The chance of any mode 
having a near neighbour is therefore high once the frequency exceeds that of the lowest (m,0) 
modes. It seems reasonable that this high density might cause coupling because the neighbouring 
spectral curves could overlap.   
 
Figure 6 shows part of the spectrum of the 12” cymbal obtained by driving it acoustically and 
detecting the output with the laser vibrometer. Clearly most of the peaks are extremely sharp, 
meaning high Q values and little likelihood of resonance curves overlapping. The results for the 18” 
cymbal are very similar. To confirm this, the Qs of the peaks for both cymbals were measured using 

Vol. 30. Pt.2. 2008 
 

Page 463



Proceedings of the Institute of Acoustics 
 
 

the decay method. They were almost all of the order of 103 or greater for all modes, including the 
mixed ones. 
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Figure 6: Resonances of the 12” cymbal 

 
 

2.4 A CASE STUDY: {(2,1) + (9,0)} 
 
As an example we consider the lowest frequency case of mode mixing in the 18” cymbal. This is 
between the (9,0) and the (2,1) modes. These nearest neighbours are separated by no more than 
15Hz. Looking at the appropriate region of the frequency spectrum we would expect to see four 
peaks, two from each split pair. Figure 7, which is a detailed section of the 18” cymbal spectrum, 
shows that four is exactly what is seen, and the extreme peak sharpness is again evident. Table1 
lists details of the four peaks, including their Q values as measured by the decay method.  
 
 

Table 1: Details of the {(9,0) + (2,1)} peaks in the 18” cymbal 
 

 

Frequency (Hz) Pattern observed Q (±10%) 

339.1 (2,1)A  +  (9,0)A 4300 
343.1 (2,1)B   +  (9,0)B 3600 
346.9 (2,1)B  +  (9,0)B 4500 
354.3 (2,1)A  +  (9,0)A 5600 
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Figure 7: Details of resonances between 330 and 370 Hz 

 
 
 (a) 339.2 Hz {(2,1)A+(9,0)A} (b) 343.0 Hz {(2,1)B+(9,0)B} 

 
(c) 346.8 Hz {(2,1)B+(9,0)B} (d ) 354.2 Hz {(2,1)A+(9,0)A} 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: [(9,0) + (2,1)] mixed modes 
 
Driving the cymbal acoustically with low amplitude at the frequency of the lowest of the four peaks 
gave the mixed mode shown in Figure 8(a). At resonance the vibrometer was used to detect the 
surface velocity of the cymbal at a point along a radius half way between the centre and the edge. A 
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Fourier transform of the vibrometer output was used to obtain a power spectrum and search for the 
frequency components of the oscillation.  Despite the pattern being mixed, only one significant peak 
was observed in the spectrum and this was at the driving frequency. Harmonics of the driving 
frequency were also observed, but these were typically at least 30 dB lower in amplitude than the 
driving frequency response. Repeating this procedure with the other three peaks shown in Figure 7, 
and described in Table 1, produced very similar power spectra and their patterns are shown in 
Figure 8. The fact that all four observed patterns are mixed underlines the difficulty of uniquely 
identifying the modes; the question being which two peaks should be taken as corresponding to 
which two split partners? Fortunately, they are close enough in frequency for the choices made not 
to have much influence on the appearance of the family curves in Figures 2 and 3. It should be 
noted that, at or near a peak, the patterns all remained mixed no matter how low the driving 
amplitude.  
 
A detailed look at the four mixed patterns is revealing. Cases (a) and (d) both contain the same 
(2,1) component while the other two contain its partner, with the diameters rotated through  45°. 
Identifying the (9,0) components is more difficult because a rotation of only 10° is involved and there 
is some distortion. However, it appears that (a) and (d) both contain the same component while (b) 
and (c) both contain the orthogonal one. This is counterintuitive as one might expect each of the 
four to uniquely couple with each of the other pair. However, higher frequency clusters seem to 
follow a similar pattern, although the components of the rim modes become increasingly difficult to 
distinguish. In particular {(6,1) + (12,0)} seems to behave in exactly the same way. As one goes to 
yet higher frequencies the patterns become, in general, ever more difficult to decipher making it 
difficult to be certain that the coupling always follows this pattern. Similar mixing is observed with 
the (8,0) and (1,1) modes in the 12” cymbal: an example of one the four patterns from this set is 
shown in Figure 5. The same difficulty in deciphering the modes involved in the mixing also arises 
at higher frequencies in the 12” cymbal. 
 

 
3 DISCUSSION 
 
The question remains as to what is the mechanism for coupling the various split doublet 
components together. The original experiments were carried out with the 18” cymbal and it was 
initially considered possible that the sharp slope change near the outer edge might contribute to the 
generation of the mixed modes. However, similar behaviour is observed in the 12” cymbal which 
has a continuous slowly curving profile so the effect must be common to cymbals in general. The 
high Q values seem to rule out the normal linear explanation since, when looked at in detail (see 
Figure 7), there is virtually no overlap of the resonance peaks. 
 
The cymbal is very well known as displaying non-linear and even chaotic behaviour6,7. The 
vibrations of the cymbal have been recorded using the laser vibrometer at each of the observed 
modes and Fourier Transforms of the data made. These showed no evidence of significant 
amplitude harmonics or sub-harmonics being involved in the coupling, as were observed by Legge 
and Fletcher8 who reported amplitudes of vibration of up to 2mm. Indeed it is clear from the FTs that 
only one significant frequency is present in any of the modes when acoustically excited at low 
amplitudes. However, these non-linear phenomena were easy to provoke and generation of 
significant harmonics was observed when the amplitude of cymbal vibration exceeded 20 µm. Thus 
it is clear that the cymbal displays non-linearity down to very small amplitudes, but not at amplitudes 
as low as those reported in this work.  
 
Modes with m>0 always occur in ‘degenerate’ pairs and it is observed that mixing only occurs 
between near neighbours. Since the ‘degenerate’ pairs are mainly split there is a significant 
perturbation present in the cymbal. The precise nature of this is unknown. First-order perturbation 
theory predicts not only the splitting of the frequencies of the pairs but also the perturbed modal 
functions as linear combinations of the unperturbed ones9. The magnitude of the contribution of 
each unperturbed mode is inversely proportional to the frequency difference between the 
unperturbed mode frequencies. Thus near neighbours tend to couple far more strongly than remoter 
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ones. Therefore the mode coupling we are seeing is almost certainly via the perturbation 
mechanism rather than non-linear effects.  
 
The odd symmetries observed in some of the patterns can also be explained via perturbation 
theory. These also occur in closely spaced groups of similar symmetry. For example the 5-fold 
symmetry example shown in Figure 5 has three other 5-fold symmetry neighbours at 1745, 1755 
and 1758 Hz. These can be explained as mixing between the (10,1) and (5,3) modes. Other odd 
symmetry patterns can be similarly explained. 

 
 

 
4 CONCLUSIONS 

 
The normal modes of both crash and normal cymbals are well understood in a general way; 
however, large numbers of unexpected mixed symmetry patterns occur. The mixing cannot be 
explained by conventional theory because Q values are very high and the resonances do not 
overlap. The modes which do mix together are always near neighbours in terms of frequency. The 
observed mixed mode patterns can all be explained in terms of first order perturbation theory. 
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