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Thermal conductivity of thermoelectric Si0.8-Ge0.2 alloys 
D. P. Whitea) and P. G. Klemens 
Department of Physics and Institute of Materials Science, University of Connecticut, Storrs, 
Connecticut 06269-3046 

(Received 14 October 1991; accepted for publication 30 January 1992) 

The thermal conductivity of heavily doped, n-type Si-Ge alloys has been studied from 300 to 
1200 K. The scattering rate of several phonon scattering mechanisms has been calculated, 
including intrinsic scattering, mass defect and distortion scattering, phonon-electron scattering, 
and scattering by inclusions. These rates were then used to calculate the lattice thermal 
conductivity. The electronic component of the thermal conductivity was calculated from the 
calculated Lorenz ratio and measured values of the electrical conductivity. The total thermal 
conductivity was then compared to measured values for a specimen studied by Vining et al. [J. 
Appl. Phys. 69, 15 (1991)]. 

1. INTRODUCTION 

The thermal conductivity of thermoelectric materials 
is of interest because the efficiency of thermoelectric power 
generators is directly related to the dimensionless figure of 
merit, 

ZT = S2T/pk = (S2/L) [k/(k, + k,)] 

where S is the thermoelectric power, p is the electrical 
resistivity, k is the thermal conductivity, k, and kl are the 
electronic and lattice components of the thermal conduc- 
tivity, L is the Lorenz ratio, and T is the temperature. To 
effect improvements it is important to characterize the 
mechanisms that determine their lattice conductivity. 

In this paper the phonon relaxation rates for the rele- 
vant interaction processes are presented and the thermal 
conductivity is calculated from these relaxation times using 
standard theory.iT3 Different processes are important in 
different frequency regimes, and are needed in combination 
to reduce kl. The interaction of phonons with electrons is 
shown to be sufficiently strong in the materials doped for 
optimal performance to overshadow the phonon scattering 
by grain boundaries in the relevent frequency range. It is 
also shown that the scattering of phonons by unionized 
donors, a mechanism first proposed by Keyes,4 is a signif- 
icant source of phonon scattering in these materials at 300 
K but becomes less significant at higher temperatures. The 
frequency regime of the phonon spectrum that carries most 
of the thermal current in these materials is identified, so 
that further work on reducing the lattice thermal conduc- 
tivity may concentrate on that frequency regime. 

II. INTRINSIC SCATTERING 

It can be shown, e.g., Klemens,2 that the scattering of 
phonons by three-phonon umklapp processes may be de- 
scribed by a relaxation time of the form 

1 1 w2 T 
-=- 
ri rosl,G’ (1) 

‘)Current address: Oak Ridge National Laboratory, Oak Ridge, Tennes- 
see 37831. 

where r. is a constant of the dimension of time, o is the 
phonon frequency, @g is the Debye frequency, T is the 
temperature, and 0 is the Debye temperature. The intrin- 
sic thermal conductivity is given by the integral 

ai=; OD 
s 

7i(0)V2C(O)d0, (2) 
0 

where C(w) is the contribution to the specific heat and u is 
the phonon velocity. Substituting pi from Eq. ( 1) into Eq. 
(2) and using the high-temperature limit for the spectral 
specific heat, the intrinsic relaxation time can be expressed 
in terms of the intrinsic thermal conductivity by 

1 ‘%D 1 
;. = yyq z w2, (3) 

where kB is the Boltzmann constant. The intrinsic thermal 
conductivity of the alloy is calculated as follows. The 
intrinsic conductivity obtained by Leibfried and 
Schloemann’ is of the form 

Ai= C (4) 

Here C is a constant, M is the mass per atom, y is the 
Grueneisen constant, a3 is the volume per atom, and h is 
Planck’s constant. This was done by linearly interpolating 
the values of C, M, a, and 0, for an 80% Si 20% Ge alloy 
between Si and Ge, using the conductivities of Si and Ge 
measured by Glassbrenner and Slack.6 

Ill. POINT DEFECT SCATTERING 

It can be shown”* that the relaxation rate for mass 
defect and distortion scattering is given by 

where 

E= 1 Ci[(l -M/Mi) -t (9~/2)(1 -a/a) 

X (1 - Ci)K/Cip]‘- (6) 
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The sum is over the components of the alloy, ci is the 
concentration of species i, K is the bulk modulus of the 
matrix, p is the shear modulus of the matrix, ai is the 
lattice spacing of species i, h4 = Z$?fMI, a = Z$piy K 

= BgFiyandpi = Zggb 

IV. GRAIN-BOUNDARY SCATTERING 

The form assumed for the relaxation rate due to 
boundary scattering was 

1 U 
T=i9 (7) 

where I is the average diameter of the grains that make up 
the material. 

While the actual mechanism of grain-boundary scat- 
tering is not yet understood in detail, experimental evi- 
dence suggests that this is of the right magnitude,’ partic- 
ularly as the average grain diameter is not easy to 
determine in polycrystalline specimens. 

V. PHONON-ELECTRON SCATTERING 

The phonon relaxation time due to the interaction with 
free electrons was calculated using a momentum balance 
argument. This procedure necessitates describing the de- 
parture from equilibrium of the phonon and electron dis- 
tribution functions and relates the phonon relaxation time 
to the electron relaxation time. lo The departure from equi- 
librium of an electron distribution in the presence of an 
electric field can be written in the form 

(8) 

where ,% = $i’vd, ud iS the electron drift velocity, +i is h/27r, 
k is the electron wave vector, and je is the equilibrium 
electron distribution function. Similarly the departure from 
equilibrium of a phonon distribution in the presence of a 
temperature gradient is given by 

anp 
n = (12-q) -7gy) (9) 

where E = ti, q is the phonon wave vector, Nc is the 
equilibrium distribution, and 2 is at this point an arbitrary 
vector. 

ap, 2rntF 
-=- 
aA 3fikT’ 

Since $ = &kT this becomes 
The rate integral for the phonon-electron interaction 

contains the term 
ape nfl -=- 
a;l fi' 

f(k’)[l -fWlIN(q) + 11 -fW[l --f(k’)lN(d, where n, is the electron density. 
(10) 

wheref = jc + g, andi? = Nc + n. Substituting in Eqs. 
(8) and (9) into this expression it is found that it is sta- 
tionary only if Iz is common to both the electron and pho- 
non distributions. If the /2’s differ the rate integral is pro- 
portional to the difference. Thus if the time rate of change 
of the phonon gas momentum is equated to the rate of 
change of the electron gas momentum a momentum bal- 
ance condition can be described, 

It is now left to obtain an expression for 7,. Assuming 
the electronic conductivity to be given by u 
= (np2Te)/(m), where e is the charge of the electron, re 

may be determined from measured values of (T. However 
this expression takes account of intravalley and intervalley 
scattering of electrons. Phonons that promote intervalley 
scattering have a wave vector much greater than the great- 
est interacting phonon wave vector q. and were excluded 
from the phonon momentum because they are strongly 

(11) 

where P, is the electron momentum and Pp is the phonon 
momentum. Assuming relaxation times T, and rp for the 
electrons and phonons, respectively, this condition be- 
comes 

ape i ap, i --=-- 
ak, a/z+ (12) 

thus the “momentum capacities” aPJa;l and aPda/z and 
the electron relaxation time must be determined in order to 
determine the phonon relaxation time. The phonon mo- 
mentum capacity may be expressed in terms of the phonon 
heat capacity as 

aP, 1 CPT 
-=- 
aA 32%. (13) 

This argument applies to metals as well as to semicon- 
ductors. In the latter case, since there is a maximum value 
for the electron energy, wave-vector conservation dictates a 
maximum interacting phonon wave vector and in the eval- 
uation of Cp it is necessary to consider only those phonons 
with wave number less than this maximum, qo. For 
Maxwell-Boltzmann statistics one can approximate the 
maximum electron energy to be kBT and thus 

q. = ; &&$f (14) 

where m is the electron effective mass. In the high-temper- 
ature limit 

T 3/2 

‘=3Jzrk# e , 
0 

(15) 

where x is the number of atoms per unit volume, qD is the 
Debye wave number, and a = 43( r/6) “‘( vma/h)3’2. 
The Maxwell-Boltzmann electron distribution is jc 
= exp[ - (E - c)/kT], where E is the electron energy 

and 6 is the chemical potential. The momentum capacity of 
the electrons may be expressed in terms of the total elec- 
tron energy $ as 

(16) 

(17) 
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TABLE 1. Calculated values of n, 7, S, Nd and Ndn. 

T 0 n, 
(K) lo4 (Qm)-’ (10” m-‘) 

300 10 6.61 
500 6.1 8.69 
700 5.3 9.40 
900 4.3 9.74 

1000 4.0 10.2 
1100 4.7 13.3 
1200 5.0 15.5 

s Nd Nd13 
g @V/K) (10z6 me3) (1O26 me3) 

1.90 - 115 2.61 1.95 
1.06 - 148 2.9 1 2.04 
0.43 - 178 2.43 1.49 

- 0.01 - 205 2.14 1.16 
- 0.15 - 213 2.14 1.12 
- 0.09 - 210 2.94 1.61 
- 0.06 - 208 3.55 2.00 

scattered by point defects. Thus in this momentum balance 
it is only valid to include contributions to the relaxation 
time that are due to intravalley scattering. The relaxation 
time for intravalley scattering of ,electrons by phonons will 
be estimated as re,intra = @r, where fl is the number of 
equivalent valleys in the conduction band, which is six in 
this case. Thus 

I v2 -=- 
re,intra Darn ’ (18) 

and thus 

1 n:e2v2 1 8 3/2 
-=-- - 

0 rp P/trkTaa T * (19) 

It is necessary to determine n, in order to evaluate rp’ This 
is done by analyzing the temperature dependence of the 
electrical resistivity. If n, were constant then p would be 
proportional to T and a slower increase is attributed to an 
increase in n,. Thus, knowing n, at one temperature one 
can determine it at other temperatures. In our analysis we 
have used the electrical resistivity curve and the value of 
n, at 300 K as determined from Hall measurements of 
Vining et al.” in order to determine n, at all temperatures. 

VI. NEUTRAL DONOR SCATTERING 

Neutral donor scattering was first seen by Goff and 
Pearlman” at low temperatures in Ge, and a theory was 
given by Keyes.4 While this process is particularly strong 
at low temperatures, it is by no means negligible at higher 
temperatures in the heavily doped materials of interest in 
thermoelectric conversion, which have a large concentra- 
tion of neutral donors. The theory has been adapted to the 
Si symmetry” and will also be reported at a later date.13 
The form for the relaxation time due to neutral donor 
scattering was found to be 

$=Nd”(;)l($y&; (1 +$)-84, (20) 

where Ndn is the neutral donor density, E is the deforma- 
tion potential, A is the splitting of the degenerate donor 
ground state by the impurity potential, and a0 is the Bohr 
radius of the donor wave function. 

It is necessary to determine the number of neutral do- 
nors at different temperatures which is done as follows. 
The number of electrons in the conduction band n, is given 
by 

n,= 12 91r2(7?) 

and 
1 mJ 

qrl) = lY(j+1) s o lfe’-” de, 

and the number of unionized donors is given by 

1 
Ncin = Nd 

f exp[ (4 - f)/kT] + 1’ 

(22) 

(23) 

where Nd is the donor concentration and Ed is the donor 
energy. Combining these equations it is found 

&=6Nfl,,#7)[ 1 +2eXp(&Ed&Ec))], 
(24) 

where 

Using an expression for the thermoelectric power 

s2 2$$), 
e ( 0 

(25) 

(26) 

the Fermi level may be determined from measured values 
of S. Using these values of r] and Nd for a specific sample 
Eq. (24) can be solved for Ed - EC and Ndn = h’d - n, 
This was done at 300 K where a value of n, was known 
from Hall measurements. At higher temperatures the val- 
ues of n, at those temperatures determined from the tem- 
perature dependence of the electrical resistivity as de- 
scribed in the previous section were used to determine 71 
from Eq. (21) and these values of 7 were then used to 
calculate Nd from Eq. (24) and then Ndn = Nd - n,. 

VII. SAMPLE CHARACTERISTICS 

Calculations are based on the results of a specific 
Sie.8Geo,2 sample (no. 93) of Vining et al.” The calculated 
values of no Nd, Ndn, S, and n are shown in Table I. The 
other material constants used were A = 4.3 MeV and Z 
= 7 eV.14>15 These are the values for P in Si; It is not 

known how alloying affects these values. The values of 
ao, shear modulus, bulk modulus, lattice spacing, velocity, 
and Debye temperatures for Si and Ge are shown in Table 
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TABLE II. Material constants. TABLE IV. Calculated lattice thermal conductivity. 

Constant Si Ge 

Lattice Spacing* (A) 2.715 2.830 2.738 
Mass ( 10 - 26 kg) 4.668 12.06 6.15 
Debye temperature’ (K) 645 374 591 
Sound velocity’ (lo” m/s) 6.6 3.98 6.08 
Bulk modulus’ (lo’* dyn cm - 3, 0.979 0.732 0.930 
Shear modulusC 0.666 0.530 0.638 
Radiuse (A) u,, 20.7 45.5 25.7 

Tee Ref. 16. 
bsee Ref. 17. 
‘See Ref. 18. 
dSee Ref. 19. 

II and were linearly interpolated for a 8O%Si 20% Ge 
alloy. A value of 2 was also assumed for the Grueneisen 
constant in all cases. 

VIII. BOUNDARY SCATTERING VERSUS PHONON- 
ELECTRON SCATTERING 

For the sample for which the thermal conductivity was 
calculated the average grain diameter was I = 1.8 
x 10-6mandthus 

1 
-=3.38x109 s-l. 
Tb 

(27) 

This compares to the phonon-electron relaxation times 
shown in Table III. Thus the phonon-electron scattering is 
stronger than the boundary scattering at all the high tem- 
perat ures. 

IX. THERMAL CONDUCTIVITY CALCULATIONS 

Using the above relaxation times, the thermal conduc- 
tivity was calculated using the theory of Callaway: 

(62) “3 k3 T3 
KI=~$~ U 

where 

s 
8/T X48 

II = 
0 rc (d;- l)TdX, 

12 = 
s 

%‘T rc x48 
dx, 

0 7, (e” - 1)2 

TABLE III. Phonon-electron relaxation rates. 

kt 
Temperature 

(W m-‘K-l) 
Difference 

(K) Neutral scattering No neutral scattering (%) 

300 3.8 1 4.71 19 
500 3.43 3.76 9 
700 3.03 3.31 8 
900 2.79 3.01 7 

lcilo 2.67 2.89 8 
1100 2.58 2.79 7 
1200 2.52 2.74 8 

(28) 
350 , I I I I I I I I 1 

300 10.5 
500 7.57 
700 4.83 
900 3.41 

1000 3.09 
1100 3.52 
1200 3.62 

I3 = 
s 

e/T rc x48 
dx, 

0 Gp (8 - 1>2 

where x = fzm/kT, r, is the relaxation time for normal 
processes, r,- ’ = r[ ’ + rP) ‘, rP- ’ = ~,~j- ‘, and therjare 
the relaxation times for the various resistive scattering pro- 
cesses. r, has been estimated by Abeles” as r; ’ 
= 2.5riW ‘, where ri is the intrinsic relaxation time. The 

calculated lattice thermal conductivity is shown in Table 
IV with the neutral donor scattering included, and also 
with this mechanism excluded to show the effect of neutral 
donor scattering. 

X. SPECTRAL CONDUCTIVITY 

The spectral conductivity is the integrand of the ther- 
mal conductivity integral K = IK( o)dw. Figure 1 gives an 
example of the spectral conductivity. At the highest fre- 
quencies the spectral conductivity is low because of strong 
mass defect scattering, at low frequencies the spectral con- 
ductivity is low due to strong phonon-electron scattering. 
At intermediate frequencies there is a peak in the spectral 
conductivity and this peak occurs around the frequency at 
which mass defect scattering has the same strength as in- 

Temperature 
(K) 

l/r, 
(lOi s-‘) 

3300 - 

$ 250 - 

0 
:E 200 - 
5 
“g 150 - 
8 
?j loo - 

g 50 - 

20 40 60 80 100 
frequency (% of Debye frequency) 

FIG. 1. Spectral conductivity at 300 K. Frequencies are given as percent- 
ages of the Debye frequency (on = 7.73 x lOI s - ‘). Values of o. and 
o, as percentages of the Debye frequency in this case are 6.6% and 7.3%, 
respectively. (a) Spectral conductivity without neutral donor scattering 
included, and (b) spectral conductivity with neutral donor scattering 
included. These are plotted to show that part of the spectrum affected by 
neutral donor scattering. 

4261 J. Appl. Phys., Vol. 71, No. 9, 1 May 1992 D. P. White and P. G. Klemens 4261 



TABLE V. Calculated values of O, and w, S.SL, , , , , , , , , I-1 

T 
(K) (10’2oos-~) (lo’%‘) 

G 
o1 5.0 

s 
-” 4.5 
.z 
s 

3 4.0 
u 

300 4.39 5.63 
500 6.08 1.26 
700 7.54 8.59 
900 a.98 9.75 

loo0 9.53 10.3 
1100 9.92 10.8 
1200 10.2 11.3 

trinsic scattering w. and the cutoff frequency for the pho- 
non-electron interaction w, where 

2ks2q, ‘I2 
00 = 

( 1 rrAa3c 

and 

UC=7 \Izm’;lkB. (30) 

Both o. and w, increase as $T and this peak which carries 
most of the heat current moves up in frequency as temper- 
ature increases. Because the neutral donor scattering has a 
sharp cutoff it affects only phonons in this peak at the 
lower temperatures studied, which explains the larger ef- 
fect of neutral donor scattering at 300 K. Table V gives 
o. and CO, and Fig. 1 is an actual plot of the spectral 
conductivity. 

Xl. ELECTRONIC THERMAL CONDUCTIVITY 

The Lorenz ratio is given by 

-9, (31) 

where S is the thermoelectric power. Using the values of 7 
calculated previously, k, the electronic component at the 
thermal conductivity, was calculated and the total conduc- 
tivity k, + kl was then compared to the measured values 
for this sample” in Fig. 2. 

3 3.5 
8 

3.0 I I I I I I I I I I - 

200 400 600 800 1000 1200 
temperature (OK) 

FIG. 2. Thermal conductivity vs temperature. (a) Calculated thermal 
conductivity without neutral donor scattering included; (b) calculated 
thermal conductivity with neutral donor scattering included, and (c) 
measured values of the thermal conductivity. 

XII. INCLUSION SCATTERING 

The scattering of phonons by small insulating inclu- 
sions has been proposed as a possible mechanism for re- 
ducing the lattice thermal conductivity in Si-Ge alloys. In 
this treatment the inclusions are assumed to be spheres. 
Inclusions with a diameter greater than the phonon wave- 
length scatter as shadow scattering and the phonon relax- 
ation time is given by 

1 1 -=- 
T,i NAv (32) 

where v is the phonon velocity, N is the number of inclu- 
sions per unit volume, and A is the cross-sectional area of 
the inclusions. For inclusions of 40 A diameter the lattice 
conductivity has been calculated for 3%, 6%, 9%, and 
12% volume concentrations and the results are presented 
in Table VI. These results suggest that if neutral inclusions 
could be incorporated into these materials a substantial 
reduction in the lattice conductivity could be effected. 

TABLE VI. Lattice thermal conductivity (W m - ’ K - ‘) calculated with various values of the volume concentration c of inclusions with diameter of 
40 A. Columns labelled w/o are values calculated without considering neutral donor scattering; columns labeled w are values calculated with neutral 
donor scattering. 

Temperature 
W) 

c=o.oo c = 0.03 c= 0.06 c = 0.09 c=o.12 

w/o W w/o W w/o W w/o W w/o W 

300 4.71 3.81 3.12 2.97 2.67 2.61 2.42 2.38 2.25 2.22 
500 3.76 3.43 2.96 2.85 2.62 2.56 2.41 2.38 2.27 2.24 
700 3.31 3.03 2.76 2.67 2.50 2.45 2.32 2.29 2.20 2.17 
900 3.01 2.79 2.58 2.50 2.36 2.31 2.22 2.18 2.11 2.08 

loo0 2.89 2.67 2.51 2.43 2.31 2.26 2.17 2.14 2.01 2.05 
1190 2.79 2.58 2.45 2.36 2.27 2.21 2.14 2.10 2.04 2.02 
1200 2.14 2.52 2.42 2.32 2.24 2.19 2.12 2.08 2.02 2.00 
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