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Candy Crush Combinatorics
Dana Rowland

Dana Rowland (rowlandd@merrimack.edu) received her
B.A. from the University of Notre Dame and an M.S. and
Ph.D. from Stanford University. She is co-chair and
associate professor of mathematics at Merrimack College
in North Andover, Massachusetts. When she is not doing
mathematics or playing Candy Crush, Rowland enjoys
board games, hiking, soccer, and playing the bassoon.

Walk in to any waiting room and you are likely to find someone passing time playing
the game Candy Crush Saga. The game was launched on Facebook in 2012 by the
game company King and is played in over 200 countries on various mobile and web
platforms [1]. Although the game is free, it remains one of the top grossing iPhone
and iPad apps. Its addictive nature has captured the interest of students and faculty
alike. After seeing a student playing before class, I started thinking about some of the
interesting mathematical questions you can ask about Candy Crush. This paper is an
attempt to justify the many hours I have spent playing the game.

In Candy Crush Saga, differently colored candies are arranged in a grid. To clear a
level, the player must swap adjacent candies in order to match three or more candies of
the same color. A valid starting configuration of a game of Candy Crush will not have
3 consecutive candies of the same color in a row or column. Also, it must be possible
to swap two adjacent candies to obtain at least 3 consecutive candies of the same color.
This leads to two combinatorial questions:

• How many ways can you fill an m by n grid using q colors without three consecutive
candies of the same color?

• How many of those grids will contain a move?

We begin by answering these questions when m = 1; that is, Candy Crush on a line.

Candy Crush on a line, avoiding “three in a row”
In this section we construct 1 × n grids which avoid having 3 candies in a row of the
same color. Note that adjacent pairs of the same color are allowed—a valid configura-
tion might have as many as �n/2� adjacent pairs.

Let an be the number of ways to color a line of n candies using q colors without
coloring three consecutive candies the same color. It immediately follows that a1 = q
and a2 = q2. For n ≥ 3, note that a line of candy either ends with a single candy of
a color or pair of candies of the same color. A line of length n ending with a single
candy can be obtained in (q − 1)an−1 ways and a line of length n ending with a pair
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can be obtained in (n − 1)an−2 ways. Therefore, an , the total number of ways to color
a line of n candies without having 3 in a row, is given by the recursive formula

a1 = q, a2 = q2, an = (q − 1)(an−1 + an−2). (1)

By using the characteristic equation, we obtain the closed form

an =
q

((
q − 1 +

√
q2 + 2q − 3

)n+1
−

(
q − 1 −

√
q2 + 2q − 3

)n+1
)

2n+1(q − 1)
√

q2 + 2q − 3
.

Alternatively, we can obtain an expression for an directly by counting the number
of ways to get a line of candies which have at most two of the same color in a row.
To determine the number of configurations with exactly k pairs of the same color, for
0 ≤ k ≤ n/2, we split the n positions into n − k slots, where we will fill k of those slots
with pairs of candies of the same color and the remaining slots with single candies. See
Figure 1.

Figure 1. A configuration with n = 7 candies, k = 2 pairs, n − k = 5 slots, and q = 3 colors.

There are
(n−k

k

)
ways to determine which of the slots are filled with pairs. Candies

in adjacent slots may not be the same color, so there are q ways we can assign a color
to the first slot and q − 1 ways for each of the remaining slots. Thus, the number of
ways to fill in a 1 × n grid avoiding 3 in a row of the same color is given by

an =
�n/2�∑
k=0

(
n − k

k

)
q(q − 1)n−k−1. (2)

Candy Crush Saga begins with a 5 by 8 grid in Level 1 with six colors of candy. In
that case, (1) becomes an = 5(an−1 + an−2), a1 = 6, a2 = 36 and (2) becomes

an =
�n/2�∑
k=0

(
n − k

k

)
6 · 5n−k−1.

These yield a5 = 7,200 and a8 = 1,444,500, so there are 7,200 different possible start-
ing configurations for a particular column, and similarly there are 1,444,500 different
possible starting configurations for a given row in Level 1 of Candy Crush Saga.

A valid line of Candy Crush containing a move
We will say a line of candies is valid if it avoids three consecutive candies of the same
color and we say it contains a move if it is possible to swap adjacent candies in order
to get 3 candies in a row. In this section we count how many valid lines of length n
contain a move.
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Let c, d, and e denote distinct colors. Observe that

• Since a line does not have three consecutive candies of the same color, it must end
in one of the patterns ccd, cdc, cdd, or cde. See Figure 2.

Figure 2. Possible ending patterns for a line.

• A line contains a move if and only if at least one of the patterns ccdc or cdcc appears
somewhere in the line. See Figure 3.

Figure 3. A line with a move must contain one of these patterns.

For n ≥ 3, we can partition the set of valid lines into eight disjoint subsets depend-
ing on whether or not the line contains a move and on which of the four ending patterns
occur. These are shown in Table 1 along with the variables we use to count each type.

Table 1. Variables for the eight disjoint subsets.

does not contain a move contains a move

ends in ccd sn wn

ends in cdc tn xn

ends in cdd un yn

ends in cde vn zn

The number of lines in each of the subsets can be related through a system of recur-
rence relations. For example, sn is the number of valid lines of n candies that do not
contain a move and end with a ccd pattern. Such a line is formed by adding a candy to
a valid line of length n − 1 that does not contain a move and ends in a pair. The added
candy can be one of q − 1 colors—any color that is different from the final pair. Thus,
we see that sn = (q − 1)un−1.

Similarly, tn is the number of valid lines of n candies that do not contain a move
and end with an cdc pattern. Such a line is formed by adding a candy to a valid line
of length n − 1 that does not contain a move and ends with two distinctly colored
candies. Consider the three possible cases that end with two distinctly colored candies
and extend each line by matching the color of the new candy (position n) to the color
of the candy in position n − 2:

• If a line that ends in . . . ccd is extended to . . . ccdc, a move becomes possible.
• If a line that ends in . . . cdc is extended to . . . cdcd, no move will be created.
• If a line that ends in . . . cde is extended to . . . cded, no move will be created.

Thus we see that tn = tn−1 + vn−1.
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Similar arguments yield recurrence relations for the remaining sequences. For n ≥ 4
they are

sn = (q − 1)un−1, (3)

tn = tn−1 + vn−1,

un = sn−1 + vn−1,

vn = (q − 2)sn−1 + (q − 2)tn−1 + (q − 2)vn−1,

wn = (q − 1)yn−1,

xn = sn−1 + wn−1 + xn−1 + zn−1,

yn = tn−1 + wn−1 + xn−1 + zn−1,

zn = (q − 2)wn−1 + (q − 2)xn−1 + (q − 2)zn−1.

The initial values of each sequence can be easily calculated:

s3 = t3 = u3 = q(q − 1),

v3 = q(q − 1)(q − 2),

w3 = x3 = y3 = z3 = 0.

Let bn be the number of valid lines that contain a move. Then

bn = wn + xn + yn + zn = an − (sn + tn + un + vn).

Table 2 shows the percentage of valid lines that contain a move, for 5 ≤ n ≤ 10 candies
per line, assuming six possible colors of candy.

Table 2. The percentage of valid lines of length n that contain a move.

n bn an percentage

5 630 7,200 8.75

6 5,220 42,150 12.38

7 39,300 246,750 15.93

8 278,850 1,444,500 19.30

9 1,906,800 8,456,250 22.55

10 12,704,100 49,503,750 25.66

If we assume that each valid line is equiprobable, then in the 5 by 8 grid which
begins Level 1 of Candy Crush with six colors, we can expect on average only 0.965
of the 5 rows will contain an in-line move and only 0.7 of the 8 columns will contain
an in-line move.

In fact, most of the moves in Candy Crush are not of the in-line variety.

Two lines of candy
If we have a 2 × n grid, then there are (an)

2 possible configurations of candy place-
ments that will avoid having 3 in a row—any valid configuration of the first line can be
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paired with any valid configuration of the second line, so the product principle applies.
There are many more than (bn)

2 configurations that have moves, however!
In addition to the moves contained within a single line, we must consider the various

ways to fill a 2 × 3 grid so that it contains a move; see Figure 4.

421 653

Figure 4. Two adjacent circles can be swapped to obtain three black (red) circles in a row.

In each of the six cases, the circles shown as solid black (red in the color version)
can be colored in q ways. The gray (green) circle must be a different color to avoid 3
in a row, so it can be colored in q − 1 ways. Each white (yellow) circle can be filled in
with any color, as long as both are not black (red). Therefore, the pair of white (yellow)
circles can be filled in q2 − 1 ways. Thus, each case can be colored in q(q − 1)(q2 − 1)

ways.
Note there is overlap between cases, however. Figure 5 shows the intersections be-

tween pairs that can be colored in q(q − 1)2 ways—the black (red) circles can be any
of the q colors, and the gray (green) and white (yellow) circles cannot be the same
color as the black (red) circles.

6 ,26 ,15 ,1 5,34,34 ,2

Figure 5. These configurations contain more than one possible move.

Figure 6 shows the intersections between pairs that can be colored in q(q − 1) ways.

1, 4 2, 5 3, 6

Figure 6. These overlapping configurations use just two colors.

Therefore, the total number of ways to fill in a valid 2 × 3 grid so that a move is
possible is

6
(
q(q − 1)(q2 − 1)

) − (
6q(q − 1)2 + 3q(q − 1)

) = 6q4 − 12q3 + 3q2 + 3q.

There are a2
3 = (q3 − q)2 valid 2 × 3 grids. When q = 6, we see that 5,310 of the

44,100 valid 2 × 3 grids, or about 12% of them, contain a move.
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In theory, the number of 2 × n grids that contain a move can be expressed using
a system of recursive equations depending on the end behavior of the last 2 × 3 grid.
However, when q > 2, the large number of possible end behaviors makes this approach
impractical.

Licorice and coconut jelly beans
Suppose that after a sequence of successful color bombs, only two colors remain. Now
(1), the recursive formula for the number of valid lines of candy, becomes

a1 = 2, a2 = 4, an = an−1 + an−2.

Recall that Fn , the nth Fibonacci number, satisfies the same recurrence relation,

F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2.

In fact, when q = 2, we see that an = 2Fn+1.
Now consider the formula for bn , the number of valid lines that contain a move. The

system of recurrence relations in (3) simplifies to

sn = tn = un = 2,

vn = 0.

Since bn = an − (sn + tn + un + vn), the number of lines that contain a move is given
bn = an − 6 = 2Fn+1 − 6. The equality bn = an − 6 can be observed directly: If we
have 2 colors and need to avoid having three in a row of the same color, then the
first three candies in a line can be colored in six different ways. Each of these initial
colorings can be uniquely extended to a line of length n that avoids having three con-
secutive candies of the same color and avoids having a move. The last three candies
determine the color of the next candy to be added in order to preserve the property of
not containing a move, as shown in Table 3.

Table 3. How the last three candies determine the color of the next candy.

last three candies next color

BBW W
BWB W
BWW B

WBB W
WBW B
WWB B

With six colors we observed that about 12% of the valid 2 × 3 grids contain a move.
With only two colors, half of the valid 2 × 3 grids, 18 out of 36, contain a move. As n
increases, the percentage of 2 × n grids that contain a move also increases. We show
next that, when n > 5, only six of the 2 × n grids do not contain a move, so that the
number of valid 2 × n grids containing a move is a2

n − 6 = 4F2
n+1 − 6.

Consider the following labeling of two lines of candy.
(

c11 c12 c13 c14 c15 c16 . . .

c21 c22 c23 c24 c25 c26 . . .

)
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There are six valid ways to fill positions c11, c12, and c13. We claim that each choice
determines a unique 2 × n grid with no move. As an example, consider the case where
c11 = B, c12 = W , and c13 = B. We do not want the grid to contain a move, so the
choice of the first three candies determines the top row,

(
B W B W B W . . .

c21 c22 c23 c24 c25 c26 . . .

)
.

Note that c22 = W , else c12 and c22 could be swapped to match three of a kind. Simi-
larly, the colors c23, c24, and c25 are forced, giving

(
B W B W B W . . .

c21 W B W B c26 . . .

)
.

Finally, with c24 = W , we see that c21 must be black. Once the color of the first three
candies in a row is determined, the entire row is determined, so this forces a single
valid coloring with no move for the entire 2 × n grid.

The other five cases are similar. The choice of c11, c12, and c13 uniquely determines a
valid grid with no possible move. This proves that there are only six ways to complete
a valid 2 × n grid using 2 colors so that no move is possible.

Finally, with two colors, we show that every 3 × 3 grid contains a move.
⎛
⎝ c11 c12 c13

c21 c22 c23

c31 c32 c33

⎞
⎠

Without loss of generality, let c11 be black. First consider the case where c12 is the
same color. If c12 = B, then c13 = W in order to avoid three in a row and c23 = W to
avoid a move. ⎛

⎝ B B W
c21 c22 W
c31 c32 c33

⎞
⎠

Now c33 = B to avoid three in a row and c32 = B to avoid a move, so c31 = W to
avoid three in a row. ⎛

⎝ B B W
c21 c22 W
W B B

⎞
⎠

This grid cannot be completed—a black c22 would give three in a row while a white
c22 would make a move possible. Therefore, c11 �= c12. By symmetry we also know
c11 �= c21. Now consider the case when c12 = c21 = W .

⎛
⎝ B W c13

W c22 c23

c31 c32 c33

⎞
⎠

Candies c13 and c31 must both be black to avoid a move.⎛
⎝ B W B

W c22 c23

B c32 c33

⎞
⎠
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This forces c22 = W to avoid a move, which forces c23 = c32 = B to avoid three in a
row.

⎛
⎝ B W B

W W B
B B c33

⎞
⎠

Again, the grid cannot be completed—a black c33 would give three in a row (twice!)
while a white c33 would make a move possible. Therefore, it is not possible to complete
the grid if c11 �= c12. This proves that when only two colors are used, every valid 3 × 3
grid contains a move. Therefore, counting the number of valid m × n grids that contain
a move is the same as counting the number of m × n grids that avoid having three
consecutive candies of the same color.

Further questions to explore
Considering three or more lines of candy becomes quite a bit more complicated, even
with the simplifying assumption of only two colors. Counting the number of valid
configurations with a move on an m × n board when m and n are larger than 3 will
require new ideas. Here are some other directions to explore.

• In order to advance, players must match candies in more complex patterns. For
example, a wrapped candy results from matching candies in a T or L shape, and
a striped candy and color bomb result from matching 4 and 5 in a row, respectively.
Identify the set of possible configurations that allow a player to obtain one of these
patterns on the next move, or in k additional moves.

• In Candy Crush Soda Saga, an additional move is introduced: creating a 2 × 2 square
of the same color results in a jelly fish. How does this impact the number of valid
configurations that have moves?

Sweet! Happy crushing.

Summary. In the popular game Candy Crush, differently colored candies are arranged in a
grid and a player swaps adjacent candies in order to crush them by lining up three or more
of the same color. At the beginning of each game, the grid cannot have three consecutive
candies of the same color in a row or column, but it must be possible to swap two adjacent
candies in order to get at least three consecutive candies of the same color. How many starting
configurations are there? We derive recurrence relations to answer this question for a single
line of candy, and also for a pair of lines in the 2-color version of the game.
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