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1 Introduction

Created in 1974 by Erno Rubik, the Rubik’s Cube became one of the world’s best-ever
selling toys. Originally called the “Magic Cube,” the 3x3x3 puzzle’s objective is to maneuver
all the jumbled pieces on a pivot mechanism to regain their original, or solved, position.
Although the cube is not as widely popular as it once was, there are more competitions
to solve the cube than ever before. The World Cube Association is the governing body of
these competitions, “insuring fun, under fair and equal conditions.” [2] The most well-known
competition is speed cubing, which is solving a cube as fast as possible. However, many of
the insider tips and tricks of a speed solver would not be possible without an underlying
mathematical understanding of the Rubik’s Cube.

The first analysis of the cube was written by David Singmaster in “Notes on Rubik’s
‘Magic Cube’.” [19] Singmaster called the Rubik’s Cube the most educational toy ever in-
vented, sparking the minds of mathematicians, computer scientists, engineers, and children.
Many people have followed suit in researching different aspects of the cube. For example,
David Hecker and Ranan Banerji researched what they define as the “slice group” of a cube.
And, David Joyner has written about using math to not only solve the Rubik’s Cube, but
how one can use the same principles to solve most puzzle toys.

In this paper, I will discuss sections of Hecker and Banerji’s paper in detail to achieve
understanding of how group theory topics can be applied to the Rubik’s Cube in hopes
of solving it. First, I will discuss some necessary underlying understandings of a group
and definitions and notations needed. Following that, I will describe the structure and
arrangement of a cube, as well as “God’s number.” Then, I will focus on the Rubik’s Cube
as a group and use the “slice group” as an example of a subgroup. Lastly, I will describe
two ideas stemming from mathematics that speed cubers use.

2 Underlying Understandings

2.1 Group Theory

A group G is a set of elements on some operation, ∗, that:

• contains an identity,

Each group has some identity element, e, that when the group’s operation ∗ is
carried out with any other element, a, in the group, we get the same element a
back:

a ∗ e = e ∗ a = a.

For example, take the set of all integers under addition. We get an element
a+ 0 = a for elements in our set. See: 3 + 0 = 3.

• contains inverses,

For any element a in the group, there is some element a−1 that when the operation,
∗, is performed on the two elements, the identity e will result:

a ∗ a−1 = e
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a−1 ∗ a = e

As an example, in our group of all integers under addition, 3 + (−3) = 0.

• is associative on operation ∗, and

For elements a, b, and c in a group, these elements can be grouped together in
any order under the operation, ∗, and still be equivalent:

(a ∗ b) ∗ c = a ∗ (b ∗ c)

The associative property is always true for addition. For example, (1 + 2) + 3 =
1 + (2 + 3).

• is closed under the operation, ∗.

If elements a and b are in the group, then so will the resulting element when the
operation is performed on a and b:

a, b ∈ G

then
a ∗ b ∈ G.

Since in our example we are including all integers in our group, this property
holds true under addition.

With the above group G in mind, let H be a non-empty subset of G. Our subset H is a
subgroup of G if H is itself a group and satisfies the following axioms:

• if two elements a, b ∈ H, then so is element a ∗ b ∈ H,

• the same identity, e, of G is in H, and

• for every element a ∈ H, so is its inverse, a−1.

For an example of a subgroup, we can consider all even integers under addition. This
satisfies all the requirements as:

• an even integer plus an even integer is an even integer,

• zero is considered an even number, and

• we still have the inverses as we have included the negatives and positives.
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Some groups are also communicative: for all a, b ∈ A, we have a ∗ b = b ∗ a. This type of
group is called Abelian.

If we have two groups G1 and G2 with function f between the two groups that preserves
the operation of G1, then, f is a homomorphism from G1 to G2 if f(ab) = f(a)f(b) for
all a, b ∈ G1.

A kernel of a homomorphism is the set of all the elements in group G1 that map to an
identity element in another group, G2. It is a subgroup of G and measures how far the group
homomorphism is from being an injection.

ker(f) = {x ∈ G | f(x) = 1H} .

2.2 Permutations and Cycle Notation

A permutation of a set A is a function from A to A that is a bijection [6]. A permutation
allows us to rearrange elements included in a set and determine the number of possible
arrangements. For example, if the elements of our set were (3, 5, 7) these could be ordered in
6 different ways: (3, 5, 7), (3, 7, 5), (5, 3, 7), (5, 7, 3), (7, 3, 5), and (7, 5, 3). Therefore, there
are 6 possible arrangements.

With permutations, we give explicit instructions on where the elements map to. Using
our example above, we can instruct 3 to map to 7, 7 to map to 5, and 5 to map to 3.
This permutation can be written as (375) in cycle notation, which is just a notation for
explaining what elements maps to where. Since there are 3 numbers in our parentheses,
we can say this is a 3-cycle permutation. If there were only 2 numbers, it would be 2-
cycle permutations. If there were 4 numbers in the parentheses, this would be a 4-cycle
permutation and so on.

Cycles larger than 2 can be broken down further into a product of n number of 2-cycles.
Using our example above, (357) can be written as a product of two 2-cycles: (357)=(35)(37).
The number of 2-cycles a permutation can be broken down to determines if the permutation
is even or odd. If there are an even number of 2-cycles, the permutation is then even. If
there are an odd number of 2-cycles, the permutation is odd. A permutation is always even
or odd, never both.

2.3 Definitions and Cube Structure

Definition 2.1. Each side of a cube is known as a face.

There are 6 faces total.

3



Definition 2.2. A face is made up of 9 individual squares
called facelets.

In total, a cube has 54 facelets, as 9× 6 = 54.

Definition 2.3. Individual smaller cubes that make up the
whole larger cube are called cubies. These cubies can have
1, 2, or 3 different colored facelets.

There are seemingly 27 cubies; however, if one were to pull
apart a cube, there is no center cubie as it is actually the
mechanism that allows the cube to move. Therefore, there
are 26 cubies.

Definition 2.4. The tri-colored cubies that are located in
the corners of a cube are known as corner cubies.

In total, there are 8.

Definition 2.5. The double colored cubies that are located
on the edges of a cube are known as edge cubies.

In total, there are 12.

Definition 2.6. The single colored cubies that are located
in the center of a face are known as center cubies.

In total, there are 6, one for each face.

Definition 2.7. The slice group is a subgroup generated
by rotating the center layer, row, or column (depending on
cube orientation) of the cube 90◦ clockwise. This subgroup
is further explained in section 7.

In total, there are 3 moves that generate the slice group.
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Definition 2.8. When the cube is in its assumed “start” or
“solved” position of all faces having solid colors, it is called
a clean slate. In this state, cubies and facelets are in their
home position.

2.4 Notation

Each move of the cube will be explained as a rotation of 90◦ clockwise of a certain face
as denoted below. Inverses of these moves will be accompanied by superscript (−1).

3 How many ways can you arrange a cube?

While the number of ways a 3x3x3 Rubik’s Cube can be arranged may seem infinite,
there is actually a set number of ways it can be arranged. If we were to pull apart a cube
and lay the 26 individual cubies out, we can see there are 8 corner cubies that can be put
back together in 8! ways. These corner cubies also have 3 possible orientations as they have
3 different facelet colors on the corner cubies. For example, if the 3 colors on our corner
cubie are red, blue, and white, each of these colors has the same chance to be the facelet
on the top face: the white facelet on the top face with red and blue facelets below, the red
facelet on top with white and blue facelets below, or the blue facelet could be on the top
face with the red and white facelets below. This 3-possibility orientation holds true for all 8
corner cubies; thus, we have 38 possible orientations of the corner cubies.

Similarly, the cube has 12 edge cubies that can be put together 12! ways. These cubies
only have 2 different colored facelets, so there are only 2 possible orientations for these cubies.
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Thus, we have 212 possible orientations of edge cubies. Lastly, the cube’s center cubies are
fixed in their position and only have only possible orientation, giving us 1! arrangement with
16 orientations.

However, although there are 3 possible orientations of a corner cubie as previously dis-
cussed, only 1 of those orientations is correct for solving a Rubik’s Cube. We can, therefore,
say 1

3
of these cubies are in the correct arrangement. Also, only 1 of the possible 2 orienta-

tions for edge cubies is correct, or 1
2

of the total arrangements. Overall, only 1
2

of the total
cubies can be reached in the Rubik’s Cube group as only even permutations are found in
our group as discussed in the next section.

This explanation gives us the equation

8!× 12!× 38 × 212

(3× 2× 2)
≈ 4.3253× 1019.

Thus, there are approximately 4.3253×1019 permutations of ways a cube can be arranged.
The exact number is 43, 252, 003, 274, 489, 856, 000. [13]

4 Permutations and Cycles of a Cube

We can apply the mathematics of permutations to the Rubik’s Cube by labeling each of
the facelets with numbers. For the center facelet of each face, we will not label it with a
number, however, as it is a fixed position so it does not move. Instead, it is labeled with the
corresponding letter. As seen in the figure below. [11] [8]

Now, looking at the top face (U) alone, we can turn the face 90◦ clockwise to get a new
arrangement. Notice that the edge cubies always switch with other edge cubies and the
corner cubies switch with corner cubies. Below is the explicit mapping of how the individual
cubies are rotated when the whole face was rotated.

Edge Cubies:
2→ 5
5→ 7
7→ 4
4→ 2

Corner Cubies:
1→ 3
3→ 8
8→ 6
6→ 1

[8]

6



Writing this in cycle notation, we get

(2574)(1386).

These 4-cycles can be broken down into products of 2-cycles, resulting in

(25)(27)(24)(13)(18)(16).

In terms of the cube, this just shows we can interchange the cubies paired together. From
here, we can notice that there are six 2-cycles, signifying our permutation for the top face
(U) is even. This example holds true for a 180◦ clockwise rotation, as well as the inverse of
both rotations. The number mappings may be different, but the number of 2-cycles is the
same. This shows that for any rotation of the top face (U) , there is an even number of
2-cycles; solidifying that the top face U is an even permutation.

Using the process described above, we can apply this to each of the other faces of a cube.
It is then obvious that (F,R, L,B,D) also result in even permutations. Thus, every possible
permutation of the cube is even. [8] This is relevant in determining the total number of
permutations of a cube as explained in the previous section.

5 God’s Number

In July 2010, Tomas Rokicki and his team were researching the minimum number of
moves necessary to solve a 3x3x3 Rubik’s Cube, assuming perfect knowledge of how to solve
a cube. Previously, it was shown that the cube could be solved in 26, 25, and 22 moves,
getting smaller each time with more research. Rokicki’s research focused on what is known
as half-turn metric, which is when both a 90◦ and 180◦ rotation of the cube is considered
a single move. What resulted is now known as God’s number. God’s number, 20, is the
maximum number of moves needed to solve the most jumbled Rubik’s Cube assuming you
have perfect knowledge of the cube. In other words, if you could just look at a cube and know
the exact moves you would need to solve it, it would take 20 moves or less to put the jumbled
cube back into its solved state. In this section, we will use Rokicki’s paper, The Diameter
of the Rubik’s Cube Group is Twenty [17], and corresponding website, cube20.org [16], to
explain how this number was found.

Rokicki explains the idea that most people solve a Rubik’s Cube using a layer-by-layer
approach, starting with the top one. Although a large number, the top layer has a set number
of possible configurations for its corresponding cubies. Only 8 of these 9 cubies are movable,
however, as the center cubie is fixed in its position. By hand, it would be impossible to
calculate how far each cubie is from a solved top layer. But, this is relatively easy for a
computer with the right programming. Rokicki further explains that the computer program
he and his team designed generated pattern databases for the top layer that included several
best options for how to solve this layer.

From here, we notice that solutions for the top layer also give us some solutions for
the cube as whole. Given a certain arrangement of the whole cube, the pattern database
was programmed to recognize top-layer arrangements that have already been solved and
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find solutions quickly to the whole cube. This is possible by breaking the cube down into
smaller sets. This thinking was applied to all faces of the cube, generating multiple pattern
databases with even more “best” solutions. However, some patterns were discarded as they
overlapped with others previously found. Using this thinking, in total, the cube was broken
down to 2,217,093,120 sets of 19,508,428,800 possible arrangements of the cubies. These
billions of sets were further broken down to 55,882,296 sets as symmetry ruled out more
possible solutions. [16] For example, we could solve the cube one way; but, if we started by
flipping the cube over then solve it, we would still use the same moves as the first way.

Essentially, the mathematicians reduced the number of arrangments that needed to be
checked to 55, 882, 296 sets, plugged the arrangements into a specially designed computer
program, and let the computer check all the most efficient ways to solve the different arrange-
ments through their pattern databases. Then, Rokicki and his team came to the conclusion
that the most complicated and jumbled cubes can be solved in 20 moves or less.

6 Rubik’s Cube Group

We are exploring the Rubik’s Cube as a visual representation of a group. In our group,
G, the elements of the set are the moves generated by the traditional (R,L, U,D, F,B)
rotations. For example, R is a single move, U is a different single move, but the combination
RU is also considered a third separate move. Our operation for group G, ∗, is the physical
movement of the cube.

We need to make sure the four properties of a group are satisfied by our group:

• Identity - Our identity in the cube group is when the cube does not change from one
arrangement to another. No physical movements are performed.

• Inverse - For every move, M , in G, there is an inverse M−1 also in G, such that
M ∗M−1 results in where we started. This is true for every move M . In terms of the
cube, M−1 means to undo the move we just did. If we turned a face 90◦ clockwise, we
can turn the same face back 90◦ counterclockwise and undo the first move.

• Associative - We must show that for any three moves M1,M2,M3, we get the same
result regardless of the grouping order the moves occur in. Let C show the movement
of any cubie when moves are performed:

Starting with only two moves, performing move M1 on C moves C, we can then make
the move M2 which moves C again to M2(M1(C)).

Keeping this thinking in mind, we just need to add another step to show associativity.
Starting with move M1 on C, we can then make the move M2 which moves C again to
M2(M1(C)). Finally, we make a third move M3 which moves C a third time, resulting
in (M3(M2(M1(C)))). Thus, (M1 ∗M2) ∗M3 = M1 ∗ (M2 ∗M3).

• Closed - G is closed as for any two moves M1 and M2 in G, M1 ∗M2 is also in G under
our operation. This can be considered closure by design as our group is generated by
the moves of a cube.
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It is important to note that our group is not an Abelian group, as ordering the moves
in different orders produce different results. It is, however, possible for subgroups to be
communicative.

7 The Slice Group

7.1 Slice Group is a Subgroup

As defined above, a subgroup is a non-empty subset of a group G that is itself a group,
H. The Rubik’s Cube is filled with multiple subgroups: the slice group, antislice group, the
squared slice group, to name a few. In this section, we will focus on the slice group of a
Rubik’s Cube as described by Hecker and Banerji [7].

The slice group is said to be “the small subgroup of the cube generated by turning only
the center layers of the cube.” There are three combinations of moves that generate the
slice group. Hecker and Banerji denote these moves as F,R, and D. However, this notation
is already used. For the purpose of clarity, in this paper we will use X, Y, and Z as the
notations for the slice moves. The table below shows the relationship between the original
notation, the moves, and then the notation used in this paper.

Hecker and Banerji’s Notation Moves Notation for this Paper
F BF−1 X
R LR−1 Y
D UD−1 Z

Let us check that the slice group, denoted as H for all three slice moves, is in fact
a subgroup. In this subgroup, our elements are the movements of X, Y, and Z and our
operation, ◦, is the same as our group G. If we look at X, Y, and Z as functions, then our
operation, ◦, is a composition of functions. Using a subgroup test, we can see if H is a
subgroup of G.

• Nonempty: we have 3 moves, their inverses, and the identity,

• Identity: performing no movements of the cube, and

• Inverses: For every move, N , in H, there is an inverse N−1 also in H, such that N ◦N−1

results in where we started. This is true for every move N . If we turned a slice 90◦

clockwise, we can turn the same slice back 90◦ counterclockwise and undo the first
move.

Thus, our slice group, H, is a subgroup.
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7.2 Noticeable Mentions within the Subgroup

7.2.1 Corner Cubies

When rotating a slice of the cube, moves (X, Y, Z), notice that all the corner cubies
remain in a corner spot, regardless of how many times we move the middle layers (slices).
This fixed position can be considered the identity on the corner cubies. Hecker suggests
using these fixed cubies as benchmarks for which face is which. The set of the 8 corner
cubies can be denoted as S8, which maps to G, as some set of moves in G rearranges the
corner cubies. Thus, we have a homomorphism as φcornercubie: G→ S8, where this defines a
specific permutation of the corner cubies.

7.2.2 Edge Cubies

Looking at a Rubik’s Cube’s center cubies, we can picture a cross formed of the edge
cubies surrounding the center cubie. Each time we perform a slice, the corresponding edge
cubies move in the direction of that slice. These cubies are paired together in each slice
movement. Looking at the center cubie, the edge cubies on the same parallel as the slice
being performed move together. For example, looking at slice move X, the edge cubies above
and below the center cubie move together. This holds true for every slice (X, Y, Z).

Thus, we can divide the edge cubies into three sets, denoted as EX , EY , and EZ , where
the sets are comprised of the edge cubies that are contained in each specific slice move. Since
these edge cubies move along with the center cubies, we can we get a homomorphism from
our large group G to the sets EX , EY , and EZ : φedgecubie : G→ En. We can denote these as
φX , φY , and φZ . These give us the specific permutations of individual slice moves.

Similarly, we can define all 12 edge cubies as S12. There is also a homomorphism from
G to S12 using the same idea as mentioned for S8. This homomorphism φedgecubie: G→ S12

gives us the permutations of edge cubies for all slice moves.

7.2.3 Center Cubies

Now, recall that our center cubies are in a fixed position and only have one possible
orientation. Because of this, the center cubie always remains in a center position for all
slice moves (X, Y, Z). Hecker describes this as the six center cubies being closed under the
operation ∗ in G, which recall is the set of all possible moves and combinations of moves
on a Rubik’s Cube. We will denote the set of the six center cubies as S6. Since the set of
center cubies is closed under operation ∗, we can say that S6 is homomorphic to the group
G: φcentercubie : G → S6. This gives us the specific permutation of a center cubie, which we
know is fixed.

8 Whole Cube Homomorphism

Recall that a homomorphism preserves the operation between two groups. If we look at
our standard 3x3x3 Rubik’s Cube, we have the moves (R,L, U,D, F,B) which generates all
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possible moves and combinations of moves, group G. The operation of this group G is the
composition of these moves.

Now, if we look at a smaller 2x2x2 Rubik’s cube, the movements to solve this smaller
cube are the same (R,L, U,D, F,B) moves and with the same operation of composing the
moves; let us call this group J . The operation is the same on both G and J , so we can say
that there is a homomorphism between the two groups: φ : G→ J .

9 Solving the Puzzle

9.1 Commutators and Conjugates

Since there are many possible ways to solve a cube, it can be overwhelming to try to
memorize multiple algorithms. To reduce the number one needs to memorize, professional
solvers rely on ways to cut memorization out and go with their intuition, in a wise way.
They use what are called commutators and conjugates.

9.1.1 Commutators

Say you have a cube almost solved, but a few cubies are out of place. While the physical
moves of a Rubik’s Cube are not commutative, a commutator may be helpful in solving the
cube. A commutator is a type of move that would be helpful in this situation, as it changes
only a few pieces, but changes nothing else.

The mathematical definition of a commutator of two elements a, b in group G is [a, b] =
aba−1b−1 [18].

Cube commutators are algorithms that follow the same form where the first move occurs,
then the second. Then, we need to undo the two moves. While this form can be true for
all movements of the cube, it is only useful when the cubies in the movements intersect or
overlap. For example, we can make the moves

RLR−1L−1

where no cubies intersect, but this commutator does not make any changes on the cube, so
using a commutator here is useless. However, if we make the moves

RDR−1D−1

the cube is changed where the cubies intersect. The rest of cube was not changed in these
motions. These types of moves are useful when trying solve a cube in cases where you need
to change the orientation or position of certain cubies while leaving others in their current
spot.

9.1.2 Conjugates

In group theory, we can define a conjugate as ghg−1 where g, h ∈ G. Before discussing
the specifics of conjugates to the cube, we will explore equivalence relations. A relation
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∼ on the set A is an equivalence relation provided that ∼ is reflexive, symmetric, and
transitive.

Let our relation ∼ be conjugacy. We will show that conjugacy is an equivalence relation.
So if for some element g ∈ G, x ∼ y then, gxg−1 = y. To be an equivalence relation, we
must satisfy the three properties.
• Reflexive: gxg−1 = x, if g = 1, so then x ∼ x.

• Symmetric: If x ∼ y where gxg−1 = y, we can multiply to isolate x and get x = g−1yg.
Then, y ∼ x.

• Transitive: If x ∼ y and y ∼ z where y = gxg−1 and z = hyh−1, we can combine the
equations to get z = hgxg−1h−1 = (hg)x(hg)−1. Then, x ∼ z.
[1]

Conjugates having to do with a Rubik’s Cube are algorithms that also follow the form
described above.. However, this form for a cube is a set of “set-up” moves (g), a main
algorithm (h), and then we undo the set up moves

(g1). Conjugates are very helpful when you know an algorithm you’d like to perform,
but need to get the cubies in a certain position to make this algorithm possible:

LF then a known algorithm, then L−1F−1.

For example, say we know an algorithm to change the orientation of two corner cubies
that are parallel to each other, but the cubies we need to change are diagonal to each other.
We could perform “set-up” moves to get the cubies parallel. After they are parallel, we can
perform our known algorithm to change the orientation, and then undo the “set-up” moves
that made them parallel. As a result, we would have the corner pieces in the orientation we
want and in the position they started in.

10 Conclusion

We discussed many basic group theory principles and applied them to a Rubik’e Cube.
If you so wish, there are many more principles to discuss such as equivalence classes, isomor-
phisms, or a deeper knowledge of center cubies in the slice group. And, of course, you can
go ahead and try to solve a Rubik’s cube.
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