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Abstract.  Positive realness is a very important tool for the achievement of hyperstability 
and passivity of dynamic systems. This paper is devoted to extend some positive realness 
results of transfer functions in the presence of point-delayed delayed dynamics. Sufficiency-
type conditions which guarantee the positive realness of delayed transfer functions under 
point delays are given. The value of the direct input-output interconnection gain is seen to 
be crucial in the performed analysis. The relevance of the results in potential applications 
rely in the importance of the hyperstability property of closed-loop systems under non-linear 
and time-varying controller devices. In fact, if the feed-forward controlled plant has a strictly 
positive real transfer function, then the closed-loop system is asymptotically hyperstable, 
that is, globally asymptotically Lyapunov’s stable for any non-linear time-varying controller 
which belongs to a hyperstable class defined as that which satisfies a Popov’s type inequality. 
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1. Introduction 
 
It is well- known in the background literature the key role of the positive realness properties in certain extended 
stability results like hyperstability and passivity. Intuitively speaking, positive realness of a dynamic system in 
the feed-forward loop of a closed-loop configuration of a control system guarantees that its input-output 
energy is non- negative for all time. This fact allows the closed-loop stabilization of controlled systems under 
very wide classes of non-linear time-varying controllers satisfying Popov’s type time-integral inequalities 
provided that the feed-forward loops are given by positive real transfer functions. Such a property is usually 
known as the closed-loop hyperstability property, that is, the global stability of the closed-loop system for all 
the class of controllers satisfying such Popov’s-type inequalities, [1-8]. It is of interest to investigate how such 
properties are kept in the presence of point delays in the feed-forward loops or, in other words, in the case 
when the feed-forward transfer function is subject to point delays. 

This paper presents some new positive realness results for transfer functions in the presence of dynamics 
involving point delays. Such delays become of inherent and relevant importance in modeling many real-life 
processes of biological, medical, motion or diffusion characteristics (see, for instance, [9–12]. A main 
motivation of the study in inspired in the  relevance of stability and absolute stability in the study of dynamic 
systems  used as models in problems of Mechanical Engineering, Electrical Engineering, Electric Circuitry  and  
Automation (see, for instance, [9], [11],  [13, 14] and references therein) and the fact that hyperstability is a 
generalized concept of absolute stability to the case when the nonlinear control device can be, in general, time-
varying rather than just static while the dynamics is subject to delays. Other references related to stability, 
hyperstability and positive realness with some applications can be found in [8, 15–20]. The approach which is 
used through the paper to deal with the positive realness of time-delay systems relies on the properties of the 
transfer functions rather than in those of the state-space descriptions as, for instance, in [21-22] and references 
therein. It is illustrated that positive realness of a delay-free transfer function can be lost in the presence of 
delays and that the delays are not favoring the achievement of the positive realness of a transfer function 
related to the delay-free case. These features are examined in Section 2 together with the description of known 
properties of delay-free transfer functions as well as the statements and proofs of some more related properties 
concerning the presence of delays. It is seen, in particular, that, if the real positivity in the delay-free case is not 
strict, then the property is easily lost in the presence of delays. Section 3 gives some results and proofs on 
positive realness for the case when the transfer function is composed of a parallel  time-delay free one with 
another one which is stable and subject to an external delay. Such a delay is physically associated to be present 
in either the input or the output of the dynamic system described by the second block of such a composed 
transfer function as it is common in certain physical systems like war/peace models, sunflower equation, signal 
transmission etc. . That section also includes other more powerful main results for the case when the transfer 
function is described by a quotient of quasi-polynomials composed of additive delay-free and delayed terms. 
That further description is, in particular, useful to describe the case of internal (i.e. in the state) delays. Finally, 
Section 3 includes also a further result by considering the case of a combined presence of internal and external 
delays, that is, in the state components and the input and/or output. Some numerical simulations are presented 
and discussed in Section 4 where some frequency responses and related Nyquist plots are given for transfer 
functions subject to internal and external point delays. The corresponding time responses under unity step 
inputs are also given. The applicability to control problems as well as a physical example which is  based on a 
proposed electric circuit subject to a delay are  given and discussed in section 6. Finally, conclusions end the 
paper. 
 

2. Extended Positive Realness Results 
 
Some useful definitions about positive realness to be used later on follow: 

Definition 1. A function  sG  of the complex variable  is , where 1i is the complex imaginary 

unit, is positive real   PRG  if  G  is real, i.e. if    sReGResReG  ) and   0sGRe  for all 0sRe . 

 

Definition 2.  PRG is strictly positive real   SPRG  if  PRG   for some real 0  where 

     sGsG ; Cs . 
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Definition 3.  PRG is strictly positive real in the particular case (  0SPRG ) if it is of the form  

   s´GssG 1 . 

 

Definition 4.  SPRG is strongly strictly positive real   SSPRG  if   0


sGRelim
sRe

. 

Observation 1: Note that  
 

     PRGSPRGSSPRG   but the reverse implications are not true, in general. 

 
   The following results emphasizes two facts, namely, a) the positive realness of a free-delay transfer function 
can be lost in the presence of  delays; b) the positive realness of a delayed transfer function is not necessarily 
achieved with the incorporation of delays. 
 

Proposition 1.  Assume that  PRG  and G  where  

       hctgReImG iiR GG:0   . Then    PResG hs  . 

 
Proof: Note that 

                  0   hsinGImhcosGRehsinGImhcosGReeGRe h
iiiii

i  

for some  0R if       hctgGReGIm ii  .                                                                          □ 

 

Proposition 2.  Assume that  PRG  and ´
G  where      hctgReIm´

G iiR GG:0   . 

Then    PResG hs  . 

 

Proof: Note that, since  PRG , there is  0R  such that 

          0   hsinGImhcosGReeGRe h
iii

i  

for some  0R if       hctgGReGIm ii  .                                                                                  □ 

Example 1. Take   s/sG 1  which is positive real. Then, 
 

0












 







 hsine
Re

h

i

i

 if 









h
,

h




0
.Thus, 

   PResG hs   for any given delay 0h . 

Example 2. Take   s/sG 1  which is not positive real. Then, 
 

0























 hsine
Re

h

i

i

 if 









h
,

h




2
. 

Thus,    PResG hs   for any given delay 0h . 

Example 3. Take  
bs

as
sG




  which is strongly strictly positive real if   0b,amin . Then, 

          
0

22

2







ba

hsinabhcosab
eGRe h 

 i
i  if 

h

n


2
 for any positive integer n . Thus, 

   PResG hs   for any given delay 0h . 

 
Properties of positive real functions. 
 

1. If  PRG  then it is analytic in the open right half-plane. 

2. If  sG  is rational then    sReGResReG   if the coefficients of its numerator and denominator 

polynomials are all real. 

3. If  PRG  with poles on the imaginary axis then they must be distinct and have positive residues. 

4. If  SPRG  then it is analytic in the closed right-half-plane (except for the case when  0SPRG ) , 

that it, HG so that if it is rational and proper then RHG . 
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          Observation 2: It is said that the transfer function  sG  is in the simplest particular case form following 

Popov’s classical terminology since it has a simple pole at the origin. 

5. If  PRG  then  PRG 1 . 

6. If  PRG  then its relative degree, or order, (i.e. its pole-zero excess)  is +1, -1 or 0. 

7. If  PRG  then   0iGRe ; R , if  SPRG  then   0iGRe ; R  and if  SSPRG  

hen   0iGRe ; Rcl . Because of the real axis symmetry property of the hodographs  iG  

for Rcl those properties are proved by just testing for all  00   RR , where 

  RRcl is the extended real line, i.e. the closure of the real set. 

8. If G  is rational and proper with real numerator and denominator coefficients then: a)   PRG  if 

and only if  it is either stable or critically stable with single poles all with positive residuals, and 

  0iGRe ;  0R ; b)  SPRG  if and only if it is in RH ,   0iGRe ;  0R and 

  02 





iGRelim ; c)  SSPRG  if and only if  it is in RH and   0iGRe ;  0R and 

  0





iGRelim . 

9. If a proper complex function  SSPRG  then it has necessarily a zero relative degree. 

10. A rational complex function  0SPRG  if and only if   0sGIm ´  for all 0sRe  and some 

real 0 , where    sGssǴ   . 

11. If  0SPRG and proper then  sǴ is of relative order of at most 1 and of strictly Hurwitz 

numerator and denominator polynomials (then  sǴ being biproper, i.e. proper with proper inverse 

so that with zero relative degree, and in RH ) with 

             iii ǴIm´GRe *
       0  iiii

´´ GReGRe ;  0Rcl   

       where the superscript * denotes the complex conjugate; or  sǴ  has relative order +1 with       

       Hurwitz numerator and Hurwitz denominator if  sG  is biproper (since then  sǴ  is not proper   

       and has a zero-pole cancellation at s=0). 
 
Proof of Properties 10-11 
 
Direct calculations yield: 
 

 
   

2222 


















ii
i

ǴImǴRe
GRe ; R  ,  

   Then, if   0iǴIm ;  0R : 

 

 
 

0





i
i

ǴIm
GRe ;  0R  

Note that there is a cancellation at 0  in the above formula, since  0SPRG , so that   00 iGRe , since,  

and also 
 

    02   ii ǴImGRe ;  Rcl  

 

so that   SPRǴ  since         iii GImGImǴRe   ;  Rcl  and 

        000000  GImGImǴRe
 

since    0GIm  since  0SPRG . Then   0iǴIm ; 

 0Rcl and, because of the symmetry of the frequency response hodograph,   0iǴIm  Rcl . 

Property 11 is proved and Property 10 is equivalent.                                      □ 
 

Properties 7-11 are used for the proofs of most of the  subsequent results on positive realness. 
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Define the following amounts for subsequent developments: 
 

  0:00  sResGRemind  

  0:  sResGRemind ddm  

  0:  sResGRemaxd ddM  

 
Note that such numbers are the input-output interconnection gains of the respective transfer functions . 

In the event any of them is nonzero the corresponding transfer function is biproper, that is, it has the same 
number of poles and zeros so that its inverse is also physically realizable. 

The following results hold: 
 

Assertion 1. Assume that      sGsGsG d 0  and that  SSPRG 0 . If  0dnd then  SSPRG . 

 

Proof: Since  SSPRG 0 , 00 d  then RH0G  is of zero relative  degree, thus proper but not strictly 

proper. Also, since 0dnd  then  PRGd  . Then,   000
0




dddsGRemin dn
sRe

.                               □ 

Assertion 2. Assume that      sGsGsG d 0  and that  SSPRG 0 and 0dnd . Then  SSPRG  if and 

only if dndd 0 . 

 

Proof:   00
0




dn
sRe

ddsGRemin  and sufficiency follows.    

    The necessity follows since the contrary constraint dndd 0  leads to the contradiction 

00 0  dndndn dddd .                                                                                                                 □ 

 

3. Extended Positive Realness Results in the Presence of  Point Delays 
 
The subsequent result concerns a transfer function subject to a delay- free component together with a parallel 
point delayed  contribution. 
   

Assertion 3. Assume that      sGesGsG d
hs

h
 0  for any given delay 0h and that 1dnd . Then, the 

following properties hold: 
 

(i) If  SSPRG 0  then  SSPRGh  . 

(ii) If  SPRG 0  then  SPRGh  . 

(iii) If  PRG 0  then  PRGh  . 

 

Proof: Since  SSPRG 0 then 00 d with RH0G  being of zero relative degree. Also, since  1dnd  

then  SSPRGd   and   
 RHsGe d

hs  with   0
0




sGeRemin d

hs

sRe
 so that    PRsGe d

sh  . Thus, 

  00
0




dsGRemin h
sRe

 and  SSPRGh   leading to Property (i). The proofs of Properties [(i)-(ii)] follow in 

the same way.                                                                                                                                               □ 
 

Assertion 4. Assume that      sGesGsG d
hs

h
 0 for any given 0h and that   RHsGd with 

dMd dG 


. Then, the following properties hold: 

 

(i) If  SSPRG 0  then  SSPRGh  if  dMdd 0 . 

(ii) If  SPRG 0  then  SPRGh   if dMdd 0 . 
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(iii)  Assume that      sGsfsGd 0 . Then, Property (i) (respectively, Property (ii) ) holds if  sf  is rational 

with strictly  stable poles or constant satisfying  



 


00 d

d
fsfsup dM

sRe

 with dMdd 0 (respectively, with 

dMdd 0 ) if    


i
R

´´ GsupsG 00

0
  ( 1i ) ,where     000 dsGsG ´  is strictly proper. 

 

Proof: Since  SSPRG 0 then 00 d  with RH0G  being of a zero relative degree. Also, 

      dMdd
sh

d
sh

sRe

dGsupsGesGeResup 










i
R00

. Then,   00
0




dMh
sRe

ddsGRemin  and

 SSPRGh  .    Property (i) has been proved. The proof of Property (ii) is close with 

  00
0




dMh
sRe

ddsGRemin  leading to  SPRGh  . Property (iii) is proved directly from Properties (i)-(ii) 

by taking into account that: 
 

         dM
´sh

d
sh ddfdsGsfesGe  








000  .         

                                                                                                                                                                   □ 
    The following result is concerned with positive realness conditions independent of the delay size  for a 
special transfer function which  has the arbitrary point delay h acting jointly as an internal delay on the state 
and an external one on the output. 
 
Theorem 1. Consider a delay-dependent state-space realizable transfer function of the form: 
 

  
   

   sDesD

sNesN
sG

d
hs

d
hs

h 








0

0  (1) 

where  sN0 ,  sD0 ,  sNd ,  sDd  are polynomials such that  


i
R

00
0

GRemind


 ,      sD/sNsG 000   

and      sD/sNsG ddd   are proper,  and  

 

 
     

   




 ii

iii

i
R d

h

dd

DeD

GDN
supd


 




 0

0
0

0

 (2) 

 
The following properties hold: 

 

(i) If    sD/sDd 0  is strictly bounded real (i.e. it is in RH with real coefficients and with H norm being 

strictly less than unity) then  hse,sp   is Hurwitz irrespective of the delay size and  SSPRGh   for the 

given delay h  . 
 

(ii) If    sD/sD d0  is strictly bounded real (i.e. it is in RH with real coefficients and with H norm being 

strictly less than unity) then  hse,sp   is Hurwitz irrespective of the delay size and  SSPRGh   for the 

given delay h . 
 

(iii)   SSPRGh   is guaranteed in  Properties [(i) -(ii)]  irrespective of the delay size if  

 

 
     

   



 ii

iii

R d

dd

DD

GDN
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




 0

0
0

0

 (3) 

 

Proof: Note that  sGh can be rewritten by separating the delay- free  sG0  part and delay-dependent part as 

follows:  
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d
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d
hs

h 0
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Then,  
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    sGsGRe h 0  

 
 

   

 

   
 
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
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


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
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sDe

sDesD

sNe

d
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d
hs

d
hs

d
hs

0

00

 (6) 

 

which  implies that   0sGRe h  for 0sRe  if  

 

 

 
     

   



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h
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sRe DeD

GDN
supdsGRemin


 




 0

0
00

0
0  (7) 

since then  
 

    
     

   
0

0

0
0 








 sDesD

sGsDsN
sGResGRe

d
hs

dd
h  (8) 

 

for 0sRe , where the above H - norm exists if      sDesDe,sp d
hshs   0  is a Hurwitz quasi-

polynomial.  Sufficient conditions for that are proved in Lemma A.1 below. Note that  
 

                                                          sD/sDesDe,sp d
hshs

00 1    

                                                                         sD/sDeesD d
hshs

d 01                                              (9) 

 
Lemma A.1 (Auxiliary lemma in the proof of Theorem 1). The following properties hold: 
 

(i) If  sD0  is Hurwitz and    sD/sDd 0  is proper and strictly bounded real then  hse,sp   is 

Hurwitz. 

(ii) If  sDd  is Hurwitz and    sD/sD d0  is proper and strictly bounded real then  hse,sp   is 

Hurwitz. 
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Proof: Note that      sDesDe,sp d
hshs   0 so that, if        sDsDesDe,sp d

hshs
00    for 

is and all  0R , equivalently, if 
 
 

 
 

100

0








 i

i

R dd D

D
sup

sD

sD
then  hse,sp   and  sD0  have the 

same number of zeros (i.e. none) in 0sRe  from the Rouché theorem on zeros within the region whose 

frontier is  the closed contour, a Jordan curve,  defining the closed right- half-place. As a result,  hse,sp   is 

Hurwitz since  sD0  is Hurwitz and Property (i) is proved. Property (ii) is proved in the same way via the 

alternative identity  
 

     sDesDe,sp hs
d

hs
0 

.    

                                                          
 End of proof of Lemma A.1.                                                                                                                      □ 
 

   Note that, since 00 d  necessarily under the constraint 
     

   




 ii

iii

i
R d

h

dd

DeD

GDN
supd


 




 0

0
0

0

,  then 

00 d  and  sG0 is strictly proper. Since    sD/sN dd  is proper by hypothesis then  sGh  is strictly proper. 

Therefore, since  00 d  then  sG0 and   sGh  is in  SSPRRH  since  sD0  and  hse,sp   are Hurwitz 

from Lemma A.1 (i) ,    sD/sDd 0  is proper  and strictly bounded real, and 
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0
0 


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
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sGsDsN
sGResGRe

d
hs

dd
h . 

 
   Property (i) has been proved. Property (ii) follows in a similar way by using Lemma A.1 (ii).   Property (iii) 
follows since 

     
    








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
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

 



 ii

iii

R d

dd

DD

GDN
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0

0
0

0

 

 
 (which is a condition independent on the   value of  h )  
 

                       
     
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




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



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0

0
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R
ii

iii

i
R

h;
DeD

GDN
supd

d
h

dd








.                         

                                                                                                                                                                 □ 

   The ordinary differential equation associated with the transfer function  sGh  under a piecewise-

continuous forcing function RR 
0

:u  is: 

 

                htuDNtuDNhtyDDtyDD dd  00  (10) 

 
subject to any given initial conditions where the Laplace operator s  has been formally replaced with the time- 

derivative operator dt/dD   . If    sDssD n
00   is a monic polynomial of degree n  being non less than 

that of  sDd  then the above differential equation becomes: 

 

                   htuDNtuDNtyDDhtyDDty dd
n  00  (11) 

 

for any initial conditions    00 i
i yy   for 110  n,...,,i . Now assume that there are two delays involved in 

the transfer function which takes the form: 
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  
   
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sG

d
sh́

d
hs

´hh 








0

0
 (12) 

 
with hh́  so that  its associated differential equations becomes: 
 

                                                                 h́tyDDty d
n   

            htuDNtuDNtyDD d  00  (13) 

 

for any given initial conditions for any initial conditions    00 i
i yy   ; 110  n,...,,i . Now, note that 
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Then, 
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  15) 

 
Then, Theorem 1 becomes extended as follows for the case of the two distinct delays h  and h́ under a 

similar proof: 
 
Theorem 2. Consider a delay-dependent state-space realizable transfer function of the form: 
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with hh́   where  sN0 ,  sD0 ,  sNd ,  sDd  are polynomials such that  


i
R
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GRemind
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 , 

     sD/sNsG 000   and      sD/sNsG ddd   are proper,  and  
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0
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 (17) 

 
The following properties hold: 

 

(i) If    sD/sDd 0  is strictly bounded real (i.e. it is in RH with real coefficients and with H norm being 

strictly less than unity) then  sh́e,sp   is Hurwitz independent of h and irrespective of the size of h́ and 

 SSPRGhh   for the given delays 0h  and 0h́ . 
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(ii) If    sD/sD d0  is strictly bounded real (i.e. it is in RH with real coefficients and with H norm being 

strictly less than unity) then  sh́e,sp   is Hurwitz independent of h and irrespective of the size of h́ and 

 SSPRG ´hh   for the given delays 0h  and 0h́ . 

 

(iii)   SSPRG ´hh   is guaranteed  in Properties [(i) -(ii)] irrespective of the delay size provided that 
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. □ 

 

Now, consider a transfer function in the simplest particular case     s/sGsG ´
´hh´hh  with h́h  , where 
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0  with hh́  so that  its associated differential equations becomes: 
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for any given initial conditions for any initial conditions    00 i
i yy   ; n,...,,i 10 . Note that the above 

theorem is useful to describe the presence of internal, i.e.  in the state, time delays by observing that a sate 
vector taken with the output by incorporating its appropriate time-derivatives will have present the delay in 
the state components.  
 

Theorem 3. let a transfer function in the simplest particular case be     s/sGsG ´
´hh´hh  with h́h  , where 
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   sD/sN dd  are biproper,  and  
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The following properties hold: 

 

(i) If    sD/sDd 0  is strictly bounded real (i.e. it is in RH with real coefficients and with H norm being 

strictly less than unity) then  sh́e,sp   is Hurwitz independent of h and irrespective of the size of h́ and 

 SSPRGhh   for the given delays 0h  and 0h́ . 

 

(ii) If    sD/sD d0  is strictly bounded real (i.e. it is in RH with real coefficients and with H norm being 

strictly less than unity) then  sh́e,sp   is Hurwitz independent of h and irrespective of the size of h́ and 

 SSPRG ´hh   for the given delays 0h  and 0h́ . 

 

(iii)   SSPRG ´hh   is guaranteed  in Properties [(i) -(ii)] irrespective of the delay size provided that 
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Proof: From Property 11,    0SPRsG ´
´hh  if  sG ´

´hh  is stable and biproper with    0ii
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´hhGRe ; 

 0R . The last condition can read equivalently  
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Define: 

      *NNN  iiiii 0001            *DDD  iiiii 0001   

       *ddd NNN  iiiii 1           *ddd DDD  iiiii 1  (19) 
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and then 
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As a result, the proof of Theorem 3 follows as that of Theorem 2 under the replacements:  

 

    ii 010 NN    ;       ii 010 DD   

    ii 1dd NN    ;       ii 01dd DD    

                                                                                                                                                                (21) 

;  0R  by noting that  
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is the same condition as 
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4. Numerical Simulations 
 
This section contains some numerical examples illustrating the results introduced in the previous Section 3, 
in particular concerning Theorems 1 and 2. To this end, consider the transfer function (1) with the 
polynomials given by: 
 

)s()s(N 2420  , 4213)( 2
0  sssD , 3)s(Nd , 12)(  ssDd . 
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The time delay is given by 52.h  s while 656000
0

.)(GRemind
R


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


i . Moreover, both )(0 sG  and 

)(sGd  are proper, and 
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    Figure 1 shows the frequency response of the instrumental transfer function 
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0  marking its peak value at 0.6031. 

 
 

Fig. 1. Frequency response of )(Gins i  with its maximum value.  

 
     Now, we are in conditions of applying Theorem 1. In this way, the transfer function 
 

4213
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is strictly bounded real since it is stable with stable inverse while 11539.0
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
sD

sDd . As a consequence, 

)()(),( 0 sDesDesp d
hshs    is Hurwitz regardless of the delay and  SSPRGh   for the delay 52.h 

secs., according to Theorem 1(i). Furthermore, we have that condition (3) holds since 
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and we can conclude from Theorem 3(iii) that  SSPRGh   regardless of the delay and not only for the 

particular case of 52.h  secs. In order to check that ),( hsesp   is Hurwitz we may consider the equation 

0)()(),( 0   sDesDesp d
hshs , implying 0

)(

)(
1

0

 hsd e
sD

sD
, and plot the Nyquist diagram of the 

transfer function hsd e
sD

sD
sH 

)(

)(
)(

0

 .  Since )(0 sD is Hurwitz, so will be ),( hsesp   if the Nyquist plot of 

)(sH  does not encircle the point (-1, 0). The following Figure 2 displays the Nyquist plot of )(sH for two 

different values of the delay. It can be observed that the point (-1, 0) is not encircled any time (in fact, this 
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point does not even appear in the figure since it would be displaced too much to the left) and ),( hsesp   is 

Hurwitz for the two delays considered as example, as Theorem 1 predicts. 

 
 

Fig. 2. Nyquist plot of )(sH for two different values of the delay. 

 

Now, consider the transfer function defined by Eq. (16) with the same polynomials as before and 4'h

secs. . We again have 656000
0

.)(GRemind
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
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i , both )(0 sG  and )(sGd  are proper, and 
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Figure 3 depicts the frequency response of the instrumental transfer function 
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Fig. 3. Frequency response of )(Gins i2  with its maximum value.  

 

Thus, )(/)( 0 sDsDd  is strictly bounded real and from Theorem 2(i) we can conclude that ),( 'shesp   is 

Hurwitz regardless the values of the delays h and h’. This fact is corroborated by the Nyquist plot of 
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shd e
sD

sD
sH '

0 )(

)(
)('  in the same way as before. The following Fig. 4 displays the Nyquist plot of )(' sH  for 

4'h  secs. and 6'h secs., as example. It can be deduced from Fig. 4 that the point (-1,0) is not encircled 
any time resulting in a stable polynomial for any value of the delay, as Theorem 2 claims. In addition, we may 

test the stability of )(' sGhh  by applying a unity step input to it. Thus, Fig. 5 displays the step response of 

)(' sGhh for different values for the delays. The figure contains the cases when 0 'hh , 52.h  secs. and 

4'h s, and 9h secs. and 5'h secs.. It can be observed from Fig. 5 that the output is bounded and 

converges to a constant value in all cases, implying the stability of )(' sGhh , as concluded from Theorem 2. 

 
 

Fig. 4. Nyquist plot of )(' sH for two different values of the internal delay. 

 

 
 

Fig. 5. Step response for )(' sGhh  and various internal and external delays h and hph́  . 

 

Furthermore, from Theorem 2(i),  we can also deduce that  SSPRGhh '  for the particular iternal and 

external delays 52.h  secs. and 4'h secs..  However, in this case the condition (iii) of Theorem 2 is not 
satisfied since 
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Consequently,  SSPRGhh '  independently of the delays and Theorem 2 inform us that the  SSPR  

condition must be checked every time for every pair of delay values. Finally, Fig. 6 depicts the polar plot of 

the frequency response of )(' iGhh for the delay-free and the case of 52.h  secs. and 4'h secs. .  It can be 

observed that the presence of delays visibly modifies the frequency response of the system, fact that points 
out the complexity of dealing with time-delay systems. In this way, the presented methods offer a valuable 
tool to study the stability and sensitivity with respect to delay of such systems.    

 

 
 
Fig. 6. Frequency responses of )(G 'hh i  without delay and for 52.h  secs. and 4 hp'h secs. 

 
5. Some Applicability Discussion  
 
We pay now attention to two control configurations displayed in block diagrams in Figs. 7 and 8 
below which involve the presence of point delays and which adjust to the theoretical formalism of 
the above sections. We also present later on a physical example concerning positive realness which 
adjusts to the numerical examples discussed in the above section. 
 

 
 
Fig. 7. Closed-loop control system with delayed feedback. 
 

The proposed methods can used to analyse the stability of feedback control loops involving time delays 
in a variety of situations. For instance, Fig. 7 displays a closed-loop control system with a delayed feedback. 
These systems arise, for example, when a sensor delay appears in the output measurement system. The closed-
loop transfer function is: 
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 

   

        hsesCsMsCsN
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which is a particular case of (1). In this way, Theorems 1-3 can be used to analyse the stability of the closed-
loop system in the presence of the sensor delay along the potential dependency of stability with delay 
(sensitivity analysis).  

Thus, the above closed-loop configuration could play the role of a feed-forward block which has a  
transfer functions which adjusts to the theoretical framework of the above sections and contain delays. If a 
minimum input-output interconnection gain to achieve the requirements on strict positive realness is needed 
then such a gain could be incorporated from the input r to the output y. If the resulting transfer function, 
subject eventually to delays, satisfy the requirements for strong strict positive realness of the given theoretical 
framework then any controller (being, perhaps, nonlinear and time-varying) belonging to any hyperstable 
class of controllers being defined as the class which satisfies a Popov’s type inequality of the form below: 

 

       dyrt
0 for all 0t  

 
and any given finite positive real constant  . Any controller within such a class is valid to generate  the  

controlled plant  feedback input  tr  to the feed-forward controlled plant . The whole configuration of  

controlled plant ( feed-forward loop) and any controller of the given hyperstable class gives as a result that  

   tE0 , where        dyrtE t
 0  is the input-output energy for any .t 0 See [1,4, 7, 16 ]. The inequality 

that the energy is positive comes from the positivity of the feed-forward loop which is the central framework 
in this paper. The boundedness of the energy comes from Popov’s inequality being satisfied by any controller 
in such a class. The final result is that the closed-loop system is globally asymptotically hyperstable, that is, 
globally asymptotically stable for a feed-forward plant, with eventual point delays, which is strongly strictly 
positive real and any controller which satisfies Popov’s inequality.  
    Other alternative control schemes can also be represented in closed-loop form by equations that are 
particular cases of (1). For example, Figure 8 displays other example when the plat itself possesses a delay. 
 

 
 
Fig. 8. Closed-loop control of a delayed system with delayed feedback. 
 

In this case, the transfer function is: 
 

 
 

   

       
sh́
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since the term sh́e appears in a multiplicative way, since it is an external delay (i.e. either in the input or the 
output), it does not threaten the stability of the closed-loop and can be omitted in the subsequent stability 
and delay sensitivity analysis. Consequently, the methods introduced in this paper could be applied to the 
transfer function, which is also a particular case of (1).  In this way, the proposed approach is revealed as a 
method with important applications to Engineering Systems. 

We now discuss the positive realness issues of a simple practical example with engineering insight which 
is worked from an analytic point of view. The involved transfer function is subject to feedback and includes 
a delay.  This example is a practical case study which adjusts to the discussions of Section 4 and which can 
be interpreted as several alternative possible particular cases of the mathematical results of Section 3. 

Consider a series RLC electric circuit which has a tandem of a voltage source and a current source 
described by the equation: 
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   
 

     0
1

0
c

t
vdi

C
tiR

dt

tdi
LtiKtv     

 
In particular, the current-dependent voltage and the resistor R are equivalent to a whole resistor of value 

 KR   which is positive if KR  , null if both are identical and negative if RK  . This delay-free circuit is 

discussed in [23]. See also, for instance, [24-26] for other implementations involving positivity or passivity 

issues. Assume that a transformer of gain d is coupled in series with a current-dependent voltage source of 

gain  , the current being that generated from the above part of the circuit subject to a constant delay h  
giving the total tandem voltage: 

 
     htitdvtvr    

     
The above circuitry is displayed in Fig. 9 below: 

 

 
 
Fig. 9. Electric circuit with delay. 

 
It is assumed that  and d are independent of the frequency in a wide range of frequencies of interest. 

Now, take Laplace transforms in the first equation with zero initial conditions and replace  sV , the Laplace 

transform of  tv , in the second one to yield: 
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Note that the delay h is an external delay in the above characterization. Define auxiliary parameters 

L/k  ,   L/KRa  , LC/b 1 . Two cases are discussed for zero and non-zero delays: 

 
a) Zero delay: If KR  (then 0a ), 0d  (i.e. null input-output direct interconnection gain) and 0h  (i.e. 

delay-free case). Note that the transfer function  sG has relative degree one, it is stable and 
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GRe i ;  0R  for any 0 , then 0a  and 0b . Then,  PRG . Also, 

 SPRG  since the hodograph tends to zero as the frequency tends to  infinity and it is also zero for zero 

frequency.  The polar and Nyquist frequency plots are tangent with the zero point of the complex plane at 
infinity frequencies. Since, at finite frequencies the polar plot lies fully in the fourth quadrant of the complex 

plane, one concludes positive realness. Since the poles are both strictly stable,  PRG . Note that any positive 

input-output interconnection gain makes  SSPRG  since 
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b) Non-zero delay: Now, 
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     Some lower-bounds of  iGRe for all    RRcl are:  
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where    00 RRcl , and 
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Note that the symmetry of the hodograph allows to make feasible checking the inequalities just for 

positive frequencies including   and 0 . Note also that 1d , 2d and 3d  are finite. So,  sG  is strongly 

positive real if the interconnection input-output gain d is large enough to exceed strictly any of the values 

1d , 2d or 3d . In particular, the condition 1dd   guarantees that  SSPRG independent of the size of the 

delay h . The conditions of minimum input-output interconnection gain 2dd   or 3dd   can be tested for 

strong positive realness being dependent on the delay size h . The calculations of id  for 321 ,,i  can be 

performed;  

a) from the plots of the  functions versus frequency  iad  for 321 ,,i  ; 

b) by calculating analytically the maxima of  iad  for 321 ,,i  ;  

c) by implementing the following steps:  c1) displaying the polar frequency plot of the delay-free transfer 
function, c2) correcting  a set of sufficiently tight set of points of such a frequency plot  with a 
circumference or radius one centred at each of such points which takes account for the delay modification 
of the polar plot, c3) establish and estimation of the minimum value of the real part of the hodograph 

 


i
R

GReinfd
cl

min





0

 ( this value could be negative), c4) the input-output interconnection gain 

satisfying the constraint mindd   guarantees that  SSPRG . 



DOI:10.4186/ej.2019.23.1.75 

ENGINEERING JOURNAL Volume 23 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 93 

The above design of the input-output interconnection gain guarantees that the hodograph  associated 
with the transfer function lies in the first and fourth quadrants of the complex plane and they should be 
applied only if the transfer function is strictly stable which is a necessary condition for its strong strict positive 
realness. Otherwise, the transfer function should be first stabilized via some stabilizing controller and then 
to ensure its strong positive realness by the incorporation of a sufficiently large positive input-output 

interconnection gain.  Note that the input (  tv )-output (  tvr ) energy is positive for all 0t  as a direct 

consequence of the strong strict positive realness of the transfer function. Finally, note also that the properties 
of positive realness of the transfer function (22) are covered in a formal setting by any of the following 
particular cases: 

a) Theorem 1 with 00  dDN ; 

b) Theorems 2 and 3 with 00 N  and 0h́  while 0D  and dD  are non-uniquely selected so that its sum 

equalizes the denominator polynomial of the current transfer function; 

c) Theorems 2 and 3 with 00  dDN  while 0D  equalizes the denominator polynomial. 

 
6. Conclusions 
 
The paper has discussed the fact that if the real positivity of a transfer function in the delay-free case is not 
strict then the property is usually lost in the presence of delays. Also, it has been studied  the case when the 
transfer function  is composed of a parallel  time-delay free one with one being  a subject to an external delay  
which is physically present in either the input or the output of the dynamic system described by the second 
part  of a such a parallel disposal. This section has also included other various main results for the case when 
the transfer function is described by a quotient of quasi-polynomials composed of additive delay-free and 
delayed terms. Such a description is, in particular, useful to describe the case of internal (i.e. in the state) delays. 
The study has also included a further result which considers the combined presence of internal and external 
delays. Some applicability discussion and numerical results have also been given, with illustrative frequency 
responses, Nyquist plots and time responses and a worked physical example involving circuitry, which are 
concerned with the studied properties of positive realness transfer functions subject to point delays.  
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