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Abstract. Precedence Diagram Method (PDM) is a visual representation technique that 
depicts the activities involved in a project. It is a tool for scheduling activities using nodes 
to represent activities and their connections with arrows to illustrate activity dependencies. 
During project execution, activities in the project may be considered to change and may 
lead to inconsistency of dependency types. Consequently, dates and deadlines are missed 
so these mistakes could prove very costly. Since an ontology describes the relationship 
between the concepts within a domain. Thus, the ontology could be used to represent 
knowledge of PDM. This paper proposes PDM Ontology in OWL and rules for inferring 
the new knowledge from existing PDM and validating PDM using SWRL. 
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1. Introduction 
 
Precedence Diagram Method (PDM) [1] is a project management tool that helps project managers plan and 
monitor task schedule throughout the project. The advantage of using PDM is to depict the scheduling 
activities involved in the project as nodes and their connections with arrows that show dependencies 
among activities. However, if activities under the project are changed quite frequently, such as adjusting the 
time interval of an activity, changing the dependency type between activities. Adjustment of an activity may 
affect other activities and their dependencies types. Consequently, it may cause the project timeline later 
than planned because of incorrect timeline calculation which could prove very costly. 

In the recent past, a number of dependencies and precedence relations handlings related with project 
scheduling activities to minimize the project duration have been proposed in many research papers in 
various approaches for example Dependency Structure Matrix (DSM) [2], [3], [4], Linear programming [5], 
and Branch-and-bound procedure [6]. However, we consider that in this line of research lacks the formal 
model representation of activity dependencies for further validation. 

Since the ontology [7] has the ability to define a semantic model of the data combined with the 
associated domain knowledge so that it could be used to represent the conceptual meaning of the PDM. 

Thus, this paper aims to propose an OWL ontology that describes the semantic of PDM. It depicts 
activities and dependencies among them and represents two types of SWRL rules. The first set of rules is 
used to infer the new knowledge from the existing PDM which could be automatically derived from the 
logical facts and the second set of rules is used to validate PDM and returns as the validation results.  

Section II provides the background of the PDM, ontology and its specification language. Section III 

introduces the methodology to model PDM ontology. Section IV proposes the design of SWRL rules. 
Section V shows the experiment. Then section VI is the conclusion. 
 

2. Background 
 
2.1. Precedence Diagram Method 
 
Precedence Diagram Method (PDM) is a networking technique [8] that commonly used as a project 
management to facilitate project manager in planning and scheduling. Although, there are several 
networking techniques that enable scheduling activities, for example, Critical Path Method (CPM)[9] and 
Program Evaluation and Review Technique (PERT)[9]. However, PDM is more flexible network approach 
to modeling large projects than conventional PERT/CPM [10], [11]. In addition, the Project Management 
Institute (PMI) publishes the Project Management Body of Knowledge (PMBOK) [3], which collects 
management knowledge as a guideline for project managers is also discussed and recommended PDM as a 
tool to scheduling activities. 

Precedence Diagram Method (PDM) [1]is an extension of Activity on Node (AON) which represents 
schedule activities in a project by nodes and their connections with arrows to depict dependencies between 
the scheduled activities. 
 

 
 
Fig. 1. Activity nodes of the PDM [1]. 
 

An activity node of the PDM, shown in Fig. 1, contains the following information: 

 Activity is an activity that needs to be done in the project. 

 Duration (DUR) is the time interval of the activity to be taken, specified by day.  

 Earliest start (ES) is the fastest date to start an activity.  

 Earliest finish (EF) is the fastest date to complete an activity.  
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 Latest start (LS) is the slowest date to start an activity that does not affect the project plan. 

 Latest finish (LF) is the slowest date to complete an activity that does not affect the project plan. 

 Total float (TF) is the time interval of an activity that could be delayed but it must not affect the 
project plan. It could be calculated as TF = LF - EF or TF = LS - ES. 

 
Each pair of the activities is connected by one of four types of dependencies shown in the Table 1, 

Finish to Start (FS), Start to Start (SS), Finish to Finish (FF), and Start to Finish (SF). This is an important 
feature of PDM. 
 
Table 1. Meaning and symbols of PDM dependency types [12]. 
 

Dependency type Symbol Description 

Finish-to-Start (FS)  

 

Activity B could not start until activity A has 
finished. This is the most commonly used 
dependency. 

Start-to-Start (SS)  

 

Activity B could not start until activity A has 
started, or both activities must start at the 
same time. 

Finish-to-Finish (FF)  

 

Activity B could not finish until activity A 
has finished, or both activities must finish at 
the same time.  

Start-to-Finish (SF)  

 

Activity B could not finish until activity A 
has started. This dependency is rarely used. 

 
2.2. Ontology 
 
An ontology [13] describes the relationships between the concepts within a domain, so these concepts 
could be interpreted correctly and stored in the formal specifications or machine-readable format. The use 
of formal representation could help to clarify concepts and relationships under the domain. It also supports 
sharing, reusing, inferring the new knowledge from the existing one [7]. An ontology consists of the 
following parts: [14] 

 Concept is an interesting domain; therefore, it could be the description of anything, often organized 
in taxonomies and having attributes e.g. concept of Place, Country, State, City 

 Relation is a type of relationship among concepts in the domain, such as the subclass-of relation 
which describes the hierarchical structure between two concepts. For example, country has 
SubClassOf  relation of concept Place. 

 Function is the property used to describe the concept. It is a special type of relation that returns an 
instance of a single concept. 

 Instance is an element of concepts, for example, according to the concept of the country the 
instance could be Thailand.  

 Axiom is a logical expression that must always be true. In other words, an axiom is a constraint 
used to transform the relationship between concepts and properties that help to formalize domain 
knowledge. For example, the concept of the Country has the relation SubClassOf of Place which is 
also an axiom so, it could interpret that a country must belong to a place. 
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Fig. 2. An example of country ontology. 
 

The ontology could be processed by reasoning tool [7]. With the existing reasoning techniques, the new 
knowledge in terms of ontology could be inferred concerning the semantic and instances of the ontology. 
 
2.3. Ontology Web Language (OWL) 
 
Web Ontology Language (OWL) [15] is a language developed by the World Wide Web Consortium (W3C) 
based on XML. It aims to increase the capabilities of the RDF and RDFS [16], so that it could describe the 
concept more meaningful and support the description logic [17], data type, and quantifier. An OWL 
ontology consists of classes, properties, and individuals [18]. 

 Classes are set of individuals that share some properties. 

 Properties are binary relationships between individuals. 

 Individuals are instances of classes in the interesting domain. 
 

 
 
Fig. 3. Example components of OWL country ontology. 
 

OWL could be divided into three types [19] depending on the usage.  

 OWL Lite is suitable for hierarchy and classification of concepts that have been defined in terms of 
simple sequencing or division. This will help to find answers quickly. The Thesauri and Taxonomy 
are arranged in a hierarchical fashion. 

 OWL DL is suitable for more sophisticated means of interpretation which is remaining the 
completeness of the calculation so that all conditions are checked and allowed to use DL reasoners. 
Although the OWL DL is structured in OWL which could handle all executions there are limits to 
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use. A class could be a subclass of several classes, but the class could not be instances of other 
classes. 

 OWL Full is suitable for use with advanced semantic description and more complicated. It is 
possible to define additional syntax from the RDF and could also define the class to be the instance. 

 
OWL DL is constructed based on description logic [20] which is a family of logic-based knowledge 

representation formalisms. DL describes domain in terms of concepts (classes), roles (properties, 
relationships) and individuals. DL syntax consists of two important parts: 
 

1) Terminological Component (T-Box) is a key element of DL knowledge used to build brand 
new concepts from the existing or previously defined concepts, and axioms. For example, a man could be 
defined as a male person by using this declaration: 
 

Man  Person ∩ Male 
 

The declaration is interpreted as a logical equivalence by providing enough and necessary conditions to 
define an individual as a man. 
 

2) Assertion Component (A-Box) is an assertion about individuals. For example, giving the 
following declaration statements or axioms: 
 

Male ∩ Person (John) 
hasChild (John, Sara) 

hasChild (Matha, John) 
 
states that the individual John is a male person. From the previous definition of Man, one could derive 
from this assertion that John is an instance of the concept of Man. The same as the second declaration 
which specifies that John has Sara as a child. So, the basic reasoning task in ABox is instance checking, to 
verify whether a given individual belongs to a specified concept. 

A knowledge comprising of TBox and ABox has a semantics of equivalence set of axioms but the 
purpose of a knowledge representation system is more than storing concept definitions and assertions [21]. 
Due to the set of axioms, it provides implicit knowledge that could be transferred to explicit knowledge by 
using inferences. For example, from the TBox and ABox above one can conclude that Matha is a 
grandmother, although this knowledge is not explicitly stated as an assertion. So, by using this kind of 
definition, it could infer the new knowledge in the interesting domain. 
 

 
 
Fig. 4. An example of T-Box and A-Box knowledge assertion. 
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In this paper, OWL DL [22] was used to describe ontology. It has the capacity to support reasoning by 
inferring facts and rules so, individuals explicitly introduced in the ABox could apply defined rules and 
return the validation results. 
 
2.4. Time Ontology in OWL 
 
OWL-Time [23] is an ontology of temporal concepts created by Jerry R. Hobbs and Feng Pan. This 
ontology applies Allen’s theory [24] to describe thirteen elementary relations which support the 
unambiguous expression of all possible relations that will occur in the time interval. So, it could describe 
the activities which are linked by dependencies and occur in a sequence. It facilitates information about 
durations and temporal position as shown in Table 2.  

OWL-Time also provides specific predicates to support or to make explicit the results of, reasoning 
over the sequence of activities which could help with queries and reasoning applications. Hence, in the 
Ontology modeling part, we would derive properties in the ProperInterval class from the OWL-Time 
ontology into our ontology. 
 
Table 2. Thirteen Element Relations between Time Periods Based on Allen’s Theory [23], [24]. 
 
Relation Definition Inverse Example in PDM 

intervalBefore 
 

If an interval A is intervalBefore 
another interval B, then the end of A 
is before the beginning of B. 

intervalAfter 

 
intervalMeets 
 

If an interval A is intervalMeets 
another interval B, then the end of A 
is coincident with the beginning of 
B. 

intervalMetBy 

 
intervalOverlaps 
 

If an interval A is intervalOverlaps 
another interval B, then the 
beginning of A is before the 
beginning of B, the end of A is after 
the beginning of B, and the end of A 
is before the end of B. 

intervalOverlappedBy 

 

intervalStarts 
 

If an interval A is intervalStarts 
another interval B, then the 
beginning of A is coincident with the 
beginning of B, and the end of A is 
before the end of B. 

intervalStartedBy 

 
intervalDuring 
 

If an interval A is intervalDuring 
another interval B, then the 
beginning of A is after the beginning 
of B, and the end of A is before the 
end of B. 

intervalContains 

 

intervalFinishes If an interval A is intervalFinishes 
another interval B, then the 
beginning of A is after the beginning 
of B, and the end of A is coincident 
with the end of B. 

IntervalFinishedBy 

 
intervalEquals If an interval A is intervalEquals 

another interval B, then the 
beginning of A is coincident with the 
beginning of B, and the end of A is 
coincident with the end of B. 

- 

 

 
2.5. OWL and UML Modeling 
 
An ontology describes knowledge by representing the objects semantics in an interesting domain. Ontology 
classes consist of objects and describe them by using properties. 



DOI:10.4186/ej.2018.22.5.155 

ENGINEERING JOURNAL Volume 22 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 161 

OWL facilitates the description of concepts of the ontology. Thus, an instance object could be assigned 
to any classes and described by any properties. Therefore, each instance object belongs to a certain class 
and has its own structure. 

Unified Modeling Language (UML) [25] is a visual modeling language which uses graphical notations to 
specify, visualize, construct and document the model in many aspects of software development process.  

UML also describes semantic concepts of classes with attributes that define the structure and their 
behavior of the modeling elements. 

Although UML and OWL have different objectives and approaches, they are similar regarding structure 
representation, respectively [26]. Table 2 describes the similar concepts of UML and OWL. 
 
Table 3. Similar concepts of UML and OWL elements [26]. 
 

UML Elements OWL Elements 

Class Class 

Subclass Subclass 

Instance Individual 

Attribute, Binary association Property 

Enumeration OneOff 

Multiplicity minCardinality, maxCardinality 

Package Ontology 

 
2.6. Semantic Web Rule Language (SWRL) 
 
Semantic Web Rule Language (SWRL) [27] is a language used to generate rules which are the extension of 
the OWL. SWRL allows an ontology to infer through the defined rules because it is built on the same 
description logic foundation as OWL. However, it needs an inference engine, i.e. JESS [28] to be 
interpreted. 

The structure of SWRL rule consists of two parts, an antecedent, and a consequent part. The antecedent 
part is referred to as the body, and the consequent part is referred to as the head. Both the body and head 
consist of conjunctions of atom: 
 

atom1 ^ atom2 ^.... ^ atomn → atom 
 

In this case, if all atoms in the antecedent are true, then all atoms in the consequent also be true. SWRL 
could support only the positive of conjunction form, it does not support negated or disjunction forms. 

A statement could be expressed in the form of the predicate: 
 

p(arg1, arg2, ..., argn) 
 
where p is a predicate symbol and arg1, arg2, ..., argn are the terms or arguments of the predicate. 

There are only five types of predicates are allowed: OWL classes, OWL properties, data types, data 
ranges, and built-ins. 

Here is the example to represent an OWL class named Person() and Man() with a single argument 
which contains variable ?p and individual named John respectively as follow: 
 

Person(?p) 
Man(John) 

 
So, from the two classes statements above, we could construct a rule to infer that all individuals of class 

Man are also individuals of class Person, so it could be expressed as follows: 
 

Man(?p) → Person(?p) 
 

After the reasoning, John is a man and a person as well. 
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2.7. Protégé 
 
Protégé [29] is an open platform for ontology modeling and knowledge acquisition developed by Stanford 
University. It contains the OWL Plugin that provides many features, manipulating ontologies in OWL, 
accessing description logic reasoners and acquiring instances in the ontology model. 

Thus, users simply create classes, assign properties to the classes, and then restrict the properties of the 
classes by using protégé. Protégé has designed a user interface that is easy to use. There is no need to have 
knowledge of computer programming language. Additional plug-ins could also be installed so that 
ontologies could show relationships in a graphical manner. In addition, Protégé could also support 
inference engine tools named JESS to infer rules created with SWRL. 
 

3. PDM Ontology Modeling 
 
This section provides an overview procedure to design and construct PDM as an ontology. There are two 
steps starting from the analysis and design of meta model of PDM and then convert it into OWL ontology. 
 

 
 
Fig. 5. The procedure to design and construct PDM ontology. 
 
3.1. Analyze and Design of Meta Model of PDM 
 
In this step, we will analyze the components of the activity on the PDM. As shown in Fig. 6,they are 
preparing activities of an e-bidding procurement, starting from preparing a procurement plan until 
preparing for the bidding documents, announcement, and procurement report. All these activities must be 
specified for the starting date, finish date, duration and so on according to the components of PDM. Hence, 
we will use this example to analyze and design for the meta model of PDM. 

There are two main components of PDM which are activity nodes and activity edges. An activity node 
contains an activity duration and its time-dependent criteria to start and finish including Earliest Start (ES), 
Earliest Finish (EF), Latest Start (LS), and Latest Finish (LF). An activity edge (arcs or arrows) indicates the 
precedence relationship which could be in the form of Finish to Start (FS), Finish to Finish (FF), Start to 
Finish (SF), and Start to Start (SS). 
 

 
 
Fig. 6. An example of e-bidding procurement displayed in PDM. 
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From the given PDM in Fig. 6, we could consider that meta-model of the PDM consists of two main 
classes, the ActivityNode and the ActivityEdge class shown in Fig.4. The ActivityNode class represents the 
attributes of an activity in the UML class as follows: 
 

 
 
Fig. 7. Our UML meta model of the PDM. 
 

 nodeName is the name of the activity. 

 duration is the time taken to complete the activity. The unit is the number of day. 

 earlyStart is the fastest start date of an activity. 

 earlyFinish is the day of the fastest finish of an activity. 

 lateStart is the latest start date of the activity. 

 lateFinsih is the day of the latest finish of an activity. 

 totalFloat is the number of the day for each activity that could be delayed without affecting the 
completion of the project, calculated from (LF-EF) or (LS-ES). 

The ActivityEdge class describes the dependency types between two activities as follows: 

 edgeName is the label of the edge. 

 dependencyType is the dependency types which consists of 4 types - FS, FF, SF, SS. 
In addition, there are 2 association relationships of the ActivityNode class as follows: 

 hasInputEdge describes the incoming activity. 

 hasOutputEdge describes the outgoing activity. 
 
3.2. Convert the Meta model of the PDM into OWL Schema 
 
The next step is to convert PDM meta model into OWL. Meta model describes the structure of a model in 
the form of UML class diagram that describes classes and the relationships among them. 

Fortunately, there are similar concepts between the elements of UML and OWL as shown inTable3. 
Thus, from Fig.7, it is possible to convert UML classes into OWL classes. Then, the attributes and binary 
associations of UML classes are converted to properties in OWL. Finally, the UML instances are converted 
into the individuals of OWL. The results of the conversion could be expressed as the ontology schema as 
shown in Fig. 8. After that, we use Protégé to generate the OWL file from our ontology schema. 
 

 
 
Fig. 8. Our ontology schema of PDM. 
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4. SWRL Rules Design 
 
There are two main types of our SWRL rules, inference and validation rules.  
 

 
 
Fig. 9. The procedure to design and construct SWRL rules. 
 
4.1. Design and Construct SWRL Rules to Infer the New PDM Knowledge 
 
One major advantage of using an ontology is its ability to infer the new knowledge from existing knowledge. 
SWRL rules could be expressed with OWL by using the concept of description logics (DL) to infer the new 
knowledge from the PDM OWL. The architecture of description logic is divided into two parts. 
 

 
 
Fig. 10. Our PDM Ontology description logic with T-Box and A-Box. 
 

 Terminological Component (T-Box) describes sets of concepts and properties within the domain. 
In this paper, we use the ontology to describe the concept of the PDM. The T-Box part in Fig.10 
shows the ontology schema of the PDM that the ActivityNode and ActivityEdge are represented. 

 Assertion Component (A-Box) is used to specify individuals or instances under the concept 
designed in the T-Box. The A-Box part in Fig. 10 describes that both activities named node1 and node2 
are instances of ActivityNode, which have an instance of ActivityEdge named edge as their 
connection. 

From the concept of DL, we could construct the SWRL rule to infer the precedence node of PDM as 
shown in Fig. 11. 
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PDM:ActivityNode(?node1) ∧ PDM:ActivityNode(?node2) ∧ 

PDM:hasOutputEdge(?node1, ?edge1) ∧ PDM:hasInputEdge(?node2, ?edge2) ∧ 
sameAs(?edge1, ?edge2) → PDM:isPredecessorOf(?node1, ? node2) 
 

 
Fig. 11. A sample of inference rules to infer the predecessor node. 
 

In Fig. 11, the inference rule is written in SWRL defines the function to check whether ?node1 occurs 
before node of ?node2 or not. Given a set of instances described in Fig. 10, both node1 and node2 are the 
valid ActivityNode and the output edge of A is the same as the input edge of B. With these antecedent 
axioms, this inference rule yield that node1 is the predecessor node of node2.  

Moreover, we could apply Time Ontology in OWL and SWRL rule to infer the interval relations 
between connected nodes in the PDM. For example, creating a function to determine whether one activity 
(node1) occurs before another activity (node2) or not, so we could create a rule in SWRL to answer this 
question in Rule-1 in Table 4.Table 4 shows all SWRL rules applying Allen’s theory to describe all possible 
relations between nodes in PDM to allow the computation of any relative position or sequence. Then, our 
SWRL rules are prepared using Protégé and JESS inference engine plug-in as the reasoning tool. 
Table 4. SWRL rules applying Allen’s theory 
 

Rule-1: intervalBefore 

PDM:Node(?node1) ∧ PDM:Node(?node2) ∧ PDM:earlyFinish(?node1, ?ef) ∧ 

PDM:earlyStart(?node2, ?es) ∧ swrlb:lessThan(?ef, ?es) → PDM:intervalBefore(?node1, ?node2) 
 

Rule-2: intervalMeets 

PDM:Node(?node1) ∧ PDM:Node(?node2) ∧ PDM:earlyFinish(?node1, ?ef) ∧ 

PDM:earlyStart(?node2, ?es) ∧ swrlb:equal(?ef, ?es) → PDM:intervalMeets(?node1, ?node2) 
 

Rule-3: intervalOverlaps 

PDM:Node(?node1) ∧ PDM:Node(?node2) ∧ PDM:earlyStart(?node1, ?es1) ∧ 

PDM:earlyStart(?node2, ?es2)   ∧  swrlb:lessThan(?es1, ?es2)   ∧  PDM:earlyFinish(?node1, ?ef1) ∧ 

swrlb:greaterThan(?ef1, ?es2)   ∧PDM:earlyFinish(?node2, ?ef2) ∧ swrlb:lessThan(?ef1, ?ef2) → 
PDM:intervalOverlaps(?node1, ?node2) 
 

Rule-4: intervalStarts 

PDM:Node(?node1) ∧ PDM:Node(?node2) ∧ PDM:earlyStart(?node1, ?es1) ∧ 

PDM:earlyStart(?node2, ?es2) ∧ swrlb:equal(?es1, ?es2) ∧ PDM:earlyFinish(?node1, ?ef1) ∧ 

PDM:earlyFinish(?node2, ?ef2) ∧ swrlb:lessThan(?ef1, ?ef2) → PDM:intervalStarts(?node1, ?node2) 
 

Rule-5: intervalDuring 

PDM:Node(?node1) ∧ PDM:Node(?node2) ∧ PDM:earlyStart(?node1, ?es1) ∧ 

PDM:earlyStart(?node2, ?es2) ∧ swrlb:greaterThan(?es1, ?es2) ∧ PDM:earlyFinish(?node1, ?ef1) ∧ 

PDM:earlyFinish(?node2, ?ef2) ∧ swrlb:lessThan(?ef1, ?ef2) → PDM:intervalDuring(?node1, ?node2) 
 

Rule-6: intervalFinishes 

PDM:Node(?node1) ∧ PDM:Node(?node2) ∧ PDM:earlyStart(?node1, ?es1) ∧ 

PDM:earlyStart(?node2, ?es2) ∧ swrlb:greaterThan(?es1, ?es2) ∧ PDM:earlyFinish(?node1, ?ef1) ∧ 

PDM:earlyFinish(?node2, ?ef2) ∧ swrlb:equal(?ef1, ?ef2) → PDM:intervalFinishes(?node1, ?node2) 
 

Rule-7: intervalEquals 

PDM:Node(?node1) ∧ PDM:Node(?node2) ∧ PDM:earlyStart(?node1, ?es1) ∧ 

PDM:earlyStart(?node2, ?es2) ∧ swrlb:equal(?es1, ?es2) ∧ PDM:earlyFinish(?node1, ?ef1) ∧ 

PDM:earlyFinish(?node2, ?ef2) ∧ swrlb:equal(?ef1, ?ef2) → PDM:intervalEquals(?node1, ?node2) 
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4.2. Design and Construct SWRL Rules to Validate the Dependency Types Checking 
 
To validate the dependency types of PDM, we need to extract the knowledge from PDM components i.e. 
time-dependent criteria and its dependency type restrictions. In this paper, we focus on the Finish-to-Start 
(FS) dependency type as the simulation and mapped to our PDM ontology schema. 

To test the SWRL rules, we need to create individual nodes and edges responding to the design ontology 
schema which have the properties and data type values according to Fig. 6. In Fig. 6., there are six 
individual nodes with different activities, allow us to represent these activities in alphabet A, B, C, D, E and 
F respectively to make it easier to explain. All these nodes connect with five individual edges, eAB, eBC, 
eCD, eDE, and eEF respectively. The resulting ontology knowledge of this PDM is shown in Fig.12.  
 

 
 
Fig. 12. A sample of our ontology knowledge of PDM. 
 

Then we need to create a rule to validate whether each pair of nodes having the “FS” dependency type 
as follows: 
 

 

PDM:intervalBefore(?node1, ?node2) ∧ 

PDM:Edge(?edge1) ∧ PDM:DEPType(?edge1, “FS”) ∧ PDM:Edge(?edge2) ∧ 

PDM:DEPType(?edge2, “FS”) ∧ PDM:hasOutputEdge(?node1, ?edge1) ∧ 

PDM:hasInputEdge(?node2, ?edge2) ∧ 

sameAs(?edge1, ?edge2) ∧ PDM:EF(?node1, ?ef1) ∧ PDM:ES(?node2, ?es2) ∧ 

swrlb:lessThanOrEqual(?ef1, ?es2) ∧ 

PDM:LF(?node1, ?lf1) ∧ PDM:LS(?node2, ?ls2) ∧ swrlb:lessThanOrEqual(?lf1, ?ls2) ∧ 

sameAs(?result, PDM:Valid_FS) ∧ 
PDM:Valid(PDM:Valid_FS) →  
sqwrl:select(?node1, ?edge1, ?node2, PDM:Valid_FS) 
 

 
Fig. 13. A sample of validation rules to validate FS dependency type. 
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In fig. 13, we intend to check whether the time-dependent criteria between a pair of activity nodes are 

valid. To be the dependency type of “FS”, the Early Finish (EF) of the first node must be less than or equal 
to the Early Start (ES) of the second node, denoted as EF <= ES. Whilst, the Late Finish (LF) of the first 
node must be less than or equal to the Late Start (LS) of the second node, denoted LF <= LS. 
 

5. Experimental Results 
 
In this section, we demonstrate the dependency type validation of the “FS” using the Protégé reasoning 
tool with JESS plug-in of SWRL inference engine. The first set of our SWRL inference rules are prepared 
and transferred as the predefined knowledge and functions. In Fig. 14, the ontology and instances of PDM 
are processed. The result shows that the new knowledge of the PDM ontology concepts indicating that B is 
also the predecessor of C, and D, is automatically generated. The second set of our SWRL validation rules 
are also prepared to demonstrate the “FS” dependency type checking. With the given ontology and 
instances of PDM, the results show the valid “FS” dependency type on the screen shown in Fig. 15. 
 

 
 
Fig. 14. The inferred result of the individual activity B after running Jess. 
 

 
 
Fig. 15. The validation results for checking FS dependency type in the SQWRL query. 
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6. Conclusion 
 
In this paper, we construct a PDM ontology analyzed from its structure and constraints. Then, the meta 
model to describe the context of PDM is designed in UML class diagram. As the concept of elements of 
UML and OWL are close, then we could convert the UML meta model of a PDM into ontology 
correspondingly and use Protégé tool to generate OWL ontology. Moreover, we also propose SWRL rules 
to infer the new knowledge of PDM from the existing ones and SWRL rules to validate the dependency 
type. Using the example of PDM to test the rules, the experimental results show that our ontology could 
return the correct validation result.  

However, according to the structure of the SWRL rules could support only the positive conjunction 
form of the antecedent. If one atom in the consequent is false, then it would consider as invalid. Hence, in 
case of the complex consolidation of the PDM, users could not identify which parts of PDM are invalid. 

Future work will focus on developing an application to import OWL PDM in different types of project 
scheduling and allow our OWL ontology to return the validation result. If it returns ‘invalid’ result, the 
application could point out the invalid statement that may cause the PDM inconsistency. 
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