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Abstract. A newmaximum likelihood technique for the look-ahead unscented Rao-Blackwellised par-
ticle filter (la-URBPF) to improve its robustness to noise is proposed in this paper. A radial basis function
whose centre is at the state associated with the maximum likelihood is also used for masking lower likeli-
hood states without destroying information embedded in low prior states. Simulation results show how
the proposed maximum likelihood la-URBPF algorithm responds to various noise levels ranging from
relatively low to aggressively high levels. The computational times for different noise levels of the pro-
posed algorithm are also investigated to assess its applicability in time-critical or in resource-restricted
embedded systems.
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1. Introduction

Particle filters are considered attractive for fault diagnosis mainly due to their capabilities in represent-
ing arbitrary distributions, hence making them suitable for uncertain and ever-changing worlds of au-
tonomous vehicles and planetary robots [1]. They are also robust to noisy sensor signal acquisition and
the number of particles can be compromised between accuracy and available resources of computation
[1]. However, one major problem of using particle filters in fault diagnosis is that the fault states usually
have very low probability to occur. So there might be no particle in a fault state when a fault occurs
and the system will be unable to diagnose the fault [2]. Nevertheless, by marginalising the posterior
density it is possible to select particles before the sampling step. Then, the fittest particles at time t is
chosen using the information at time t−1 [3]. This look-ahead strategy tends to be more robust to out-
liers since the future information will correct the misinformation from the outliers [4]. The look-ahead
strategy altogether with a technique of marginalising out some of the variables is then collectively called
the look-ahead Rao–Blackwellised particle filter (la-RBPF) and is applied for fault diagnostic tasks in
two industrial processes: an industrial dryer and a level-tank [3]. Also in [5], the la-RBPF is adopted for
detecting faults in the autonomous operation of a mobile waiter robot and planetary rovers designed by
NASA for Mars exploration. The results therein show how the la-RBPF outperforms existing particle
filters in decreasing of diagnosis errors and variances especially when the number of particles is relatively
low, i.e., < 100.

In [6], the look-ahead unscented Rao-Blackwellised Particle Filtering (la-URBPF) algorithm is in-
troduced to the problem of fault diagnosis of the suspension system of the K-9 rover at NASA Ames
Research Center. It proves to offer a noticeable performance gain to the existing algorithms and also
lends itself to non-linear state estimation problems. A fast version of la-URBPF called Fast la-URBPF is
introduced in [7] to effectively reduce the complexity of URBPF by strategically limiting the numbers
of the unscented Kalman Filter (UKF) predictions and updates.

Nevertheless, la-URBPF can perform differently, if not unfavourably, in moderate to high noise
scenarios. Such undesired behaviour has also been reported in problems with large number of discrete
states such as the Simultaneous Localisation and Mapping (SLAM) [8]. This is mainly due to perturba-
tion in the form of likelihood of all possible discrete states generated in the process of UKF updates.
Even though in fault diagnosis problems whose number of discrete states are usually low, la-URBPF
will fail miserably in high noise scenarios and the expected benefits of using la-URBPF instead of its
plain URBPF counterparts is no further relevant [5], [9]. Simply increasing the number of particles
(e.g., from 10 to 50) cannot improve the situation in such noisy environments [9]. A moving-average
filter may be applied on the measurement data to restore the benefit of la-RBPF [5]. But this approach
relies on knowledge of the specific noise level and involves a further step in designing of such filter.

In this paper, we propose a maximum likelihood technique to improve the robustness of la-URBPF
for aggressively noisy fault diagnosis systems. Since the highest prior state is usually associated with the
maximum likelihood, the state calculated after UKF update with the maximum likelihood is therefore
selected for computing posterior probability. The other states with smaller likelihood may either be
actual states with lower priors or undesired noise. Therefore, in order to suppress the noise but still
retain information for states with low priors, a radial basis function whose centre is at the state asso-
ciated with the maximum likelihood is used for masking lower likelihood states without destroying
information embedded in low prior states.

Simulation results show how the proposed maximum likelihood la-URBPF algorithm responds to
a various amount of noise ranging from relatively low to aggressively high levels. The computational
times for different noise levels of the proposed algorithm are also investigated to assess its applicability
in time-critical or in resource-restricted embedded systems.

N : We use bold lower case for both random variables and their realisation vectors. Bold
upper case is for matrices. The conditional probability distribution and the conditional probability
density are denoted by P (·|·) and p(·|·) respectively. θ ∼ N (µ,Σ) denotes the distribution of normal
(Gaussian) distributed with mean µ and covarianceΣ. The conditional expectation operator is denoted
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by E{·|·}. The notation θ0:t represents the set of variables θ up to time t and is defined by θ0:t ,
{θi, i = 0, . . . , t}.

2. System Model

We consider the problem of fault diagnosis by means of a state-space system model representation [5]

zt ∼ P (zt|z0:t−1),

xt = A(zt)xt−1 +B(zt)wt + F (zt)ut,

yt = C(zt)xt +D(zt)vt +G(zt)ut, (1)

where yt ∈ Rny denotes the observations or measurements, xt ∈ Rnx the unknown Gaussian con-
tinuous states ut ∈ U is a known control signal, zt ∈ {1, ..., nz} denotes the unknown discrete
states for all nz possible states. Past to present values are denoted collectively as z0:t , {z0, . . . , zt},
x0:t , {x0, . . . ,xt}, y1:t , {y1, . . . ,yt} and u1:t ,{u1, . . . ,ut}. The noise processes are iid Gaussian
with w ∼ N (0, I) and vt ∼ N (0, I).

3. The Maximum Likelihood Criterion for Look-Ahead Unscented Rao-Blackwellised
Particle Filtering Algorithm

The likelihood for the prediction of observation at time t, ŷ(i)
t|t−1(zt), for the ith particle at time t for

the discrete state zt for the la-RBPF algorithm is defined as [5]

L(i, zt) = N (ŷ
(i)
t|t−1(zt), Ŝ

(i)

t (zt)), (2)

where Ŝ(i)

t (zt) represents state covariance of observation at time t of the ith particle of a possible state
zt ∈ {1, ..., nz}. We define the state z(i)t,max to be the discrete state which the maximum likelihood for
the ith particle at time t is associated with. In order to select the maximum likelihood whereas those
with smaller likelihood are suppressed but not eliminated, L(i, zt) in (2) is masked with a radial basis
function ϕ(z

(i)
t,max) = exp(−(zt−z

(i)
t,max)

2)where zt = 1, . . . , nz, and z(i)t,max ∈ {1, ..., nz} and the masked
likelihood is derived by

L̃(i, zt) = ϕ(z
(i)
t,max) · L(i, zt). (3)

3.1. The UKF Update

The UKF prediction and update operation1 for la-URBPF at time step t and for the ith particle of mode
zt is performed to get µ̂(i)

t (zt) which represents updated estimate of state mean at time t, µ̂(i)
t|t−1(zt)

prediction of state mean at time t, Σ̂(i)

t (zt) updated state covariance at time t, ŷ(i)
t|t−1(zt) prediction of

observation at time t and Ŝ(i)

t (zt) state covariance at time t respectively. The required input variables are
µ
(i)
t which represents state mean estimate at time t−1,Σ(i)

t state covariance at time t−1, yt observation
at time t, zt possible discrete state at time t and z

(i)
t−1 mode at time t− 1.

The original la-URBPF algorithm needs to perform one UKF prediction and updating step for ev-
ery particle forN particles and for everymode for possible nz modes [6]. This results in a prohibitively
large number of N × nz UKF calculations for each time step t which contributes to its poor capa-
bility in terms of computational complexity [7]. In [7], the Fast la-URBPF is proposed to reduce the
prohibitively large number of UKF update and prediction steps required in the original la-URBPF by
using only one particle as a representative of a group of particles in the same mode to undergo nz UKF

1We refer the readers to [10] for the details of UKF and and to [6] for its use in the la-URBPF algorithm.
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updates for eact time step. Fast la-URBPF requires less than or at most equal toN×nz UKF calculations
for each time step t. The maximum likelihood la-URBPF algorithm is shown in Algorithm 1. Most
parts of the algorithm are similar to the Fast la-URBPF algorithm [7] except for the maximum likeli-
hood masking step which the masked maximum likelihood L̃(i, zt) is introduced before computing the
posterior probability of particle i at state zt (P̂ ost(i, zt)).

4. Simulations

A simple model of the suspension system of the K-9 rover at NASA Ames Research Center as in [6]
was used in all of the simulations. The model has six discrete states (nz = 6) and six continuous vari-
ables, two of which, i.e., bogey angle (Y 1) and differential angle (Y 2), are observable. The continuous
parameters follow non-linear trajectories (trigonometric functions) in three of the discrete states and
are linear in the others [6]. We investigated the proposed maximum likelihood la-URBPF algorithm
performance in terms of robustness to various noise levels and in terms of computational time. We
compared these two aspects with those of existing algorithms, i.e., the plain vanilla Particle Filter (PF),
the Unscented Particle Filter (UPF) [11], the Unscented RBPF (URBPF) [12] and the Posterior Crite-
rion Fast la-URBPF [7] with Minimum Prior criterion (Min.Prior-Post Fast la-URBPF) as suggested
in [6] for improvement in computational time. All algorithms are examined in the same fault-related
environment defined by the specified transition priors which can be used to described by a transition
prior matrix as

P (zt|zt−1) =


0.90 0.10 0 0 0 0
0.01 0.89 0 0 0.10 0
0.01 0 0.89 0 0 0.10
0.10 0 0 0.90 0 0
0 0 0.20 0 0.80 0
0 0 0 0.20 0 0.80

 . (4)

The rates of diagnosis errors of all algorithms were measured at {1, 2, 4, 8, 16, 32, 64, 128} particles. To
test the robustness of algorithms to a variety of noise levels, the measurement noise variances of Y 1 and
Y 2 (i.e., {σ2

Y 1, σ
2
Y 2}) were varied from {2e−7, 1e−7} to {0.2, 0.1}. The maximum a posteriori (MAP)

estimate was used as a diagnosis measure for the discrete mode estimation. The difference between this
MAP estimate and the real discrete mode is defined as an error which is then converted to the percentage
of diagnosis error. For theMin.Prior-Post Fast la-URBPF, the minimum posterior probability Priormin
was used to eliminate the need to compute the posterior if the prior is was below the preset value of 0.1.
All experiments were performed with 100 Monte Carlo runs.

Fig. 1-Fig. 4 show the mean rates with plus-minus of one standard deviation of diagnosis errors of all
algorithms for various noise levels. It is clearly shown that the proposedmaximum likelihood la-URBPF
algorithm offers the minimum diagnosis error rates at all noise levels. The reason for PF performs better
when the noise level is increased is because the noise helps particles with low importance weights move
to high probability regions. URBPF outperforms PF, UPF, Fast la-URBPF and Min.Prior-Post Fast
la-URBPF if the number of particles is large or the level of noise is more aggravated. Note that at 16
particles, the maximum likelihood la-URBPF algorithm shows a sign of convergence to the minimum
diagnosis error for all noise levels.

Fig. 5-Fig. 8 show the computational times to complete of all algorithms for various noise levels.
Fast URBPF and Min.Prior-Post Fast la-URBPF show how they are sensitive to high noise and their
computational times are increased noticeably at lower numbers of particles as in Fig. 8. The maxi-
mum likelihood la-URBPF algorithm is less sensitive to noise and needs the least time to complete its
computation in all levels of noise environments.
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Algorithm 1: The Maximum Likelihood la-URBPF Algorithm
1: for each time step t do
2: Initialise Zt ← {} and sample z(i)

0 from the prior p(z0) and sample µ(i)
0 (z0) and Σ

(i)
0 (z0).

3: Unscented Kalman Prediction step:
4: For i = 1 and for zt = 1, . . . , nz , compute µ̂(1)

t (zt), Σ̂
(1)

t (zt), ŷ(1)
t|t−1(zt), Ŝ

(1)

t (zt) with µ
(1)
t ,Σ(1)

t , yt and
zt, z

(1)
t−1 as inputs and P̂ ost(1, zt) with (2) and Zt ← {z(1)t }

5: for i = 2 to N do
6: Initialise Lmax ← 0.
7: if z(i)t ∈ Z

(j)
t where j ∈ {1, . . . , N} and j < i then

8: µ̂
(i)
t (zt)← µ̂

(j)
t (zt), Σ̂

(i)

t (zt)← Σ̂
(j)

t (zt), ŷ(i)
t|t−1(zt)← ŷ

(j)
t|t−1(zt), Ŝ

(i)

t (zt)← Ŝ
(j)

t (zt) and
P̂ ost(i, zt)← P̂ ost(j, zt)

9: else
10: for zt = 1, . . . , nz do
11: if P (z

(i)
t , zt) = 0 then

12: P̂ ost(i, zt)← 0
13: else
14: Perform the UKF update to get µ̂(i)

t (zt), Σ̂
(i)

t (zt), ŷ(i)
t|t−1(zt) and Ŝ

(i)

t (zt) with
µ

(i)
t ,Σ

(i)
t ,yt, zt, z

(i)
t−1 as inputs and L(i, zt) with (2) and set Zt ← {Zt, z

(i)
t }

15: if Lmax < L(i, zt) then
16: Lmax ← L(i, zt)
17: z

(i)
t,max ← zt

18: end if
19: end if
20: end for
21: Maximum Likelihood Masking step:
22: Perform the Radial Basis Function on the likelihood L(i, zt) centred at the maximum mode z(i)t,max

23: L̃(i, zt)← ϕ(z
(i)
t,max) · L(i, zt). For zt = 1, . . . , nz , calculate the posterior of particle i at mode zt

24: P̂ ost(i, zt)← L̃(i, zt) · P (z
(i)
t , zt) where P (z

(i)
t , zt) is the transition prior from state z(i)t to state

zt.
25: end if
26: end for
27: For i = 1, . . . , N , evaluate and normalise the importance weights: w(i)

t =
∑nz

zt=1 P̂ ost(i, zt)
28: Selection Step:
29: Multiply/Discard particles {µ̂(i)

t , Σ̂
(i)

t , ẑ
(i)
t−1, P̂ ost(i, zt)}Ni=1 with respect to high/low importance

weights w(i)
t to obtain N particles {µ(i)

t ,Σ
(i)
t , z

(i)
t−1, Post(i, zt)}Ni=1.

30: Sequential Importance Sampling Step:
31: For i = 1, ..., N , compute

p(zt|z(i)
t−1,y1:t) ∝ Post(i, zt)

32: Sampling step: z(i)t ∼ p(zt|z(i)
t−1,y1:t)

33: Updating Step:
34: For i = 1, ..., N , set z(i)

t ← z
(i)
t and using the previously computed results in the Unscented Kalman

Prediction step to acquire µ(i)
t ← µ

(i)
t (z

(i)
t ) and Σ

(i)
t ← Σ

(i)
t (z

(i)
t )

35: end for
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5. Conclusions

We have proposed a new maximum likelihood technique for look-ahead unscented Rao-Blackwellised
particle filtering (la-URBPF) algorithm. Although la-URBPF generally outperforms URBPF in low
noise environments, it struggles to perform correctly in high noise ones. By introducing the maxi-
mum likelihood technique to la-URBPF, the state with maximum likelihood is selected for computing
posterior probability whereas disturbing likelihood can be masked by means of a radial basis function.
Simulation results show how the maximum likelihood la-URBPF algorithm can achieve the best per-
formance in either low or high noise levels while Fast la-URBPF performs the best out of the existing
algorithms in low noise and with low numbers of particles. While in high noise, Fast la-URBPF is
almost surely guaranteed to fail whereas the proposed maximum likelihood la-URBPF algorithm still
maintains the best performance compared to all the existing algorithms. Unlike other fast versions of
URBPF, the computation time of the proposed algorithm is less sensitive to noise and hence suggests
its applicability in time-critical or in resource-restricted embedded systems.
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