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Abstract. Thermal and friction loss characteristics in a square-duct heat exchanger fitted with inclined-
baffles are experimentally examined. Air as the test fluid enters the test duct having a uniform surface heat-
flux. The baffles are placed repeatedly on both sides of a rectangular centre-cleared tape/frame before 
diagonally inserting the baffled frame into the test duct to produce longitudinal vortex flows through the 
test section. Effects of five different relative baffle height or flow blockage ratios (b/H=BR=0.1, 0.2, 0.3, 
0.4 and 0.5) on heat transfer, pressure loss and thermal performance in the square duct are investigated for 
Reynolds number ranging from 4100 to 25,600. The relative baffle pitch or pitch ratio (P/H=PR) and 

baffle attack angle () are fixed at 3.0 and 30°, respectively. The experimental results reveal that the heat 
transfer and pressure drop in the form of respective Nusselt number (Nu) and friction factor (f) from using 
the baffle tend to increase with the rise of Reynolds number (Re) and BR. The maximum enhancement in 
Nu and f has been found to be 4.61 and 63.67 times above the smooth duct, respectively. The thermal 

enhancement factor () is maximum at BR=0.3. 
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Nomenclature 
A heat transfer area (m2) 
b baffle height, m 
BR ratio of baffle flow blockage, (b/H) 
Cp specific heat, J/kgK 
Dh  duct hydraulic diameter, (=H), m 
f  friction factor 
f0 friction factor of smooth duct 
H duct height, m 
h average heat transfer coefficient, W/m2K 

I current, A 

k thermal conductivity, W/mK  

L test duct length, m 

M rate of mass flow, kg/s  
Nu  Nusselt number, (hD/ka) 
Nu0 Nusselt number of the smooth duct 
P  baffle pitch spacing (axial pitch length), m 
Δp pressure drop, Pa 
PR baffle pitch to duct height ratio, (P/H) 
Pr  Prandtl number  
Re  Reynolds number, (UD/) 
Q heat transfer rate, W 
T  temperature, K  
t thickness of baffle, m 
U mean velocity, m/s 

V voltage, volt 

  volumetric flow rate, m3/s 

Greek symbols 

 attack angle of baffle, degree 

 density, kg/m3  

 kinematic viscosity, m2/s 

 thermal enhancement factor 

Subscripts 
a air 
b bulk 
0  smooth duct 
c  convection  
i  inlet  
o  out 
pp blowing power  
w duct surface 

 

1. Introduction 
 
Vortex/swirl flows have been widely applied in heating/cooling systems in order to increase thermal 
performance of heat exchangers used in industrial applications such as, steam generation, chemical 
processing, electric power generation, etc. Vortex flow devices such as rib/baffle, groove, coiled-wire, 
twisted tape, winglet etc are extensively applied for heat transfer augmentation (HTA) in heating or cooling 
passages, for example, vortex tube [1], solar air heater [2–4] and heat exchanger systems [5–7]. The HTA by 
baffles relies on induced vortex (or high swirl) in the flow of fluid. The vortex generators (VGs) are 
inserted into the flow field to provide an interruption of boundary layer development and to cause 
enhancement of the rate of heat transfer by increasing turbulence intensity. Several researchers have 
reported the effects of tube insert with swirl or vortex flow devices on the HTA, pressure loss and thermal 
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performance. Sivashanmugam and Suresh [8] studied the turbulent flow and thermal characteristics in a 
round tube inserted with full-length helical screw elements having different twist ratios with increasing and 
decreasing order of twist ratios. Promvonge and Eiamsa-ard [9] experimentally examined the flow friction 
and thermal characteristics in a heat exchanger tube with conical-nozzle inserts. They pointed out that the 
conical-nozzle turbulator provides the heat transfer rate higher than the plain tube alone at a range of 236 
to 344%. Kreith and Margolis [10] reported that the increase in heat transfer can be made by vortex flow in 
a heat exchanger tube using fluid tangential injection at several locations along the tube. Promvonge and 
Eiamsa-ard [11] experimentally investigated heat transfer characteristics in a uniform heat-fluxed circular 
tube fitted with free-spacing snail entry and conical-nozzle turbulators. Therefore, significant improvement 
of heat transfer as well as friction loss along the tube wall was reported. Promvonge et al. [12] studied 
thermal characteristics in a helical-ribbed tube fitted with double twisted-tapes. They found that the heat 
transfer enhanced by the inserted ribbed-tube was, respectively, higher than that by the ribbed tube alone 
and the smooth tube at about 4 – 75% and 150 – 320%. Chang et al. [13] examined thermal behaviors in a 
circular tube contained with twisted tapes having the serrations in the form of the square-sectioned ribs on 

two tape edges and twist ratios of 1.56, 1.88, 2.81 and ∞ where the rib pitch and height are identical. 

Eiamsa-ard et al. [14] investigated thermal characteristics in a tube with two-typed regularly spaced twisted 
tapes: full-length typical twisted tape with different twist ratios and twisted tapes with various free space 
ratios (S=1.0, 2.0, and 3.0). For compound swirl/vortex generators, Promvonge and Eiamsa-ard [15–17] 
reported thermal and flow friction characteristics in a uniform heat-fluxed tube fitted with conical-nozzle, 
conical-ring or V-nozzle in common with a snail-type swirl generator (decaying swirl) and concluded that 
for the compound devices, the heat transfer rate is increased at about 20–50% higher than the single use of 
an enhancement device but also friction loss is substantially increased.  

 The use of ribs/baffles creating the high strength of vortex flow leads to a considerable increase in heat 
transfer rate in channels/ducts. Ko and Anand [18] studied experimentally the use of porous baffles in 
turbulent channel flow to enhance the heat transfer and found that the porous baffles provided thermal 
behaviors as good as the solid baffles. Berner et al. [19] investigated laminar flow friction and thermal 
behaviors in a channel with staggered transverse baffles placed on two principal walls and suggested that 
free of vortex shedding occurred at a Reynolds number below 600. Gupta et al. [20] reported local heat 
transfer profiles in a square duct fitted with continuous, profiled and V-broken ribs. They showed that the 
V-broken ribs give higher heat transfer than the continuous and profiled ribs. Experimental and numerical 
studies on thermal behaviors in a square duct inserted with 30° angle-finned tapes were conducted by 
Promvonge et al. [21, 22] who suggested that the tape with smallest fin pitch ratio (PR=1) provides the 
highest Nusselt number, friction factor and the thermal enhancement factor. 

 Most investigations mentioned above have emphasized on thermal behaviors for thin fins/ribs (called 
‘‘baffle’’) mounted on the duct wall and the baffles mounted on the typical (solid) tape with diagonal insert. 
The study on turbulent flows through angled baffles placed on a rectangular centre-cleared tape/frame 
(perforated tape) has never been found. This type of baffled-tape pattern is considered to be very useful for 
pressure loss reduction in the thermal systems. Therefore, the key objective in the current work is to 
propose measured data available on this type of inclined-baffles mounted diagonally. The experiment is 
conducted using air as the working fluid for five different baffle heights for turbulent flows ranging from 
Re = 4100 to 25,600. 
 

2. Experimental Setup and Test Procedure 
 
2.1. Details of Inclined Baffle 
 
The schematic view of inclined baffles chosen for the present study is shown in Fig. 1. Aluminum strips 
with 0.5 mm thickness (t) were used to form the baffles while an aluminum sheet with dimensions of 0.5 

mm 1000 mm  63.6 mm (thickness,   length, Lwidth, Wd), was employed as the supporting frame 
or perforated tape by centrally cut to form the center-cleared tape. The tape width (w) is 0.2H throughout 
(see Fig. 1). The heights (b) of the baffles were set to 4.5, 9.0, 13.5, 18.0 and 22.5 mm, equivalent to five 
relative baffles or flow blockage ratios, b/H= 0.1, 0.2, 0.3, 0.4 and 0.5, respectively, and were placed on the 

tape edges at the distance of three-fold duct height, P/H= 3 and at two attack angles () of 60° and 45°. 
The range of baffle parameters and test conditions is given in Table 1. 
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Table 1. Details on baffle geometry and test conditions. 
 

Working fluid air 
Reynolds number, Re 4100 to 25,600 
Duct height = Duct width, H 
Diagonal width, Wd=√2∙H 

45 mm 
63.6 mm 

Hydraulic diameter, Dh 45 mm 
Test section length, L 1000 mm 

Baffle attack angle,  30° (fixed) 

Blockage ratio, BR 0.1, 0.2, 0.3, 0.4, 0.5 
Pitch ratio, PR 3 (fixed) 
Baffle thickness, t 0.5 mm 
Tape length = Test section length, L 1000 mm  

Tape thickness,  0.5 mm 

 
2.2. Experimental Procedure 
 
The schematic representation of experimental facility and test section of square-duct heat exchanger is 
shown in Fig. 2. The key components in the experimental setup were a high-pressure blower, aluminum 
square-duct, electric heater, orifice plate, circular pipe, settling tank, AC power supply, inclined manometer, 
ammeter, voltmeter, thermocouples. The 3 mm thick aluminum sheets were formed to be the test duct 
having a cross section of 45 mm × 45 mm (hydraulic diameter, Dh = 45 mm) and 1000 mm in length (L). A 
uniform heat flux of 3000 W/m2 (maximum) was applied to all the duct walls and was maintained using AC 
power supply (variable transformer). Air at room temperature (25 °C) entered the system by a high-pressure 
blower. A high-pressure blower was used to supply the room air to system and connected to a settling tank 
by a round pipe where an orifice plate was placed in this pipeline. Ten values of volumetric flow rates were 
maintained to cover the entire range of Reynolds number (4100–25,600). 28 K-type thermocouples were 
employed by attaching them on the outer duct walls to measure the temperature variations along the test 
duct. Also, to measure the inlet air temperature and the outlet air temperature of the test duct, two 
thermocouples of K-type were positioned at the entrance and exit. A data acquisition system (Fluke 2680A) 
was used to receive the signal from the mentioned thermocouples and was recorded by a laptop. More 
details of the method and uncertainty analysis are similar as reported in earlier paper [23]. 
 

 

 
Fig. 1. Details of test duct along with inclined baffles. 
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Fig. 2. Schematic of experimental setup. 
 

3. Data Analysis 
 
In the current study, air as the test fluid is flowed into a constant heat-fluxed square-duct heat exchanger. 
Due to steady-state condition, the rate of heat transfer is set equally to the convection heat loss in the duct. 
By uniformly adding heat to fluid (Qair), the average heat transfer coefficient is evaluated through the 
temperature difference of tube wall and fluid (Tw−Tb) by the equations below: 

 

   VITTCMQQ  iopca  (1) 
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~

(/( bwc TTAQh   (2) 

where,  
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and  

  /28
~

ww TT  (4) 

 

in which A, bT and w

~
T  are the heat transfer surface area, bulk fluid temperature in the test duct and average 

wall temperature along the test duct, respectively. Then, average Nusselt number (Nu) is calculated by 
 

 kDh h )/(Nu   (5) 

The hydraulic diameter (Dh) of the duct is used for finding Reynolds number (Re) as given by 
 

 νDU h/Re   (6) 

Also, pressure loss displayed in the form of friction factor (f) is written by: 
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Thermal performance of the system shown in terms of thermal enhancement factor, , defined as the 
ratio of Nu of baffle insert, h to Nu of a flat duct alone, h0, at an equal blowing power [24] is written as 
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4. Results and Discussion 
 
4.1. Verification of Smooth Square-Duct 
 
The current experimental results of Nu and f from the present flat duct are initially verified by comparing 
them with those obtained from the correlations of Gnielinski and Petukhov [25] for turbulent duct flow. 
 
Correlation of Gnielinski, 
 

 

  
   1Pr/812.71

Pr1000Re/8
Nu

2/30.5





f

f
 (9) 

 
Correlation of Petukhov, 
 

 
  2

1.64lnRe0.79


f  (10) 

 
 The experimental and correlation values of Nu and f are, respectively, plotted and shown in Fig. 3a and 

b. In the figure, the average deviations for Nu and f are seen to be about 5.1% and 5.6%, respectively which 
shows an excellent agreement between both the results. 
 
4.2. Heat Transfer Results 
 
An experimental study has been carried out to study the augmentation of heat transfer by using 30° 
diagonally inclined baffles inserted in a square-duct heat exchanger. The variation of Nu with Re for the 
baffle insert is depicted in Fig. 4a. It can be observed in the figure that the values of Nu are found to 
increase with the increment of Re and BR. The heat transfer in the baffled duct shows the considerable 
increase above that in the flat duct alone. It is worth noting that the use of largest BR provides the 
maximum Nu value. In the current work, the Nu values are, respectively, around 64.2%, 72.4%, 75.7%, 
76.4% and 77.5% above the smooth/flat duct for using BR=0.1, 0.2, 0.3, 0.4 and 0.5. 

 The variation of the ratio of Nu in the baffled duct to Nu in the flat duct (Nu/Nu0) with Re is 
portrayed in Fig. 4b. It is seen in the figure that Nu/Nu0 decreases slightly with increasing Re while 
increases with the rise in BR. The Nu/Nu0 has a maximum for BR=0.5. This is caused by stronger vortex-
flow strength of larger BR, increasing turbulence intensity and rapid fluid mixing apart from more 
interrupting the boundary layer, resulting in the fantastic increase in heat transfer. 
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(a) 

 
(b) 

 
Fig. 3. Verification of (a) Nu and (b) f for smooth duct. 
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(a) 
 
 

 
(b) 
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(c) 

 
Fig. 4. (a) Nu versus Re, (b) Nu/Nu0 versus Re and (c) Nu/Nu0 versus BR. 
 

 Figure 4c displays the Nu/Nu0 variation with BR for different Re values. It is seen in Fig. 4c that 
Nu/Nu0 tends to rise steeply at the beginning with increasing BR. The Nu/Nu0 shows the rapidly 
increasing trend with the increment of BR from 0.1 to 0.3 and then displays a gradual increase for BR > 0.3. 
The Nu/Nu0 values are, respectively, in the range of 4.3–4.6, 4.1–4.4, 3.9–4.3, 3.5–3.8 and 2.8–3.0 for 
BR=0.5, 0.4, 0.3 0.2 and 0.1 depending on Re values. The BR=0.5 provides, respectively, the average 
Nu/Nu0 around 4.4, 7.3, 18.2 and 35.2% above the BR=0.4, 0.3, 0.2 and 0.1. 
 
4.3. Friction Loss Results 
 
The relations of f and f/f0 with Re for various BR values are, respectively, shown in Fig. 5a and b while the 
profile of f/f0 with BR is depicted in Fig. 5c. It can be observed in Fig. 5a that using the baffle insert results 
in an extreme increase in f above the flat duct. The BR=0.5 gives the average increase in f at about 41.1%, 
57.6%, 64.4% and 74.6% higher than the BR=0.4, 0.3, 0.2 and 0.1, respectively. This very high friction loss 
is due to the presence of the baffles creating more obstruction in the development of the boundary layer of 
flow. Moreover, this can be explained from the fact of higher flow blockage due to the baffle, larger area of 
the surface and the reversing flow. The f/f0 of the largest BR shows the maximum value as can be seen in 
Fig. 5b. 

 Figure 5c shows the effect of BR on f/f0 for different Re values. It is noted in the figure that f/f0 shows 
the gradual increase with the increment of BR until BR=0.3 and then displays the rapid increase for BR > 
0.3. Among the BR values, the BR= 0.5 yields the highest f/f0. The BR=0.5, 0.4, 0.3, 0.2 and 0.1 provide the 
average f/f0 values around 54.0, 31.7, 22.8, 19.1 and 13.7 times, respectively. 
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(a) 
 
 

 
(b) 



DOI:10.4186/ej.2017.21.7.485 

ENGINEERING JOURNAL Volume 21 Issue 7, ISSN 0125-8281 (http://www.engj.org/) 495 

 
(c) 
 

Fig. 5. (a) f against Re, (b) f/f0 against Re, and (c) f/f0 against BR. 
 
4.4. Thermal Performance Results 
 

The relationship between thermal enhancement factor () at similar pumping power and Re is presented in 

Fig. 6. In the figure,  tends to reduce with the rise of Re for all BRs. Determining from Eq. (8), the  of 

the inclined baffle at BR=0.3 is highest around 1.68 at the lowest Re. The maximum  are, respectively, 

about 1.40, 1.57, 1.68, 1.55 and 1.36 for BR=0.1, 0.2, 0.3, 0.4 and 0.5. The BR=0.3 yields the  around 6–
7%, 8–9%, 16–17% and 18–19% higher than the BR=0.2, 0.4, 0.1 and 0.5, respectively. This can be 

concluded that to achieve higher thermal performance, the baffle with BR=0.3, =30° should be 
employed. 
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Fig. 6. Variation of  with Re for various BRs. 
 

5. Conclusions 
 
The effects of the inclined baffles with different blockage ratios, BR (=0.1, 0.2, 0.3, 0.4 and 0.5) on the heat 
transfer, friction factor and thermal performance behaviors have been investigated experimentally for Re 
from 4100 to 25,600. The findings from the results can be concluded as:  

1. Nu tends to increase with the rise of Re but Nu/Nu0 shows nearly free from Re. 
2. The increases in BR and Re provide higher heat transfer rate and friction loss. 
3. The highest Nu/Nu0 of 4.6 and f/f0 of 63.67 is found for BR=0.5. 

4.  shows the downtrend with increasing Re and the baffles with BR=0.1, 0.2, 0.3, 0.4 and 0.5 give 

the highest around 1.40, 1.57, 1.68, 1.55 and 1.36, respectively. 

5. The BR=0.3 baffle yields the highest . 
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