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Abstract. The economy of a prestressed steel beam can be realized only when relevant 
parameters of optimum magnitude are chosen. The present work aims at finding out the 
optimum dimensions of a simply supported, laterally unsupported, prestressed steel I-
beam for a given span and load carrying capacity. The span of the beam was limited to 12 
m while the load carrying capacity was limited to 100 kN/m in this study. A straight 
tendon configuration over the whole span is considered and the losses occurring in the 
tendon are neglected. The safety of various sets of dimensions ranging from the minimum 
dimensions of I-section in IS-Hand Book-1 to their maximum dimensions for different 
pre-stressing forces and eccentricities are checked. The set with minimum cross sectional 
area is chosen. Iterative calculations involved in analysis were performed with the help of a 
‘C’ program developed by the authors in Turbo ‘C’ Environment. It was observed that the 
ratio of top fiber stress at working loads to the permissible stress is more than 0.9 for all 
the spans for the finalized cross-sections. This means that the cross-section is being 
effectively utilized. For a given load carrying capacity and span, eccentricity to depth ratio 
has to be in between 0.45 to 0.7 for optimum utilization of the available cross section. It is 
also observed that the maximum pre-stressing force equal to 0.25 times the permissible 
bending compressive stress can be applied. 
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1. Introduction 
 
The necessity for economy in steel in view of large quantities needed for construction and rehabilitation of 
various steel structures necessitated the requirement of saving steel. The concept of pre-stressing is not a 
new frontier in the field of Civil Engineering. The concept of prestressing steel structures is only recently 
being re-considered, despite a long and successful history of pre-stressing concrete members. In spite of 
having many advantages over pre-stressed concrete, pre-stressed steel has not been popular due to the 
complexity and ambiguity involved in analysis and design calculations and problems arising due to 
application of external prestressing technique and fabrication. The idea of prestressing of steel may be 
surprising to many Engineers. Being familiar with pre-stressed concrete, they will not be convinced with the 
application of the same principles to constructions made in structural steel. But it is to be noted that they 
are valid because the assumptions involved in formulating them are more valid for steel beams than for 
concrete beams. The advantages of a pre-stressed steel beam can be realized only when the cross-section is 
effectively utilized.  
 

2. Literature Review 
 
Little research has been done in the area of prestressed steel beams. A summary of some of the important 
works in this area is presented below. 

Pre-stressed metal structures have been proposed since 1837, when Whipple (1847) [1] in the United 
States learned to compensate for the poor tensile capacity of cast-iron members through pre-stressing in 
Bridges. Dischinger (1949) [2] in Germany, beginning in 1935, began to conceive much wider applications 
for pre-stressed steel. His proposals included highway and railway bridges utilizing pre-stressed plate 
girders, box girders, trusses and other structural forms. Fritz. (1955) [3] reaffirmed the work. As a result of 
the European work in pre-stressed steel, Coff (1950) [4] in the United States proposed a 250-foot span pre-
stressed steel plate Girder Bridge. He later patented a pre-stressed composite system. Another U.S. patent 
was granted to Naillon in 1961 for pre-stressing of a steel beam by cables. Magnel (1950) [5] reported 
experimental results from a steel truss pre-stressed by post-tensioning of the tension chord. Strands were 
placed inside the hollow chord and tensioned against anchorages at the ends of the chord. A later article by 
Magnel (1954) [6] described one of his projects, a pre-stressed long span roof truss for a Belgian aircraft 
hangar. He stated that pre-stress loss was only 9% (which is relatively low compared to losses for pre-
stressed concrete). Barnett (1957) [7] returned to the queen post truss concept in suggesting the use of pre-
stressed steel truss beams. In the late 19th and early 20th centuries, Barnard (1960) [8] designed many U.S. 
bridges with trussed floor beams. Vasiliev (1961) [9] analysed the behavior of pre-stressed beam with a view 
to determine optimum geometric parameters. He also studied the effect of various types of loading patters 
upon optimum parameters. Finn and Needham (1964) [10] performed a rather extensive testing program 
for a 90-foot span pre-stressed steel truss. Petrov (1965, 1967) [11, 12] examined the parameter of pre-
stressed steel beams for designing with cables all along the beam length. The equations derived by Vasiliev 
(1961) [9] were used and the results were presented in the form of graphs. Petrov (1967) [12] indicated also 
the drawbacks of his previous design method in the subsequent work. Subcommittee 3 (1968) [13] of the 
Joint ASCE-AASHTO Committee on Steel Flexural Members reviewed the state of the art in pre-stressed 
steel. Ekberg (1968) [14] reported the conclusions of the committee. Ferjencik (1972) [15] and Tochacek 
and Amrhein (1971) [16] described progress in pre-stressed steel design in Czechoslovakia. Research was 
begun in 1960, and actual design specifications were adopted as a result of that research. Ferjencik 
described a rather extensive catalog of applications of pre-stressing including applying it to girders and 
trusses. Tochacek and Mehta (1972) [17] pointed out that the safety factor for the portions of pre-stressed 
steel structures subjected to a range of both tension and compression can be reduced by up to 20% under a 
working stress design. In order to give an adequate and consistent factor of safety, he suggested use of load 
factor design. Belenya (1972) [18] conducted tests on pre-stressed homogenous beam. The beam cross 
sections are asymmetric with bottom flange made of plate, pipe or angle. Kalburgi (1975) [19] developed 
the equations for finding optimum pre-stressed steel I-section in non-dimensional parameters. Soliman et 
al. (1986) [20] analysed uniformly loaded steel continuous beams for variable cross section in elastic and 
elasto-plastic behavior. Expressions are developed for determining the optimum values of certain 
parameters that influence the effectiveness of the prestressed member. It was observed that the load 
carrying capacity depends on length to depth ratio and depth to thickness of web of section. Michael S. 
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Troitsky et al. (1989) [21] made a study on pre-stressed – steel continuous – span girders. Pre-stressed steel 
girders having either simple or continuous spans are indeterminate structures. Mark A. Bradford (1991) [22] 
made a study on buckling of pre-stressed steel girders. Pre-stressing of steel girders, in order to gain 
economy of the material, is becoming popular in the United States. Rao (1993) [23] suggested a direct 
method for optimum design of pre-stressed metal beams working with elastic and elasto-plastic states. The 
equations derived were in general form an arbitrary location of the cable along the height of the section. 
Russel and Syder (1995) [24] made a study on pre-stressed steel girders for single span bridges. Valiente and 
Elices (1998) [25] reported prestressed steel bars failure details and failure analysis is done using Linear 
Elastic Fracture Mechanics. They showed that the ususal design requirements for prestressing bars fail to 
warn against brittle failures if damage exists. Knowledge of the toughness of the prestressing bars may be 
helpful to the designer and builder to compare, select or reject different batches. Nunziata et al. (1999) [26] 
made a study on various methods of analysis of pre-stressed steel structure design. Raman Singh et al. 
(2002) [27] made a case study on pre-stressed steel bridge. Guptha (2002) [28] made a study on pre-stressed 
steel structures. In his keynote address he briefed the behavior of pre-stressed steel structures like pre-
stressed steel frames, pre-stressed steel trusses etc. Optimum parameters for design of pre-stressed steel 
structures are listed out towards the end. Brodka and Klobukovki (2002) [29] developed ATOM bridge 
construction method. It maximises the economic effect and improve the construction convenience when 
compared with existing methods. Nunziata et al. (1999) [26] conducted an experimental study on structures 
in pre-compressed steel. The basic principles and the technology of pre-stressing steel structures were 
discussed. 40 m long pre-stressed steel beams were tested by loading concrete blocks of weight 25 kN each. 
The results were consistent with those obtained by applying the analytical procedure proposed by the 
author. Yusuf Ozcatalbas and Alpay Ozer (2007) [30] studied mechanical properties of internally 
prestressed steel I-beam. It was observed that permanent stresses and the magnitude of pre-deflection in 
the prestressed I- beams change with the level of prestressing. Decreasing the magnitude of prestressing 
resulted in an increase in the flexural capacity of prestressed steel I-beams. Ravindra et al. (2008) [31] 
formulated a procedure for analysis and design of pre-stressed steel beams. ISWB 600 is taken for the 
execution of the program for various combinations of span. It was concluded that a minimum eccentricity 
is required for the beam to be safe in all respects and it is observed that there is no significant improvement 
in the load carrying capacity by applying maximum allowable prestressing force with minimum allowable 
eccentricity. Belletti and Gaspen (2010) [32] reported the behavior of simply supported Steel I-beams by 
prestressing with tendons. They opined that stress losses in tendons are not considered because friction 
losses are negligible for un-bonded tendons and relaxation losses are negligible. They focused on 
fundamental parameters like the number of deviators and the magnitude of prestressing force. Nonlinear 
finite element analyses is used by taking into account both mechanical and geometrical nonlinearities. It was 
recommended based on this study that two deviators should not be adopted to impose the shape of tendon 
for practical solutions. Further, it was observed that, for an assigned number of deviators and for the same 
prestressing force, a better performance is achieved by tensioning after the bracing is applied. Sunkyu Park 
et al. (2010) [33] studied the flexural behavior and strengthening effect of externally prestressing a steel I- 
bridge with un-bonded tendons and observed that external prestressing creates a stiffer steel beam when an 
appropriate magnitude of the prestressing force is applied. The results are compared with theoretical 
solution in order to establish their practical applicability. It was observed that the yield and ultimate loading 
of steel I-beams significantly increased. It was further concluded that the amount of prestressing force 
applied, the installation of a deviator and the embedment of a draped tendon may be significant factors that 
influence the strengthening of steel I-beams. Ravindra and Markandeya Raju (2012) [34] formulated a 
procedure for finding loss of prestress in prestressing steel beams and studied the performance of 
prestressed steel I-beams and compound beams with and without loss of prestress. It was observed that the 
load carrying capacity calculated by neglecting losses is less when compared with that calculated by 
considering losses. However, not much change in the eccentricity required for achieving maximum load 
carrying capacity was observed. Jae-Yue Oh et al. (2012) [35] proposed two rational and theoretical models 
to quantitatively estimate the accordion effect, which is induced by the introduction of prestress to 
corrugated webbed steel beams. They performed experiments on two steel beams with corrugated webs 
and one with typical wide flange section. Based on the finite element analysis, it was confirmed that the 
accordion effect induced in steel beams with corrugated webs at the prestress transfer was greatly 
dominated by the geometric characteristics of corrugated webs, and it can be simply quantified using key 
factors. The experimental results showed that the prestressing efficiency of steel beams with corrugated 
webs increased more significantly than that of the steel beam with a typical web, and it is verified that the 
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proposed methods are very simple and provide good agreements with the experimental results. Ponnada 
and Vipparthy (2013) [36] compared the performance of prestressed steel I-beam and that strengthened in 
compression by welding two angles. The study of the variation among different parameters revealed that 
the load carrying capacity is not directly proportional to the prestressing force in case of an unsymmetrical 
I-section for eccentricities less than a minimum value. But in case of a symmetrical section, the load 
carrying capacity is directly proportional to the prestressing force for all eccentricities. However, it was 
observed that the material of the cross-section is effectively utilised when an unsymmetrical I-section is 
prestressed. Vipparthy and Ponnada (2013) [37] developed an algorithm for evaluating the performance of 
prestressed symmetric and unsymmetrical steel I-beams. For each of the rolled steel beam sections available 
in IS – Hand Book 1 and for spans varying from 8m to 16m, iterative calculations involved in analysis have 
been performed with the help of a program developed by the authors for analysis of prestressed steel 
beams. The advantage of prestressing steel I-beams strengthened in compression is more than that gained 
by prestressing symmetrical I-beam because the range of eccentricity available for prestressing is more. The 
study revealed that the range of eccentricity that can be provided for I-section is less than that for I-section 
strengthened in compression by welding a plate. Raju Ponnada and Vipparthy (2014) [38] proposed a 
method of arriving at expression for deflection of simply supported, prestressed homogenous steel I-beams 
calculated by considering the combined effect of prestressing and total load. A straight tendon 
configuration with an eccentric prestressing force is considered for study. Ravindra and Markandeya Raju 
(2007) [39] developed a program for Optimum Design of an Unsymmetrical, Laterally Unsupported 
Prestressed Homogenous Steel I- Beam. Pothisiri and Hemathulin (2012) [40] presented the test data on 
intumescent fire protection for Structural Steel Sections in Thailand. Lenwari and Chen (2012) [41] 
conducted Finite Element Analysis of Distortion-Induced Web Gap Stresses in Multi-I Girder Steel 
Bridges. Lenwari and Thepchatri (2015) [42] presented an optimum design of Steel Structures in 
Accordance with AISC 2010 Specification Using Heuristic Algorithm. Phuvoravan and Ponsorn (2017) [44] 
performed a nonlinear Finite Element Analysis to evaluate lateral torsional buckling moment of elliptical 
cellular steel beams. 

The recent developments in the prestressed metallic carpentry demonstrate that there is vast scope for 
research and development in this area. However, this technique is not very famous in the Construction 
industry. Studies on the Optimization of the steel cross-sections can demonstrate the advantage of 
prestressing steel beams over normal steel beams.  
 

3. Behavior of Prestressed Steel I-Beam 
 
3.1. General Considerations in the Design of Prestressed Steel Beams 
 
Beams are considered to be the most critical members in any structure. Hence their design should be 
economical and safe. The Main considerations in the design of steel I-beams are as follows: 

1) They should be proportioned for strength in bending keeping in view lateral and local stability of 
the compression flange and the capacity of the selected shape to develop the necessary strength in 
shear and local bearing. 

2) They should be proportioned for stiffness, keeping in view their deflections and deformations 
under service conditions. They should be proportioned for economy with regards to the size and 
grade of steel to arrive at the most economical design. It is a difficult task for designer to select an 
economical beam size (particularly for steel beams) for given span and load that will satisfy above 
all three conditions. 

3) A number of rolled steel sections are used in construction. However, angle and T-sections are 
inherently weak in bending while channels can only be used for light loads. I-shape is preferred 
because it can effectively take heavy loads. Further it is easy to predict the lateral buckling 
characteristics and it is also possible to split and rejoin by welding. Such beams are more resistant 
to bending by virtue of their high section modulus. Also, the load carrying capacity of a steel I-
beam can be considerably enhanced by prestressing it. 

 
3.2. Ideal Stress-distribution in Prestressed Steel Beams 
 
Prestressing of I-shaped steel beam can be performed in one of the two basic ways. One is to place tendon 
below centroid of beam section and above bottom flange (Fig. 1(a)) and attach them at each end of beam. 
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In this case a constant eccentric prestressing force is applied. Second method is to place tendon below 
beam fiber (outside beam a in Fig. 1(b)) in tension. The prestressing force applied creates two normal stress 
components, axial and bending. Top and bottom flanges are subjected to tension and compression 
respectively. This distribution of stress is opposite to the stress caused by down ward applied load. When 
transverse loads (including both live and dead load) are applied, resulting bending stresses add to stresses 
due to prestressing to give final combined stress distribution. 
 

 
 
Fig. 1. (a) Tendon placed inside the cross-section of a loaded beam. 
 

 
 
Fig. 1. (b) Tendon placed beyond the cross-section of a loaded beam. 
 

Ideal stress distribution due to prestressing would be one in which top and bottom fiber stresses are 
equal. If prestressed beams are designed with symmetrical cross section, bottom chord will always remain 
under-stressed whereas compressive stress in the top chord attains its design value. Theoretically, an 
infinitely large value of eccentricity would be necessary while prestressing force approaches zero, to obtain 
the above distribution. In order to utilize material of beam cross section to full capacity, cross section 
should be designed unsymmetrical, the center of cross section being displaced towards top flange. After 
prestressing, when an external load is applied to beam, stresses in top and bottom fibers of beam are nearly 
equal to the design strength of material. Thus, an important feature is that a well-proportioned cross 
section, results in stress distribution in top and bottom fibers of beam equal to their design strengths. This 
arrangement has a great deal of promise for economical steel constructions. 
 
3.3. Beam-Column Behavior of Prestressed Steel Beams  
 
By placing a straight tendon below a centroid of the beam section, the mid span deflection of a simply 
supported beam (due to external applied load) will reduce the mid span moment resistant capacity, because 
of the reduction in the eccentricity of prestressing force. This effect has to be considered during analysis 
and design of prestressed steel beams. The necessary equations that have been incorporated in the program 
developed in this paper have been presented by Raju Ponnada and Vipparthy (2014) [38]. They considered 
a simply supported beam of span ‘l’, Flexural rigidity EI subjected to a total uniformly distributed load of 
wtl /unit length and prestressed by a force ‘P’ at an eccentricity ‘e’. Let the deflection of the beam at a 
distance ‘x’ from left support is ‘y’ (Fig. 2). By placing the straight tendon below the centroid of the beam 
section, the mid span deflection of this simple beam (due to the combined action of prestressing force and 
externally applied load) will reduce the mid span moment resistant capacity, because of the decrease in the 
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effective eccentricity of the prestressing force. The authors have considered this effect for all the 
calculations presented in this paper.  

It is to be ensured that the analysis of a prestressed steel I-beam shall allow for the effects of the design 
loads acting on the structure and its members in their displaced and deformed configuration. These second-
order effects shall be taken into account by considering the change in eccentricity of prestressing force in 
the deflected beam. In this process, the combined Effect of Prestress and External Load on extreme fiber 
stresses and Deflection is presented here. 
 

 
 
Fig. 2. Deflected shape of the prestressed steel I-beam. 
 

Then, bending moment at any section at a distance of ‘x’ from left support is given by 
 

  (1) 

 
Here, 

P = Magnitude of Prestressing force (kN); 
e = eccentricity (mm); 
y = deflection at a section distant x from left support;  
wtl = uniformly distributed load acting on the beam (including self weight); 
l = span of the beam; 
EI = Flexural rigidity of the material of the beam. 
 
Hence, from the theory of pure bending 

 

  (2) 

 
Solving the differential equation,  
 

  (3) 

 
This is the generalised expression for finding the deflection of a simply supported eccentrically prestressed 
beam considering the combined effect of prestress and total load. 

Maximum deflection by symmetry occurs at x = l/2. Hence,  
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  (4) 

 
Incorporating the beam – column effect, the extreme fiber stresses are calculated. The stress distribution 
diagrams and the corresponding modified formulae as given below.  
 
Case 1: Application of Concentric pre-stressing force. 
 
The stress distribution for the case of concentric prestressing are not presented here because Ravindra et al. 
(2008) [31] observed that a minimum eccentricity is required for the beam to be safe in all respects and no 
significant improvement in the load carrying capacity is achieved by applying even maximum allowable 
prestressing force concentrically. However, the expressions for the concentric prestressing case could be 
obtained by substituting “e = 0”, in the expressions presented below. 
 
Case 2: Application of eccentric pre-stressing force  
 
Stage 1: Before the application of live load 
 

 
 
Fig. 3. (a) Stress distributions due to eccentric pre-stressing and dead load. 
 
Hence extreme fiber stresses at transfer stage are given by: 
 

 Stress @ transfer stage at top fiber =   (5) 

 

 Stress @ transfer stage at bottom fiber =  (6) 

 
Mdl = Bending moment due to self-weight alone; 

= Stress in bending compression at bottom fiber due to dead load alone (N/mm2); 

= Stress in bending compression at top fiber due to dead load alone (N/mm2); 

Zxt = Section modulus at top fiber about centroidal X-X axes; 
Zxb = Section modulus at bottom fiber about centroidal X-X axes. 
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Stage 2: After the application of live load 
 

 
 
Fig. 3. (b) Stress distributions due to eccentric pre-stressing, dead load and live load. 
 
Hence, extreme fiber stresses at working stage are given by 
 

 Stress @ working stage at top fiber =  (7) 

 

 Stress @ working stage at bottom fiber =  (8) 

 
Here, 

 = Stress in bending compression at bottom fiber due to dead as well as live load (N/mm2); 

= Stress in bending compression at top fiber due to dead load as well as live load (N/mm2); 

Mtl = Bending moment due to total load (self-weight + live load). 
 

Here we observe that the dead and live loads induce tensile stresses towards the soffit. Further the 
compressive stress at the top fiber is substantially reduced. To elevate this, the pre-stressing tendon is 
placed eccentrically below the neutral axes. This approach induces tensile stresses at the top fiber and 
compressive stresses at the bottom fiber through an eccentric moment of ‘P×e’. In either case, it is to be 
ensured that the stresses calculated in the two stages should be less than allowable bending stress. The 
above relationships show that the presence of the pre-stressing compressive force reduces the tensile 
flexural stress either by eliminating tension and inducing some compression or by permitting some tensile 
stress within permissible limits. Identifying the “prestressing force” that satisfies the internal equilibrium 
(Total Compression = Total tension), Moment of resistance equation while ensuring that the stresses at 
transfer and working at extreme fibers are within permissible limits is a nonlinear multi-variable 
optimization problem. 
 
3.4. Losses Encountered in Prestressed Steel Beams  
 
The prestressing force at any point in the structures is always less than the force measured at the jack during 
stressing. The difference between the effective prestressing force and jacking force is called the loss of 
prestress. Determination of exact or at least a reasonably approximate magnitude of loss of prestress and 
compensation of it is important in the design of prestressed structures. However, prestressed steel beams 
are a special case. In this paper, losses have not been considered for all calculation purposes. A detailed 
explanation of the reasons for not considering losses is presented in this section.  
 
3.4.1. Loss of prestress 
 
Little literature is available on estimation of losses in pre-stressed steel members. Belletti and Gasper (2010) 
[32] opined that stress losses in tendons are not considered because friction losses are negligible for un-
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bonded tendons and relaxation losses are negligible. According to Ravindra Vipparthy and Markandeya 
Raju Ponnada (2012) [34], “The magnitude of friction loss due to length effect, loss of prestress due to 
elastic deformation of beam, loss of prestress due to anchorage slip and loss of prestress due to bending of 
the beam are significant” and “If the technique of re-tensioning is not employed, then the loss of stress due 
to relaxation of prestressing steel is significant”. 
 
3.4.2. Loss of prestress - compensation 
 
It is known that the losses generally encountered in pre-stressed concrete members are about 25-35% while 
the same in pre-stress steel members is approximately 5-10%. Although the loss of stress in pre-stressed 
steel member is small the uncertainty involved in estimation is high. It is known that underestimation of 
losses leads to reduced net Prestressing force, thus not using the system to its full capacity. Overestimation 
of losses leads to high Prestressing force causing excessive camber and tensile stresses in concrete, also 
buckling in steel. An exact determination of the PS losses is not feasible all the time. In some special cases it 
is reasonable to consider the lump-sum loss estimates. Although Ravindra Vipparthy and Markandeya Raju 
Ponnada (2012) [34] formulates a procedure to find the reasonable estimate of total loss, it’s reliability is yet 
to be established as it is not an experimental work. Also it is not to appropriate to consider thumb rules for 
losses. However, researchers and engineers have been considering only an approximate lump sum estimate 
of the losses (9 to 12%). Even if exact losses can be determined, they have to be compensated to prevent 
their effect on the load carrying capacity and service load behaviour such as deflection and crack width. 

There are two ways of compensating loss of pre-stress in tendons of pre-stressed members. 
1) Over stressing the tendon to the tune of estimated loss that may occur in the tendon 
2) Re-stressing the tendon from time to time to the tune of loss that has occurred in it. 
While the first method is suitable for pre-stressed concrete it is not suitable for pre-stressed steel 

beams. This is because, in pre-stressed steel beams the maximum pre-stressing force that is required for 
maximum increase in the load carrying capacity in the member is determined considering safety against 
compression flange buckling, web buckling, lateral torsional buckling in addition to the common failure 
modes encountered (flexure, shear, combined axial and bending, deflection, etc.) 

By overstressing beyond max possible pre-stressing force there is every chance of the member failing in 
one of these modes. If we stress the tendon to maximum possible prestressing force, then the load carrying 
capacity due to prestressing will be reduced and the section is not utilised to its full capacity. Hence, the 
basic objective of optimisation is not achieved.  

In certain structures like pre-stressed steel structures, it may be more practical and feasible to re-stress 
before and during working stage from time to time (for reasons other than relaxation) to compensate for 
loss of prestress rather than overstressing the tendons at transfer stage. Tests have shown that the 
relaxation loss is considerably less after re-stressing than the loss that occurs after the first stressing. 

It is important to note that re-stressing is an appropriate method for best performance of the 
prestressed steel beams because it overcomes the effects of overestimated/underestimated losses or in 
general losses.  

However, it is not feasible for pre-tensioned concrete and post-tensioned concrete (with bonded or 
grouted tendons) because the additional stress applied to tendon after losses have occurred will lead to loss 
of bond between tendon and concrete there by preventing effective transfer of pre-stress from tendon to 
member. 
 
3.4.3. Re-stressing of tendons 
 
To re-stress the tendon to its initial stress state, the loss of stress or current state of stress in the tendon has 
to be determined. It will be worthwhile to note that there is no direct method available to measure loss of 
prestress. However, it can be ascertained by knowing the changes in stress levels in pre-stressing cables. 
The change in stress level can be known by periodical measurement of the same. The force in pre-stressing 
steel can be measured by using Vibrating Wire (VW) Load Cells or Vibrating Wire (VW) Strain Gauges. 
There are also many NDT methods exclusively for stress measurement in pre-stressing steel strands. For 
example, 

X-Ray Diffraction for Direct Stress Measurements: This technique provides quantifiable results, is non-
destructive, and provides a measure of total stresses (applied plus residual stresses). 
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Ultrasonic Defect Detection: Ultrasonic waves can travel relatively long distances along pre-stressing strands 
when those strands are suspended in air. However, when a strand is embedded in concrete, signal 
attenuation limits the distance of wave penetration to one or two meters. Aggregate sizes that are 
comparable to the wavelength of the ultrasonic signal result in large-scale scattering or "grain noise." 

In summary, the most practicable and optimum method of designing a prestressed steel beam is by 
ignoring losses while designing. However, the prestress is to be measured (using suitable NDT techniques) 
and compensated by re-stressing from time to time as external unbounded prestressing is adopted. Hence, 
in this paper, the loss of prestress effect in the author’s computer aided analysis (or used a reasonable 
approximate value in the program) is not included as it is assumed that it is compensated form time to time. 

Even if loss of prestress is considered, the effect will be in terms of only the absolute magnitudes of the 
parameters under study (because only magnitude of prestress will change). The variation of parameters will 
not change.  
 

4. Objective, Scope and Methodology 
 
4.1. Objective and Scope 
 
The objective of this work is to determine the optimum dimensions of a simply supported, laterally 
unsupported, prestressed steel I-beam that can take a given load over a given span.  

The safety of various sets of dimensions ranging from the minimum dimensions of I-section in IS-
Hand Book-1 to their maximum dimensions for different prestressing forces and eccentricities were 
checked and the set with minimum cross sectional area was chosen. A ‘C’ program has been developed for 
checking the safety and suitability of a chosen pre-stressed steel I-section. All possible cross-sections with 
in a range of dimensions are checked for their appropriateness on a trial and error basis and the dimensions 
with minimum cross sectional area are finally chosen. Reference dimensions are chosen from IS Hand 
Book 1 so as to ensure a well-proportioned cross-section. The study is limited to 6m, 8m, 10m and 12m 
span beams. 
 
4.2. Methodology 
 
In addition to the assumptions in the theory of pure bending, thin walled beam theory and working stress 
design of steel and prestressed concrete structures, it is assumed that there is no loss of prestress and there 
is no lateral buckling under the combined action of prestressing force and the external loads. An 
unsymmetrical steel I- beam (Fig. 1(a)) prestressed with a constant eccentric prestressing force acting at a 
distance ‘e’ from neutral-axis of beam. A set of dimensions beginning with the smallest I-section in IS: 
Handbook No. 1 [44] is chosen. The maximum shear stress, the dead load and live load bending moments 
are calculated. The bending stresses in the extreme fibers at mid span section, the shear at neutral axis of 
the support section, the net deflection at transfer and at working are determined and checked against their 
permissible values. The check for the ratio of “thickness to depth of web” ratio of the I-section is 
performed to avoid the possibility of buckling. The check for crippling is also performed. The set of 
dimensions for which the stresses at all stages are with in permissible limits are addressed as optimum 
dimensions. The procedure is repeated with small increment in dimensions if any one of the prescribed 
checks is not satisfied. 
 
4.3. Algorithm for Optimum dimensioning of Prestressed Unsymmetrical Steel I-beam 
 
A detailed explanation of the formulation of the problem and solution methodology is presented in the 
following algorithm. The algorithm has been developed based on provisions drafted in IS 800 1984 [45].  
 
Step–1: Given data 
 

The magnitudes of live load carrying capacity ‘Lcc’ required and span  are noted. 

 
Step–2: Initialize the values of variables  
 

 l
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The minimum values of I-section are initialized to the dimensions as given below.  
 

 .  

Here, 
d = depth of web; 
wtf = width of top flange (for asymmetrical I-sections); 
ttf = thickness of top flange (for asymmetrical I-sections); 
tw = thickness of web (for asymmetrical I-sections); 
tbf = thickness of bottom flange (for asymmetrical I-sections); 
wbf = width of bottom flange (for asymmetrical I-sections). 

 
Step–3: Calculation of geometric parameters and maximum bending moment 
 

Calculate the magnitudes of   

Here,  
yt = distance of the centroidal X-X axes from top most fiber; 
yb = distance of the centroidal X-X axes from bottom most fiber; 
Ixx = Moment of Inertia about centroidal X-X axes (mm4); 
Iyy = Moment of Inertia about centroidal Y-Y axes (mm4); 
A = Area of cross-section of the beam; 
dl = dead load or self-weight of the beam; 
ry = radius of gyration about centroidal Y-Y axes. 

 

Step–4: Calculation of  (permissible bending compressive stress as applicable for laterally unsupported 

beams) 

 
For laterally unsupported length, the allowable bending stresses are less than ‘0.6fy’ to prevent the 

lateral torsional buckling failure. The specification that the authors used to compute allowable bending 
stress are adopted from Clause 6.2.4 of IS 800 1984 [45]. This clause ensures that lateral torsional buckling 
failure does not occur prior to the attainment of bending compressive stress. Another assumption is that 
the beam is assumed to be laterally unsupported but there is no lateral buckling under the combined action 
of prestressing force and the external loads as shorter spans are considered (only up to 12 m). Further, it is 
also assumed that stiffeners are designed and provided it lateral tensional buckling occurs. Hence, the beam 
will be checked only for buckling only under the combined action of dead load and live load. 

The magnitudes of are calculated. 

Here,  a Coefficient to allow for reduction in thickness or breadth of flanges between points of 

effective lateral restraint and depends on the ratio of the total area of both flanges at the point of least 
bending moment to the corresponding area at the point of greatest bending moment between such points 
of restraint. Values of k1 are given in Table 6.3 of IS 800 1984 [45]. 

a coefficient to allow for the inequality of flanges, and depends on , the ratio of the moment 

of inertia of the compression flange alone to that of the sum of the moments of inertia of the flanges, each 
calculated about its own axes parallel to the y-y axis of the girder, at the point of maximum bending 
moment (Values of k2 are given in Table 6.4 of IS 800 1984 [45]). 

 the lesser and greater distances from the section neutral axis to the extreme fibers 

respectively. 
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By using the values   

 

Calculate the   (11) 

 
Step–5: Calculation of Allowable bending compressive stress 
 

= Allowable bending compressive stress (N/mm2), from Clause 6.2.3 of IS 800 1984 [45] 

  (12) 

 
Here, 

permissible bending compressive stress as applicable for laterally unsupported beams; 

= yield stress of the steel assumed as 250 N/mm2 and n = a factor assumed as 1.4. 

Here,  < 0.6 fy so as to avoid lateral torsional buckling of laterally unsupported beams. 

According to Appendix E of IS 800 1984 [45], the calculations presented in Step 4 is based on Timoshenko 
and Gere (1961) [46], Bleich (1952) [47], Johnston (1966) [48], Galambos (1968) [49], Column Research 
Committee of Japan (1971) [50], Allen and Bulson (1980) [51], ASCE (1977) [52], Lee (1960) [53], Trahair 
(1966) [54], Trahair (1966) [55], Trahair (1968) [56], and Leigh et al. (1971) [57].  
 

Step–6: Check the condition ‘ ’ with ‘ ’ to get the values of  
 

 
 
Fig. 4.  Compression zone of prestressed unsymmetrical I-beam. 
 
Step–7: Initialize the value FF = 0 and ER = 0. 
 
Here, 
 

 FF = Force factor = P / (  × A) (13) 

 
 ER = Eccentricity ratio = e/D  (14) 
 

D = Total depth of the beam. 
 
Step–8: Calculate the values of prestressing force ‘P’, bending stresses at transfer and working loads from 

Eq. (5), (6), (7) and (8) (at top and bottom fibers), and deflection ( ) from Eq. (4) as per Raju Ponnada 

and Vipparthy (2014) [38].  
 
Step–9: Check the conditions (Permissible stresses and deflection (Span (mm)/240) 
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The shear at neutral axis of the support section is determined and checked against its permissible value.  
 

Maximum shear stress induced in member: 
 

 =  (15) 

 
Crippling stress is calculated and checked as follows: 

 

  < (0.75  for I-Section)  (16) 

 
The check for the ratio of “thickness to depth of web” ratio of the I-section is performed to avoid the 

possibility of buckling. The check for combined bending & shears and combined bending & compression 
are also performed as per Clause 7.1.1 and Clause 7.1.4 of IS 800 1984 [45]. 
 
Step–10: Calculate the load carrying capacity Lcc 
 

  (17) 

 
Step–11: Note the values of dimensions, prestressing force and eccentricity and increment FF and ER 
 
Increase FF by 0.03 (until FF = 1) while limiting the maximum prestressing force that can be applied on a 
steel beam is by 
 

 P =   (18) 

 
and ER by 0.03 until  
 

  (19) 

 
Equations (17), (18) and (19) are adopted from Ravindra et al. (2008) [31]. 

Here, D = Total depth of the beam (mm). 
 
Step–11: Repeat Step–9 to Step–12 by increment the dimensions of the I-section up to a maximum of  

D = 600, wtf = wbf = 250, tw = ttf = tbf = 24 
 
Step–12: Repeat the Step–1 to Step-11 and ascertain the dimensions, P and e corresponding to the 
minimum cross sectional area and Lcc required. The set of dimensions for which the stresses at all stages 
are within permissible limits are addressed as optimum dimensions.  
 
4.4. Computer Aided Analysis of Prestressed Steel I-Beam 
 
A program is developed for the procedure discussed in Section 1 and 3. It gives the optimum dimensions 
of an unsymmetrical prestressed steel I- beam that can carry a given load over a given span. The dimensions 
are limited to the maximum dimensions of I-sections in IS-Hand Book No-1 [44] so as to ensure a well 
proportional cross-section. The loss of prestress in the prestressing tendon is neglected. The fy of the 
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material of the I-section is taken as 250 MPa. A straight tendon configuration over the whole span is 
considered for study.  
 
4.5. Limitations of Present Study  
 

1) The dimensions are limited to the maximum dimensions of I-sections in IS-Hand book No-1 [44] 
so as to ensure a well proportional cross-section. 

2) The span of the beam is limited to 12 m. 
3) The load carrying capacity is limited to 100 kN/m in multiples of 10 kN/m. 

 

5. Results and Discussion 
 
5.1. Results 
 
The program developed by the authors was executed for spans of 6 m, 8 m, 10 m and 12 m and Load 
carrying capacities if 10 kN/m to 100 kN/m. Non-dimensional parameters in terms of dimensions of the I-
section and extreme fiber stresses were determined and presented in this Section 5.1. The following design 
tables were obtained by executing the program. 
 
Table 1. Non dimensional parameters. 
 

Span Lcc dl wl P 
FF 

e 
ER 

pLcc pDef 

m kN/m kN/m kN/m kN mm % % 

6 

10 0.4 4.9 84 0.24 180 0.6 102.9 -37.3 

20 0.5 14.3 158 0.21 144 0.48 39.7 -27.7 

30 0.7 25.1 25 0.03 135 0.3 19.5 -2.8 

40.1 0.7 25.9 175 0.21 268 0.51 54.9 -30.2 

50.1 0.8 26.6 286 0.27 256 0.57 87.9 -37.6 

60 0.9 36.4 33 0.03 216 0.36 65.1 -3 

70 1 58 82 0.06 306 0.51 20.7 -9.2 

80.1 1.1 71.9 94 0.06 270 0.45 11.4 -8.2 

90 1.2 59 274 0.18 324 0.54 52.7 -25.6 

100.1 1.3 99.5 68 0.03 236 0.45 0.5 -4.1 

8 

10 0.6 8.4 23 0.03 27 0.1 19.5 -0.3 

20 0.8 14.1 84 0.12 324 0.5 41.8 -19.2 

30 1 23.7 35 0.03 252 0.5 26.6 -4.1 

40 1.1 27.1 38 0.03 198 0.3 47.7 -2.6 

50 1.8 42.8 246 0.12 252 0.4 16.8 -17.5 

10 
10 0.8 9.9 30 0.03 34 0.1 0.9 -0.4 

20 1.1 12.3 226 0.21 299 0.6 63 -29.6 

12 10 1 6.8 256 0.3 268 0.5 49 -39.6 

 
In Table 1, 

Lcc = Live load carrying capacity of the prestressed beam, 
pLcc = % increase in load carrying capacity of the prestressed beam with respect to un-prestressed 

beam, 
pDef = percentage decrease in deflection due to prestressing. 

 



DOI:10.4186/ej.2017.21.7.293 

ENGINEERING JOURNAL Volume 21 Issue 7, ISSN 0125-8281 (http://www.engj.org/) 307 

Table 2. Dimensions of I-section. 
 

Span Lcc wtf wbf ttf tbf tw D yt yb 

M kN/m mm mm mm mm mm Mm mm mm 

6 

10 260 85 8 8 8 284 109.4 190.6 

20 120 225 26 8 8 266 129.4 170.6 

30 120 260 26 8 8 416 204.9 245.1 

40 260 225 14 8 8 503 214.7 310.3 

50 260 260 20 8 8 422 165.1 284.9 

60 260 260 20 8 8 572 227.1 372.9 

70 190 260 26 14 8 560 275.2 324.8 

80 260 225 20 20 8 560 285.7 314.3 

90 260 190 26 20 8 554 245 355 

100 260 260 26 26 8 473 262.5 262.5 

8 

10 120 260 26 8 8 266 136 164 

20 260 260 14 8 8 578 258 342 

30 260 260 20 14 8 491 233 292 

40 260 260 26 20 20 554 283 317 

50 260 260 26 14 8 560 243 357 

10 
10 155 260 26 14 8 335 185 190 

20 260 260 26 14 8 485 211 314 

12 10 225 260 26 14 8 485 225 300 

 
In Table 2, 

d = depth of web. 
 
Table 3.  Non dimensional parameters (Dimensions) of I-section. 
 

Span Lcc A  
A/WA A/TFA A/BFA TFA/BFA yt/yb FA/WA 

m kN/m (cm2) 

6 

10 50.3 2.21 2.42 7.4 3.06 0.57 1.21 

20 70.5 3.31 2.26 3.92 1.73 0.76 2.31 

30 85.3 2.56 2.73 4.1 1.5 0.84 1.56 

40 94.6 2.35 2.6 5.26 2.02 0.69 1.35 

50 106.6 3.16 2.05 5.13 2.5 0.58 2.16 

60 118.6 2.59 2.28 5.7 2.5 0.61 1.59 

70 130.6 2.92 2.64 3.59 1.36 0.85 1.92 

80 141.8 3.17 2.73 3.15 1.16 0.91 2.17 

90 149.9 3.38 2.22 3.94 1.78 0.69 2.38 

100 173 4.57 2.56 2.56 1 1 3.57 

8 

10 73.3 3.44 2.35 3.52 1.5 0.83 2.44 

20 103 2.24 2.84 4.97 1.75 0.75 1.24 

30 128 3.25 2.46 3.51 1.43 0.8 2.25 

40 149 1.34 2.2 2.86 1.3 0.89 1.08 

50 230 5.14 3.41 6.33 1.86 0.68 2.32 

10 
10 104 3.86 2.57 2.84 1.11 0.97 2.86 

20 143 3.68 2.11 3.92 1.86 0.67 2.68 

12 10 134 3.45 2.29 3.67 1.61 0.75 2.45 

 
In Table 3, 

WA = area of the web; 
TFA = area of the compression flange or top flange; 
BFA = area of the tension flange or bottom flange; 
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FA = sum of the areas of top and bottom flanges or total flange area. 
 
Table 4. Stress at transfer and working loads. 
 

Span Lcc σcs σts σbw σtw σbnl σtnl 

m kN/m MPa MPa MPa MPa MPa MPa 

6 

10 69.5 -165 -75.4 69.5 55.4 -5.5 

20 106.9 -165 -88.9 106.9 54.9 -2.2 

30 99.1 -165 -112.1 99.1 3.4 2.6 

40.1 88.2 -165 -82.2 88.2 50.7 -3.7 

50.1 99.4 -165 -98.3 99.4 82.9 -5.6 

60 91.8 -165 -143.5 91.8 4.4 1.8 

70 104 -165 -109.2 104 14.2 -0.5 

80.1 111 -165 -108.1 111 13.6 0.3 

90 101.7 -165 -102.5 101.7 49.7 -3.4 

100.1 130.5 -165 -122.7 130.5 6.8 1 

8 

10 102.8 -165 -118 103 -2.5 7.7 

20 67.4 -165 -70.7 67.4 20 -0.7 

30 90.3 -165 -107 90.3 3.1 2.4 

40 85.9 -165 -120 85.9 2 3 

50 89 -165 -77.3 89 23 0 

10 
10 95.6 -165 -93 96 -3.5 9.1 

20 75.4 -165 -73 75 40 -0.5 

12 10 63.9 -165 -41 64 42 2.1 

 
In Table 4, 

σts = Allowable bending tensile stress (N/mm2). 
 
Table 5. Non dimensional stresses at transfer and working loads. 
 

Span (m) Lcc (kN/m) DSRB DSRT TSRB TSRT TSR WSR 

6 

10 0.46 1 0.8 0.03 -0.1 -0.92 

20 0.54 1 0.51 0.01 -0.04 -1.2 

30 0.68 1 0.03 -0.02 0.76 -0.88 

40.1 0.5 1 0.57 0.02 -0.07 -1.07 

50.1 0.6 1 0.83 0.03 -0.07 -1.07 

60 0.87 1 0.05 -0.01 0.41 -0.64 

70 0.66 1 0.14 0 -0.04 -0.95 

80.1 0.66 1 0.12 0 0.02 -1.03 

90 0.62 1 0.49 0.02 -0.07 -0.99 

100.1 0.74 1 0.05 -0.01 0.15 -1.06 

8 

10 0.72 1 -0.02. 0.05 -3.08 -0.87 

20 0.43 1 0.3 0 -0.04 -0.95 

30 0.65 1 0.03 -0.01 0.77 -0.85 

40 0.73 1 0.02 -0.02 1.5 -0.72 

50 0.47 1 0.26 0 0 -1.15 

10 
10 0.56 1 -0.04 -0.06 -2.6 -1.03 

20 0.44 1 0.53 0 -0.01 -1.04 

12 10 0.25 1 0.66 -0.01 0.05 -1.57 

 
In Table 5, 

DSRB = Design Stress Ratio at bottom fiber for working loads = /  bw ts
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DSRT = Design Stress Ratio at top fiber for working loads = /  

TSRB = Design Stress Ratio at bottom fiber at transfer = /  

TSRT = Design Stress Ratio at top fiber at transfer = /  

TSR = Stress ratio at transfer = /  and WSR = Stress ratio at working loads = /
. 

In general, by adopting an unsymmetrical I-section, the beam can be made stronger in compression and 
hence the maximum allowable prestress that can be applied can also be increased. Further by adopting an 
unsymmetrical I-section, the Neutral axis of the beam is shifted towards top fiber. Hence the range of 
eccentricity that can be conveniently and safely adopted is increased. By increasing the magnitude of 
prestress and eccentricity, a higher load carrying capacity can be achieved. However, the parameters 
corresponding minimum cross-sectional area required for a particular span and Lcc depend on a variety of 
factors. Hence, each set of parameters is unique corresponding to a particular Lcc and span. The variation 
among two or more of these factors cannot be studied because when two parameters are being compared, 
the remaining parameters should be kept constant. Therefore, the tables given in Section 5.1 serve the 
purpose of a design table from which the parameters can be chosen for a particular Lcc and span.  
 
5.2. Variation of maximum Lcc with Span  
 
From Tables 1, it is observed that maximum possible Lcc for spans under consideration are as follows. 
 
Table 6. Variation of span with maximum possible Lcc. 
 

Span (m) Maximum possible Lcc (kN/m) 

6 100 

8 50 

10 20 

12 10 

 
It can be observed that the reduction in load carrying capacity is about 50 % for a 2m increase in span. 

However, it is important to note that these results are corresponding to the restrictions imposed on 
dimensions of the I-section. For example, D was restricted to 600 mm and hence higher Lcc are not 
possible for larger spans. The maximum pLcc can be observed to be 102.9 % that is achieved for a Lcc of 
10 kN/m over a span of 6 m. Hence higher saving in the material can be achieved for shorter spans. 
 
5.3. Variation of ER with Span for Different Lcc  
 
From Table 1, the following observations are made. 
 
Table 7. (a) Variation of span with ER for Lcc = 10 kN/m. 
 

Span (m) ER 

6 0.6 

8 0.1 

10 0.1 

12 0.5 

 
Table 7. (b) Variation of span with ER for Lcc = 20 kN/m. 
 

Span (m) ER 

6 0.48 

8 0.5 

10 0.6 

tw cs

bnl cs

tnl ts

tnl bnl tw bw
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From the above tables, it is observed that for optimum utilisation of the available cross section, ER has 

to be in between 0.1 to 0.6 if the load carrying capacity required is 10 kN/m and it has to be between 0.48 
to 0.6 if the load carrying capacity required is 20 kN/m. 
 
5.4. Variation of FF with Span for Different Lcc  
 
From Table 1, it is observed that, for a given load carrying capacity, the maximum prestressing force that 
can be applied decrease with span. This is due to larger span tending to buckle under high prestressing 
force. The following observations can also be made. 
 
Table 8. (a) Variation of span with FF for Lcc = 10 kN/m. 
 

Span (m) FF 

6 0.24 

8 0.03 

10 0.03 

12 0.3 

 
Table 8. (b) Variation of span with FF for Lcc = 20 kN/m. 
 

Span (m) FF 

6 0.21 

8 0.12 

10 0.21 

 
From the above tables, it is observed that for optimum utilisation of the available cross section, FF has 

to be in between 0.03 to 0.3 if the load carrying capacity required is 10 kN/m and it has to be between 0.12 
to 0.21 if the load carrying capacity required is 20 kN/m. 
 
5.5. Variation of Range of yt/yb with Span 
 
From Table 3, the range of the ratio of the distance of Neutral axes from top flange to that of the bottom 
flange for different spans are observed to be as follows.  
 
Table 9. Variation of range of yt/yb with span. 
 

Span (m) Range of yt/yb 

6 0.57 to 1.0 

8 0.68 to 0.89 

10 0.67 to 0.97 

12 0.75 

 
It is to be noted here that closer the value of yt/yb to 1, lesser is the asymmetry in the cross-section. As 

all the sections under consideration are optimum sections, we can understand from the table that the 
optimum cross-section approaches symmetry as the span increases.  
 
5.6. Variation of Deflection with Span  
 
From Table 1, the variation of the maximum percentage decrease in deflection and corresponding load 
carrying capacity for different spans are observed to be as follows (Table 10). 
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Table 10. Variation of maximum pdef with span and Lcc. 
 

Span (m) Maximum pdef Lcc 

6 37.6 50.1 

8 19.2 20 

10 29.6 20 

12 39.6 10 

 
The maximum % decrease in deflection is observed to be 39.6 for a span of 12 m and Lcc of 10 kN/m.  
 
5.7. Variation of Range of A/WA with span 
 
From Table 3, the range of ratios of total area to area of web for different spans is as follows (Table 11).  
 
Table 11. Variation of range of A/WA with span. 
 

Span (m) Range of A/WA 

6 2.21 to 4.57 

8 1.34 to 5.14 

10 3.68 to 3.86 

12 3.45 

 
5.8. Variation of Range A/TFA with Span 
 
From Table 3, the ratios of total area to the area of top flange for different spans are observed to be as 
follows (Table 12).  
 
Table 12. Variation of range of A/TFA with span. 
 

Span (m) Range of A/TFA 

6 2.05 to 2.73 

8 2.2 to 3.41 

10 2.11 to 2.57 

12 2.29 

 
5.9. Variation of Range A/BFA with Span 
 
From Table 3, the range of the ratios of total area to the area of bottom flange for different spans is 
observed to be as follows (Table 13).  
 
Table 13. Variation of range of A/BFA with span. 
 

Span (m) Range of A/BFA 

6 2.56 to 7.40 

8 2.86 to 6.33 

10 2.84 to 3.92 

12 3.67 

 
5.10. Variation of Range TFA/BFA with Span 
 
From Table 3, the range of the ratios of the area of top flange to the area of bottom flange for different 
spans is observed to be as follows (Table 14).  
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Table 14. Variation of range of TFA/BFA with span. 
 

Span (m) Range of TFA/BFA 

6 1.0 to 3.06 

8 1.3 to 1.86 

10 1.11 to 1.86 

12 1.61 

 
5.11.  Variation of Range FA/WA with Span 
 
From Table 3, the ratios of the total flange area to the total web area for different spans are observed to be 
as follows (Table 15).  
 
Table 15. Variation of range of FA/WA with span. 
 

Span (m) Range of FA/WA 

6 1.21 to 3.57 

8 1.08 to 2.44 

10 2.68 to 2.86 

12 2.45 

 
5.12.  Variation of Different Stress Ratios with Span and Load Carrying Capacity 
 
From Tables 1, 2, 3, 4 and 5, the following observations can be made.  

1) For all spans considered, the ratio of DSRT is 1 for all load carrying capacities. This means that the 
output of the program is a cross-section for which stress at top fiber is equal to the design stress at 
top fiber. It is important to note that in case of simply supported steel beams subjected to gradually 
applied loads, the top fiber attains the maximum permissible stress prior to the bottom flange. 

2) For all spans considered, the ratio of TSRT is close to Zero for all load carrying capacities. This 
means that the output of program is a cross-section and corresponding magnitude of prestress and 
eccentricity which nullify the compressive stress due to dead load. The maximum value of it is 
observed to be -0.06, for a load carrying capacity of 10 kN/m and span of 10 m. 

3) Considering all spans and load carrying capacities, the ratio of DSRB is in between 0.25 and 0.87. 
The minimum ratio of 0.25 is corresponding to span of 12 m with a load carrying capacity of 10 
kN/m. The maximum ratio of 0.87 is observed for a span of 6 m with a load carrying capacity of 
60 kN/m. It is important to note that the higher is the magnitude of DSRB, more effective is the 
utilisation of the tension zone of the cross-section. 

4) Considering all spans and load carrying capacities, the ratio of TSRB is in between -0.04 and 0.83. 
The minimum ratio of -0.04 is corresponding to span of 10 m with a load carrying capacity of 10 
kN/m. The maximum ratio of 0.83 is observed for a span of 6 m with a load carrying capacity of 
50 kN/m. 

5) Considering all spans and load carrying capacities, the ratio of TSR is in between -3.08 to 0.77. 
However, the absolute minimum value is 0.01 and the absolute maximum is 3.08. The absolute 
minimum ratio of 0.01 is corresponding to span of 10 m with a load carrying capacity of 20 kN/m. 
The absolute maximum ratio of 3.08 is observed for a span of 8 m with a load carrying capacity of 
10 kN/m. It is important to note that the higher is the magnitude of absolute value of this ratio, 
the utilisation of the cross section at transfer of prestress is effective. 

6) Considering all spans and load carrying capacities, the ratio of WSR is in between -1.57 to -0.64. 
These are also the absolute maximum and absolute minimum values respectively. The absolute 
minimum ratio of 0.64 is observed corresponding to span of 6 m with a load carrying capacity of 
60 kN/m. The absolute maximum ratio of 1.57 is observed for a span of 12 m with a load carrying 
capacity of 10 kN/m. It is important to note that the higher is the magnitude of absolute value of 
this ratio, effective is the utilisation of the cross section at working loads. 
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6. Conclusions 
 
Based on the study of variables within the scope of this research, the following conclusions can be drawn. 
 

1) For a given load carrying capacity and span, ER has to be in between 0.45 to 0.7 for optimum 
utilization of the cross-section of prestressed steel I-beam. 

2) For Unsymmetrical I-Beams, the maximum prestress and eccentricity that can be applied can be 
increased and hence a higher load carrying capacity can be achieved. 

3) It can be observed that the reduction in load carrying capacity is almost 50 % for an increase in 
span of 2 m when the overall depth of the cross-section was restricted to 600 mm. 

4) With reference to unsymmetrical prestressed steel I-beams, higher saving in the material can be 
achieved for shorter spans and lower Load carrying capacities. 

5) For a given load carrying capacity, the maximum prestressing force that can be applied decrease 
with span. 

6) Prestressing permits longer spans for the same load when compared to un-prestressed steel beams 
in the deflection point of view. 

7) In case of simply supported steel beams subjected to gradually applied loads, the top fiber attains 
the maximum permissible stress prior to the bottom flange. 

8) The maximum prestressing force that can be applied decreases with span. This is due to larger 
spans tending to buckle under high prestressing force. The ratio of prestress to permissible 
bending compressive stress values is observed to be in between 0.25 to 0.3 for a given load carrying 
capacity. 

9) The ratio of prestress to bending compressive stress with load carrying capacity has to be in 
between 0.15 to 0.3 for optimum utilization of cross section for a given span. 

10) For optimum sections, the ratio of bottom fiber stress at transfer to the permissible stress for 
different spans varies from 0.6 to 1.0. 

The study presents some preliminary information on developing optimized dimensions for a 
prestressed steel beam. The authors assume the dimensions can easily achieve by welding plates of 
necessary dimensions. The spans and loads considered in this study are primarily meant to be adopted in 
residential and Industrial buildings. 
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Appendix A — Notations 
 

A = Area of cross-section of the beam 

BFA = area of the tension flange or bottom flange 

BIx = Moment of inertia of the I-Section about X-X axis (mm4) 

BIy = Moment of inertia of the I-Section about Y-Y axis (mm4) 

C = Crippling stress (N/mm2) 

d = depth of web  

def = Net downward deflection due to prestressing and live load 

def1 = Upward deflection due to prestressing force and dead load (before application of live load)  

dl = dead load or self-weight of the beam 

D = Total depth of the beam (mm) 

d = depth of the web 

DSR = Design Stress Ratio =  

DSRB = Design Stress Ratio at bottom fiber for working loads = /  

DSRT = Design Stress Ratio at top fiber for working loads = /  

e = eccentricity (mm) 

emin = minimum eccentricity  

emax = maximum eccentricity  

E = Modulus of Elasticity of the material of beam (steel) 

E×Ix = Flexural rigidity of the beam cross-section 

ER = Eccentricity ratio = e/D  

FA = sum of the areas of top and bottom flanges or total flange area 

FF = Force factor = P / ( σbc x A ) 

Fy = Permissible yield stress of steel  

h = Depth of the root of the fillet from the top of the flange 

Ix = Moment of Inertia about centroidal X-X axes (mm4) 

Coefficient of  

 Coefficient of which depends on  

l = span of the beam (mm) 

lmax = Maximum allowable span of un-prestressed section after strengthening the flange(s) (mm) 

tscs  /

bw ts

tw cs

1k cbf

2k cbf 



DOI:10.4186/ej.2017.21.7.293 

ENGINEERING JOURNAL Volume 21 Issue 7, ISSN 0125-8281 (http://www.engj.org/) 317 

Lcc = Live load carrying capacity of the prestressed beam 

Mdl = Bending moment due to self weight alone 

Mtl = Bending moment due to total load (self weight + live load) 

Mmax = Maximum Bending Moment (kN.m) 

MX = Bending Moment at a distance ‘x’ from left support 

pDef = percentage decrease in deflection due to prestressing  

pLcc = percentage increase in the load carrying capacity of the prestressed beam with respect to un-
prestressed beam 

P = Magnitude of Prestressing force (kN) 

Pmax = Maximum prestressing force that can be applied 

rx = radius of gyration about centroidal X-X axes 

ry = r = radius of gyration about centroidal Y-Y axes 

tbf = Thickness of bottom flange (for asymmetrical I-sections) 

tf = Thickness of flange (for symmetrical I-sections) 

ttf = Thickness of top flange (for asymmetrical I-sections) 

tw = Thickness of web (for symmetrical and asymmetrical I-sections) 

TFA = area of the compression flange or top flange  

TSR = Stress ratio at transfer = /  

TSRB = Design Stress Ratio at bottom fiber at transfer = /  

TSRT = Design Stress Ratio at top fiber at transfer = /  

V = Maximum shear force 

w = load carrying capacity of the un-prestressed beam (kN/m) 

wtl= total load on the prestressed steel beam including self-weight (kN/m) 

wbf = width of bottom flange (for asymmetrical I-sections) 

wf = width of flange (for symmetrical I-sections) 

wtf = width of top flange (for asymmetrical I-sections) 

WA = area of the web 

WSR = Stress ratio at working loads = /
 

yb = distance of the centroidal X-X axes from bottom most fiber 

yt = distance of the centroidal X-X axes from top most fiber 

tnl bnl

bnl cs

tnl ts

tw bw
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Zxt = Section modulus at top fibre about centroidal X-X axes 

Zxb = Section modulus at bottom fibre about centroidal X-X axes 

Zy = Section modulus about centroidal Y-Y axes 

σcs = Allowable bending compressive stress (N/mm2) 

σts = Allowable bending tensile stress (N/mm2) 

= permissible direct compressive stress (Mpa) 

σbnl = Stress in bending compression at bottom fiber due to dead load alone (N/mm2) 

σtnl = Stress in bending compression at top fiber due to dead load alone (N/mm2) 

σtw = Stress in bending compression at top fiber due to dead load as well as live load (N/mm2) 

σbw = Stress in bending compression at bottom fiber due to dead as well as live load (N/mm2) 

 = Maximum sheer stress (N/mm2) 

 Shear stress induced in member (MPa) 

= It is the ratio of of compression flange to  of gross 
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