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Abstract. Functional magnetic resonance imaging (fMRI) technique allows us to capture activities oc-
curring in a human brain via signals related to cerebral blood flow, oxygen metabolism and blood vol-
ume, known as BOLD (blood oxygen level-dependent) signals. Exploring relationships between brain
regions inside human brains from fMRI data is an active and challenging research topic. Relationships
or associations between brain regions are commonly referred to as brain connectivity or brain network.
This connectivity can be divided into three groups; (i) structural connectivity representing physically
anatomical connections between regions, (ii) the functional connectivity which describes the statisti-
cal information among brain regions and (iii) the effective connectivity which specifies how one region
interacts with others by a causal model. This survey paper provides a review on learning brain connec-
tivities via fMRI data where detailed mathematical definitions of dependence measures widely-used for
functional and effective connectivities are described. These measures include correlation, partial corre-
lation, coherence, partial coherence, directed coherence, partial directed coherence, Granger causality,
and other concepts such as dynamical causal modeling or structural equation modeling. Interpretation
and relations of these measures as well as relevant estimation techniques that are widely used in the
problems of fMRI modeling are summarized in this paper.
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1. Introduction

This paper focuses on how to explore relationships among brain regions via some accessibly biological
signals in order to have a better insight in human brain functioning. The relationship is also called
brain connectivity and learning brain connectivity is an analysis of how each of several brain regions
interacts to each other under a functioning operation. This would allow neuroscientists to comprehend a
better understanding of the brain mechanism. Recently, there are many several techniques for measuring
brain activity. The first widely-used technique includes electroencephalography (EEG), which measures
the brain activity directly by sticking non-invasive electrodes along the scalp for recording electrical
signals over a period of time from the brain. The signal is called EEG signal. The second technique
is functional magnetic resonance imaging (fMRI), which measures the brain activity via signals from a
change of blood level when the brain is activated. This signal is called “Blood-oxygen-level dependent" or
BOLD signal. Technically, a neuron surrounded by astrocytes stays in normal condition when the brain
is not activated. Once the brain is stimulated such as events of seeing, listening or thinking, neurons that
do not have reserved energy need external energy in the form of oxygen. As a result, astrocytes transfer
oxygen to neurons via blood flow that makes a change of level of blood flow around those areas. This
change can be detected and recorded by fMRI scanner. In other words, fMRI scanner measures the brain
activity indirectly via the change of blood level when neurons are activated by external stimulus. The
technique for measuring the brain activity by fMRI allows us to see the brain activity and 3D brain image
simultaneously in time series. At each time point, a 3D images is divided into several hundred thousand
or million blocks that have the same width, length and depth called voxels. One voxel represents a group
of neurons. One main difference between EEG and fMRI signal is that EEG signal poorly captures neural
activities occurring under the surface cortex of the brain while fMRI signals can efficiently capture the
brain activities in the whole brain volume with a high spatial resolution. For this reason, we particularly
focus on a review of the use of fMRI time series instead of EEG in identifying the brain connectivities.

A brain connectivity is hypothetically believed to differ under various stimulated conditions. A
resting-state fMRI study reflects the brain connectivity of a subject while being rest. One example of
the brain network in such state is called the default mode network (DMN) [1, 2, 3], where connections
between some regions of the brain are elevated. On the other hand, a brain network of disordered
patients such as Alzheimer or Schizophrenia patients is assumed to have different structures. For this
reason, discovering brain connectivity does not only provide us a better insight of how information
is processed and transferred between linked brain regions, but also delivers an alternative classification
approach for distinguishing two classes of the brain. The use of fMRI technique is accepted to be a
promising trend to explore core roles and functions of the brain.

Introductory survey in exploring the brain connectivity can start with [4, 5, 6, 7, 8] where general
formulation, statistical analysis and essential elements in the study were explained. The use of graphi-
cal model to represent causal interaction of complex brain network is explained in [9, 10, 11, 12]. An
extensive survey of linear/nonlinear mathematical modeling including neuron dynamics and hemody-
namic response can be followed from [13]. Future trends of using fMRI data for learning the relation
structure of each region inside the human brain can be found in [14, 15, 16]. These are just selected
prominent examples of reviewed papers in the fMRI literature. Our paper aims to focus heavily on the
effective connectivity and is an alternative from other surveys to the extent that we provide the detail of
mathematical definitions of causality measures and their relations from an engineering point of view.

To this end, we first describe two major approaches for identifying the brain regions in section 2.
This explains how to define a variable or a node that represents a group of neurons. Section 3 provides the
main definitions of a brain connectivity; functional and effective connectivities and we give examples of
commonly used models that explain fMRI dynamics. Section 4 covers a few classes of statistical measures
to formally explain relationships between brain regions and the corresponding statistical techniques for
model estimation are discussed in section 5.
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2. Defining Brain Regions

The information of BOLD signal as a function of time is measured from different points in the brain.
These spatial coordinates can be used in different two scales, voxel or region of interest (ROI). Voxel is
a cubic representing a spatial resolution unit in 3D fMRI image, e.g., 3× 3× 3 mm3. Brain regions of
interest (ROIs) can be determined as a group of voxels defined by using some prior anatomical knowledge
or from some post-processed analysis such as activity map. Either using fMRI signals collected from
voxel level or ROIs is considered to be features that must be defined before exploring brain connectivity.
There are two approaches to define these features. The first approach is the use of model dependent
method or seed method which defines the brain region as “seed". A seed can be a brain region of interest
(ROI) or it can be chosen from traditional task-dependent activation map from fMRI paradigm [2]. A
limitation of this approach is a difficulty in applying to the whole brain scale. In other words, this
approach is only suitable for analysis of brain connectivity in a small number of brain regions of interest
(ROIs). The second approach that solves such limitation is the use of model-free method. This approach
does not need to define a seed region or reference region from prior knowledge, and it may use some
mathematical techniques, such as principal component analysis (PCA) in [17, 18, 19, 20] or independent
component analysis (ICA) in [21, 22, 19], for defining voxels. PCA maps fMRI data to a new space via an
orthogonal transformation and defines a set of components having the greatest variances as voxels. ICA
uses fMRI data to seek for a mixture of underlying sources and defines these sources that are maximally
independent from each other as voxels. Techniques for defining voxels like PCA and ICA are called
Exploratory Matrix Factorization (EMF) that aims to extract blind source from observation and defines
a set with some predefined properties as components. Other EMF techniques e.g., SVD, nonnegative
matrix and tensor factorization (NMF/NTF), are explained in [7]. As the voxels from these techniques
are mapped in the new space, the result may be difficult to justify by anatomical knowledge since the
interpretation is based on the information on the new space [7, §3.2].

3. Brain Connectivity

One of interesting research topics in machine learning about model inference is to seek relationships
between a pair of components in random vector or multivariate time series. In our application we seek
for a relationship between brain regions or groups of neurons under some conditions. This relation-
ship is called brain connectivity, brain network or neural network, just to name a few. The definition of
brain connectivity can be broadly divided into structural, functional and effective connectivity, where the
definition of each type associating with the method used to quantify it determines the edges of a brain
network [12]. Structural connectivity represents physically anatomical connections between regions and
we opt not to explore in detail on this type of connectivity. Functional connectivity represents statistical
dependencies between brain regions such as correlation or partial correlation and the connection can be
undirected or indirected. Effective connectivity explains about a causal inference concluded from a dy-
namical model of neurophysiological signals; temporal effects of signals are taken into account to define
such dependency. Previous studies show that association of neural mechanisms among brain regions are
not limited to the physical wiring of the brain, so it is more interesting to explore the functional and
effective connectivities in fMRI studies. The brain connectivities can generally be presented in the form
of functional connectivity map (FCMAP) or graph. For most applications in fMRI study, the brain
network is mostly presented in the graph which comprises a set of nodes and edges. Each node repre-
sents each brain region (voxel) and each edge represents a statistical relationship between two nodes. A
common approach to present the link in network is the use of connection matrix (or adjacency matrix)
in which its entries correspond to the connection strength between nodes. This connection strength
can be obtained from measuring the relationship between nodes using some statistical definitions called
dependence measure where a formal definition of these measures will be explained more in the detail in
section 4. As an example to illustrate this, Figure 1 shows a brain dependence structure as a graph with
the corresponding connection matrix.
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X1 X2 X3 X4 X5 X6
X1 0 0.2 0.2 0 0.8 0.6
X2 0.2 0 0.6 0 0 0
X3 0.2 0.6 0 0.4 0 0
X4 0 0 0.4 0 0 0
X5 0.8 0 0 0 0 1
X6 0.6 0 0 0 1 0

Fig. 1. A graph for brain network corresponding to its connection (adjacency) matrix. Each node rep-
resents each brain region (voxel) and each edge represents a statistical relationship between two nodes.
The link width can represent the connection strength between two nodes which varies according to
the entry value in adjacency matrix. The connection matrix depends on the dependence measures de-
scribed in the section 4.

3.1. Functional Connectivity

Functional connectivity gives information about which groups of neurons (voxels) are linked together
where the association between voxels is defined by a statistical dependency called dependence measure or
measure of directionality [12]. Examples of such measures are correlation, partial correlation, or cross
spectra function (see more details in section 4). Therefore, the functional connectivity has many ben-
eficial usages for medical purposes. For instance, the use of functional connectivity to discriminate
between schizophrenia patients and healthy persons in [23] or between Alzheimer patients and healthy
persons in [24]. Exploring functional connectivity is roughly divided into two approaches depending
on the method of defining brain regions i.e., seed method and model-free method, which are previously
mentioned in section 2.

• Seed method: It defines a seed before finding the correlation between the seed and other regions
resulting in functional connectivity map (FCMAP) that provides information about which brain
regions have a relationship with this seed [2].

• Model-free method: Examples that use this method include [17, 18, 21, 22, 25, 26, 27, 19, 20].
The result from this method may often be difficult for interpretation by using anatomical knowl-
edge. In some cases, one claims that seeking of functional connectivity using fMRI data from
a single subject may not be reliable because these fMRI signals may have a contamination from
noise. Therefore, a group functional connectivity, which has an assumption that all subjects in
group must share the same of functional connectivity pattern, may be more robust to noise sig-
nals. However, the use of model-free method can be considered for this situation and it is known
as group analysis which is divided into three approaches.

– The first approach is the use of group fMRI data i.e., the integrated fMRI data from all sub-
jects in group, to define voxels using technique such as group ICA and then finds a common
functional connectivity (functional connectivity of group) as examples in [28, 29]. After
obtaining a group functional connectivity, one may reconstruct to obtain the individual
functional connectivity of each subject by using some information from group functional
connectivity.

– The second approach is the use of individual fMRI data to find individual functional con-
nectivity of each subject and then integrates all individual functional connectivity to one
common functional connectivity which will be the functional connectivity of this group
as shown in [30, 31, 32]. In fact, the first approach and this approach have no relationship
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of functional connectivity pattern between subjects but the following third approach can
overcome this weakness.

– The third approach integrates fMRI data to define voxels. This approach is to seek the com-
mon functional connectivity and individual functional connectivity simultaneously, result-
ing in similar patterns of brain connectivity among subjects; see example in [33].

Functional connectivity can be quantified by several measures but most of them explain static depen-
dency such as correlation, coherence, mutual information, etc. The work in [34] provides implementa-
tion of a variety of those measures and develops a MATLAB toolbox with a suggestion for the measure
selection. Moreover, there are some researches focusing on explaining dynamics of functional connec-
tivity to observe patterns of functional connectivity and how they change along the time [35, 36, 37, 38].

3.2. Effective Connectivity

Effective connectivity describes how a group of neurons affects to the others via a causal influence
concluded from causal models that explain brain behaviors. Therefore, the analysis of effective con-
nectivity requires two important concepts; a selection of causal model and model parameter estima-
tion. Common techniques of exploring the effective connectivity includes dynamic causal modeling
(DCM) [39, 6, 13, 40, 41, 42], Granger causal modeling (GCM) [42, 43, 41, 13, 44] and structural equa-
tion modeling (SEM) [45, 46, 47, 20, 48].

Dynamic Causal Modeling (DCM)

This type of model has been proposed in [40, 39]where the neuronal activity is described by state-space
equation, and there is a specific mapping from the neuronal activity model to an observation model.
This is due to the fact that the change of neuronal activity cannot be measured directly since it is caused
from synaptic activity and the change of blood volume in the brain. The differential equations describing
such dynamics are given by

ż = f (z, u,θ1)+w, (1)
y = g (z, u,θ2)+ v, (2)

where zi represents the neuronal activity at brain region i for i = 1, . . . , n; w and v represents random
fluctuation on the change of neuronal activity; u represents a known exogenous input from the change
in experimental conditions; and g denotes a function containing some model parameters and relating to
measured response y. The variables θ1 and θ2 denote the model parameters which are to be estimated.
Equation (1) describes the change or flow of neuronal activity that depends on the states zi of other re-
gions. The state variables zi cannot be directly measured, so it is called hidden neuronal activity. Equa-
tion (2) can be considered as a specific mapping model or assumed to be the measured response from (1),
and as a result, is called the observed model. The models (1) together with (2) are generally complicated
to analyze. The random inputs w and v are typically unknown (often referred to as endogenous inputs)
but if their statistical properties such as a probabilistic distribution, and prior distributions of the model
parameters θ, can be assumed, then the models (1) and (2) can completely explain the dynamics of the
hidden neuronal states and the hemodynamic response in a stochastic sense, and they are regarded as a
generative model of the data. An inverse problem of fitting this generative model by estimating unknown
parameter θ from given observed data is known as dynamic causal modeling (DCM) technique [39].

The fMRI study in [40] assumed that the change of neuronal activity obtains the influence from i)
neuronal activities of other regions, ii) induced input and iii) direct input to the brain regions. There-
fore, a simpler form of (1)-(2) which is a bilinear differential equation is proposed to describe the brain
behavior.

ż = (A+
m∑

j=1

u j B j )z +C u, (3)

y = g (z, u)+ v, (4)
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where z(·) ∈ Rn , u(·) ∈ Rm , A ∈ Rn×n , B j ∈ Rn×n for j = 1, . . . , m, and C ∈ Rn×m . The parameters
n and m denote the number of brain regions and number of experimental inputs, respectively, and zi
represents neuronal activity at region i for i = 1, ..., n. The function g in (4) describes a hemodynamic
model [40] which explains how the blood volume changes in brain and the output response y from this
model is the BOLD signal with v as measurement noise. The coupling between brain regions can be
separated into 1) latent connectivity, which illustrates the intrinsic coupling of experimental perturba-
tion as observed from the matrix A and 2) induced connectivity, which illustrates the change in coupling
induced by exogenous input u as observed from the matrix B j . The matrix C represents the extrinsic
influence of inputs on neuronal activity. The connectivity between brain regions can be found on the
nonzero entries of coupling matrices A and B j from the model. In this application, the input u comes
from the stimulus in fMRI experiment, e.g., visual words or pictures. Equation (3) can be interpreted as
a realistic neuronal model. Note that, practically, we cannot measure neuronal activity from (3) directly
therefore the aim of this approach is to estimate parameters A,B j and C from the measurement y in (4).

Granger Causal Modeling (GCM)

Let y(t ) = (y1(t ), . . . , yn(t )) be a multivariate time series. The concept of Granger causality states that a
time series yi (t ) is Granger-caused by a time series y j (t ) if yi (t ) depends on y j (t ) in such a way that y j (t )
helps to predict yi (t ) better than using only the information of the time series yi (t ) in the past. There
is an illustration that the concept of Granger causality becomes a simple condition when it is applied to
autoregressive (AR) processes. To describe such characterization, an n-dimensional AR process of order
p is given by

y(t ) =A1y(t − 1)+A2y(t − 2)+ · · ·+Ap y(t − p)+ ϵ(t ) (5)

where y(·) ∈ Rn , ϵ(·) ∈ Rn is an input noise and A1,A2, . . . ,Ap ∈ Rn×n are AR coefficients. It can be
shown in [49] that y j (t ) is NOT Granger-caused yi (t ) if and only if

(Ak )i j = 0, k = 1,2, ..., p (6)

In other words, we say loosely that y j has no effect on yi if the corresponding entry of the weight matrix
Ak is zero for all lags. Such characterization is a simple linear constraint in the AR coefficients, so it has
been widely considered in the problem of learning causal structures from time series. The term GCM is
simply referred to as a dynamical model that concludes the relationship between two time series via the
concept of Granger causality. The work on this direction can be divided into two approaches as follows.

• Statistical test. From given data, the model parameters, in this case the AR coefficients, are es-
timated by using the ordinary least-squares (OLS) technique. Subsequently, one can check the
condition (6) by performing a statistical test (or hypothesis test) on the estimated AR parameters.
Therefore, the zero pattern in the AR coefficients can then be concluded about the relationship be-
tween two time series. However, the consistency of OLS estimator highly depends on the sample
size of data, therefore we may get a bad result if the given data is not adequate. This approach is also
not quite feasible if the number of variables (n) is high, since the test on the (i , j ) entry of Ak has to
be performed for n2−n times. The work based on this approach includes [50] where a t -test was
performed on the regression coefficient; [51] and [52] where a statistical test was performed on
bivariate AR coefficients and modified AR coefficients, respectively;[53, 54] established an F -test
on the null hypothesis that Ai j = 0.

• Regularized estimation. In practice, the Granger causality constraint in (6) is not known in a
priori, but rather to be discovered from the data. Therefore, the estimation formulation in this
approach aims to promote sparsity in the AR coefficients (solution containing many zeros). Thus,
the Granger relationship structure is determined by the location of these zeros which can be var-
ied depending on the estimation formulation and its tuning parameters. We can exploit sparse
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optimization techniques in order to propose estimation formulations in this direction, which in-
volves least-squares with regularization problems. The regularization term can then be the ℓ1-
norm (called LASSO) [55, 56, 57], ℓ2-norm (called ridge regression) [55, 58, 59] or both ℓ1/ℓ2-
norm (called elastic-net) [60]. The application of this approach on fMRI studies includes [61, 62].

In fMRI applications where AR models are used to fit fMRI time series, yi (t ) denotes the signal from
the i th voxel or the i th region of interest. The coupling between brain regions i and j can then be
observed from AR coefficients tested by a statistical test or from the nonzero pattern of the estimated
AR coefficients in the model.

Structural Equation Modeling (SEM)

Fig. 2. Structural diagram of SEM. In a structural diagram, a rectangle denotes an observed variable and
an ellipse denotes a latent variable. Since this structure is based on path analysis, it doest not consider
other latent variables except the residual term from measurement. A link between observed variables
represents a causal relationship which comes from the assumption of a priori knowledge.

Structural Equation Modeling (SEM) is one of statistical techniques used for seeking a statistical
causal model (called exploratory modeling) and testing whether the model are supported by the given
data (called confirmatory modeling). In fact, SEM is largely used in the confirmatory framework rather
than the exploratory framework. That is, we are likely to use SEM for testing a hypothesis or estimating
a causal relationship among variables on a model. Confirmatory SEM usually starts with a hypothesis
and uses this hypothesis to form a model. Once the model parameters are estimated, one defines some
statistical criterion to conclude whether the model in assumption is supported by the hypothesis. SEM
deals with two types of variable, the observed variables which can be directly measured and the latent
variables that cannot be directly measured and are inferred from the observed variables [63]. For exam-
ple, if one would like to measure the intelligence from someone via IQ test, the latent variable is the
intelligence and the observed variable is the scores obtained from IQ test. SEM commonly consists of a
measurement model and a structural regression model. The measurement model defines a relationship be-
tween observed variables and latent variables and the structural model indicates the relationship between
latent variables. Combining these two models can form the structural diagram shown in Figure 2 which
describes how the entire variables are associated. In this diagram, four rectangular boxes denote the ob-
served variables and four ellipses denote the latent variables. The goal of SEM is to estimate the model
parameters that minimize the difference between empirical covariance matrix from observed data and
estimated covariance matrix from the model. In other words, SEM fits the covariance of the variables
rather than the observed values of those variables themselves. By the basic concept of SEM, it allows to
take the effect of measurement error or prediction error into estimation process, meaning that, we can
estimate the measurement error and this results in a more precision of the estimated model parameters
when comparing with classical approaches such as multiple regression analyses.
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Most researches about SEM in fMRI study are based on path analysis which is known as a special
case of SEM. In path analysis, only the observed variables can be used in the model or we can say that
the path analysis does not contain the latent variables in the model except the error from measurement.
Therefore we can explain a relationship among variables in a form of n-dimensional linear equation as
written below.

x = c +Ax + ε (7)

where x ∈ Rn denotes the measurement values (here in fMRI studies, are brain data from n regions of
interest). The measurement noise, which is assumed to be white noise, is denoted by ε ∈Rn . The base-
line of x is denoted by c ∈ Rn . The matrix A∈ Rn×n denotes the path matrix which is to be estimated
and the entry ai j is known as path coefficient representing the causal relationship from brain region j to
i . The magnitude of path coefficient can be interpreted as the connection strength or statistical signifi-
cant among brain regions and the sign (positive or negative) of path coefficient signifies the direction of
connection. SEM technique is different form DCM and GCM because SEM focuses only on the instanta-
neous effects among the variables. From (7), it is a linear static model, so the application of SEM in fMRI
studies neglects the effect of time and considers each time point of data as one independent realization.
Note that SEM is used for estimating modeling parameters according to the causal relationship that is
priori assumed in a multivariate system. For example, if a hypothesis of our relationship is assumed as
in Figure 2, the instantaneous path matrix can be written as

A=


0 a12 0 a14

a21 0 a23 0
0 0 0 0
0 0 0 0

 ,
and the nonzero entries are to be estimated based on the observed data. We explain briefly how to
estimate the matrix A in path analysis as follows. Taking expectation both sides of (7) gives c = (I −
A)E [x], and it reduces to

x −E [x] = (I −A)−1ε. (8)

If we denote the covariance matrix of x and ε by Σ and Ψ respectively, then we can show from (8) that
the covariance matrix x can be expressed as

Σ= (I −A)−1 E [εεT ](I −A)−T = (I −A)−1Ψ(I −A)−T . (9)

Let S denote the sample covariance matrix of x, and let Σ denote the estimated covariance matrix of
x derived from SEM. With an assumption of normal distribution of x, SEM applies the concept of
minimizing the distance between S and Σ to estimate the path matrix. To this end, we choose the
Kullback-Leibler (KL) divergence function as the distance measure, which is given by

d (S,Σ) = logdetΣ+ tr(SΣ−1)− logdet S − n, (10)

where n denotes the number of variables (voxel) and tr(·) denotes the trace (sum of diagonal entries) of
a square matrix. In this context, the KL function from (10) is used for measuring the distance between
two covariance matrices of normal distributions. The value of this function will approach to zero when
Σ is close to S. Therefore, the corresponding estimation problem is to minimize d (S,Σ)with variableΣ
and A, and subject to the constraint in (9), which is a nonlinear optimization problem with a quadratic
equality constraint.

In this approach, the coupling between regions can be observed from the path coefficient, describing
how much the influence of other regions changes when activity of interesting region changes by one unit.
Since SEM removes the effect of time lag in analysis, the connection strength in SEM implies only the
instantaneous causal relationship among brain regions i.e., the causal relationship for each time point; see
more details for the principle of SEM for fMRI application in [46, 45]. The use of confirmatory SEM can
be extended to combine with other techniques such as vector autoregression technique as shown in [64,
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65, 66]. In some cases, there is the use of exploratory SEM applied to fMRI study to find all possible causal
relationships among brain regions without a priori knowledge as proposed in [48]. After obtaining all
candidate models, a model selection criterion such as goodness of fit index (GFI) is performed to select
the best model.

There is another framework to explore effective connectivity such as the use of dynamic in proba-
bilistic framework based on Dynamic Bayesian Network (DBN) [67]. A major benefit from effective
connectivity is to reveal dynamic of hidden behavior from interesting brain regions which functional
connectivity cannot. But in some cases as shown in [68], the use of dynamic causal modeling is applied
to discover functional connectivity using correlation coefficient, coherence and Granger causality as de-
pendence measures and analyzing these measures by cross covariance function, cross spectra function
and direct transfer function respectively. Their goal is to compare the resulting effective connectivity
results and justify them to determine the best one in order to further use this information to explain
about functional connectivity.

4. Dependence Measures

To measure the relationship between groups of neuron, or between regions of interest, we need a formal
statistical definition of such relationship or dependence structure. There has been many “dependence
measures" or “measures of directionality" proposed to causal analysis of random variables, or time series.
In this section, we summarize the concept of these measures which can be divided into a few classes as
follows.

4.1. Dependence measures for random vectors

This measure focuses on the relationship between two components in random vectors. Let x be n-
dimensional random vector with meanµ and covarianceΣ, i.e., µ= E [x] andΣ= E [(x −µ)(x −µ)T ].
The correlation matrix of x is denoted by R= E [x xT ] and let xi denote the i th component of x. Some
commonly used dependence measures are described below.

Cross covariance and Pearson correlation coefficient

The two components xi and x j are said to be uncorrelated if and only ifΣi j = 0. If x has zero mean, this
relationship can be observed from the correlation matrix R. In other words, two components xi and x j
from a zero-mean vector x are said to be uncorrelated if and only if Ri j = 0. In several applications, there
is the use of a statistical definition called Pearson correlation coefficient (ρ), given by ρ = D−1/2ΣD−1/2

where D = diag(Σ11,Σ22, ...,Σnn) (a diagonal matrix with entries of Σkk ’s) and D−1/2 is the inverse of
the square root of D , instead of usingΣ to measure the relationship between two elements in the random
vector. Essentially, Pearson correlation coefficient ρ is just a normalized Σ in which its diagonal entries
are equal to one. Pearson correlation coefficient between two components xi and x j is given by

ρi j =
Σi jÆ
Σi iΣ j j

where ρi j varies from−1 to 1. Therefore xi and x j are said to be uncorrelated if and only if ρi j = 0. For
example, [26] and [30] use average fMRI time course of ROIs to form a connection matrix and define the
link among brain regions by using Pearson correlation coefficient and correlation matrix, respectively.
Another example in [24], that focuses on classification problem between mild cognitive impairment
(MCI) patients and normal person, uses Pearson correlation coefficient to form the connection matrix
of each subject and then applies this matrix as a feature to be classified.
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Partial correlation

The partial correlation is used for measuring the relationship between two components in a random
vector by assuming the other components are given. If we denote y = (xi , x j ) and z = (x1, ..., xk ),∀k ̸=
i , j . The covariance matrix of y and z is given by

cov
��

y
z

��
= Σ̃=
�
Σ̃yy Σ̃y z

Σ̃zy Σ̃z z

�
. (11)

By definition, the partial correlation is the correlation between residuals of component xi and x j that
are projected onto the linear space spanned by the other given components. Let ri be a residual between
xi and x̂i in which x̂i is a projection of xi onto the linear space spanned by xk ,∀k ̸= i , j . If we denote
residual vector r by r = (ri , r j ), it can be shown that the covariance matrix of r can be computed from

cov(r ) =Ω=
�
Ω11 Ω12
Ω21 Ω22

�
= Σ̃yy − Σ̃y zΣ̃

−1
z z Σ̃zy , (12)

which is the Schur complement of the block Σ̃z z in Σ̃. The matrix in (12) is called partial covariance
matrix and Ω12 represents the partial covariance between component xi and x j . Using block matrix

inversion lemma on Σ̃ in (11) provides

Σ̃−1 =
�
Σ̃yy Σ̃y z

Σ̃zy Σ̃z z

�−1

=
�
(Σ̃yy − Σ̃y zΣ̃

−1
z z Σ̃zy )

−1 �
� �
�

, (13)

(the entries labeled as � can be ignored for now but their expressions are given in the Appendix). From
(11), (12) and (13) there is a relationship between Σ̃−1 and Ω given by (Σ̃−1)12 = −Ω12 since Ω has size
2×2. Let P denote a permutation matrix such that P x = (y, z), i.e., we permute xi and x j to be the first

two elements, then Σ̃= cov(P x) = PΣP T . Thus we have (Σ̃−1)12 = (PΣ
−1P T )12 = (Σ

−1)i j . Therefore,
the following quantities are linearly proportional to each other:

(Σ−1)i j ∝ (Σ̃−1)12∝ ((Σ̃yy − Σ̃y zΣ̃
−1
z z Σ̃zy )

−1)12∝Ω12. (14)

This result essentially means that the partial covariance between component xi and x j with given xk

can be observed from the entries of (Σ−1)i j ; simply from the zero pattern of the inverse of covariance
matrix. The partial correlation matrix is defined as the normalized Σ−1 by its diagonal entries. Define
D = diag((Σ−1)11, (Σ−1)12, ..., (Σ−1)nn). Therefore, the partial correlation between component xi and
x j conditioning other components is given by

PCORR=D−1/2Σ−1D−1/2, PCORRi j =
(Σ−1)i jÆ

(Σ−1)i i (Σ−1) j j

.

Hence, we can say that xi and x j are partially uncorrelated if and only if PCORRi j = 0 (or equivalently,
(Σ−1)i j = 0).

Conditional Independence

It is based on the idea that two components of a random vector are independent conditioning that the
other components are given. It is known that if xi and x j are independent, they are also uncorrelated,
Σi j = 0, but the converse is not true. However, if xi and x j are Gaussian, the converse is also true,
meaning that Σi j = 0 implies the independence between xi and x j . This idea can be extended to the
independence of xi and x j with given xk and can be derived nicely into a mathematical condition on
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model parameters. Let x be a Gaussian vector. If xi and x j are partially uncorrelated i.e., (Σ−1)i j = 0, xi
and x j are also conditionally independent with given xk . The work in this approach therefore estimates the
covariance matrix from the fMRI data and reveal the zero pattern in the inverse of covariance matrix [35,
23, 25].

Path coefficient or path matrix from SEM

Let x be n-dimensional variable. The path analysis in SEM can be expressed by a static linear model:

x = c +Ax + ε,

where x ∈Rn , c ∈Rn , A∈Rn×n and ε ∈Rn . The variable x j has a cause to xi if the corresponding path
coefficient ai j ̸= 0. Therefore, a causal structure in SEM can be learned from the zero pattern of the path
matrix A. For confirmatory SEM, the causal link between components in x can be observed directly
from path matrix A that is imposed by assumption from a priori knowledge [47, 66]. For exploratory
SEM, we explore a number of candidate models with a hypothesis on a causal structure and then estimate
the parameters of each model and choose the best model by some criterion. For this approach, a link
between components in x can be still observed directly from the path matrix A [69, 48].

4.2. Dependence measures for time series

Let x(t ) = (x1(t ), . . . , xn(t )) be n-dimensional wide-sense stationary random process with mean, the
correlation matrix, and the covariance matrix given by

µ= E [x(t )], R(τ) = E [x(t )x(t −τ)T ], C (τ) = E [(x(t )−µ)(x(t −τ)−µ)T ]
respectively. In fMRI context, xi (t ) represents the signal obtained from brain region i for i = 1,2, . . . , n.
To conclude the dependency between two components of multivariate time series, we take into account
of the signal dynamics. The analysis considers {x(t )}Nt=0 as a whole random process, where any two
consecutive time points, x(t ) and x(s) cannot be regarded as independent samples. In this section, we
summarize the dependence measures that are typically considered in the literature.

Cross covariance function and cross coherence function

xi (t ) and x j (t ) are said to be uncorrelated if and only if Ci j (τ) = 0 for all τ. In time series analysis [70],
we opt to use the normalized correlation function to measure a similarity between two time series. This
correlation function is defined by R̃(τ) = D−1/2C (τ)D−1/2 where D = diag(C11(0),C22(0), ...,Cnn(0)).
Hence, the cross covariance function between two components xi (t ) and x j (t ) is given as

R̃i j (τ) =
Ci j (τ)Æ

Ci i (0)C j j (0)

where it can be shown that |R̃i j (τ)| ≤
q

R̃i i (0)R̃ j j (0), for all τ. Therefore xi (t ) and x j (t ) are un-

correlated if and only if R̃i j (τ) = 0 for all τ. In addition, there is a relationship of this measure be-
tween time domain and frequency domain. Consider a zero-mean process x(t ). If we denote S(ω)
the spectral density matrix obtained from Fourier transform of correlation function R(τ), i.e., S(ω) =∑∞
τ=−∞R(τ)e− jωτ , then the condition that Ri j (τ) = 0 for all τ is equivalent to Si j (ω) = 0 for all

ω. To conclude about relationship of time series in frequency domain, this can be generally observed
from coherence function which is a normalized version of S(ω) by its diagonal entries. Define D(ω) =
diag(S11(ω), S22(ω)), ..., Snn(ω)). Hence the cross coherence function between two components xi (t )
and x j (t ) is given by

COH(ω) =D−1/2(ω)S(ω)D−1/2(ω), COH(ω)i j =
Si j (ω)Æ

Si i (ω)S j j (ω)
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where |COH(ω)i j | varies from 0 to 1 for allω (see [70], section 8). Therefore xi (t ) and x j (t ) are uncor-
related if and only if COH(ω)i j = 0 for allω. See [71, 72, 34] for the use of cross coherence function for
learning functional connectivity and see [68] for an example of applying the cross covariance and cross
coherence functions combining with a DCM technique for defining the link between brain regions.

Partial correlation function and partial coherence function

This type of measure is an analogue of the partial correlation for random vectors. It is to indicate the
correlation of two components in x(t ) after the linear effects of other components in x(t ) have been re-
moved. Let ri (t ) be the residual from an optimal prediction of xi (t ), given by ri (t ) = xi (t )− x̂i (t )where
x̂i (t ) is the optimal linear predictor of xi (t ) as a function of xk (t ), for k ̸= i , j . Let us define the residual
vector by r (t )with meanµr , and covariance matrix of residual byΩ(τ) = E [(r (t )−µr )(r (t −τ)−µr )

T ].
The partial correlation matrix is defined as a normalized covariance matrix of residual r (t ) by its diag-
onal entries at lag zero. Define D = diag(Ω11(0), ...,Ωnn(0)). Therefore the partial correlation function
between xi (t ) and x j (t ) is given by

PCORR(τ) =D−1/2Ω(τ)D−1/2, PCORR(τ)i j =
Ω(τ)i jÆ
Ω(0)i iΩ(0) j j

.

Hence, we say xi (t ) and x j (t ) are partially uncorrelated given the other components, if and only if
PCORR(τ)i j = 0 for all τ. As similar to the relationship between correlation function and coherence
function, we can derive an equivalent measure of the partial correlation function in frequency domain.
Let S(ω) be the spectral density matrix of x(t ) and S̃(ω) be the spectral density matrix of (y(t ), z(t ))
where y(t ) = (xi (t ), x j (t )) and z(t ) = (x1(t ), ..., xk (t )),∀k ̸= i , j as following

S̃(ω) =
�

S̃yy (ω) S̃y z (ω)
S̃zy (ω) S̃z z (ω)

�
. (15)

It can be shown in [70] that the error spectrum Sr r (ω) defined as the Fourier transform of Ω(τ) can be
alternatively calculated by

Sr r (ω) = S̃yy (ω)− S̃y z (ω)S̃z z (ω)
−1 S̃zy (ω), (16)

which is the Schur complement of the block S̃z z in S̃(ω). The partial cross spectrum of xi (t ) and x j (t )
after removing the linear effects of xk (t ),∀k ̸= i , j , is an off-diagonal entry of the error spectrum matrix
(16) (in particular, the term Sr r (ω)12 in this case). Using the block matrix inversion lemma on S̃(ω) in
(15) provides

S̃(ω)−1 =
�

S̃yy (ω) S̃y z (ω)
S̃zy (ω) S̃z z (ω)

�−1

=
�
(S̃yy (ω)− S̃y z (ω)S̃z z (ω)

−1 S̃zy (ω))
−1 �

� �
�

,

where� are irrelevant terms to our analysis (see the expression of these entries in the Appendix). Similar
to the analysis of deriving the partial correlation in random vector, explained in the Appendix, we have
(S̃(ω)−1)12 =−(Sr r (ω))12, and (S̃(ω)−1)12 = (S(ω)

−1)i j . Therefore there is a relationship between the
partial cross spectrum Sr r (ω) and inverse spectrum of x(t ) given by

(S(ω)−1)i j ∝ (S̃(ω)−1)12∝ ((Syy (ω)− Sy z (ω)Sz z (ω)
−1Szy (ω))

−1)12∝ Sr r (ω)12.

This suggests that the partial cross spectrum between component xi (t ) and x j (t ) after removing the
linear effects of xk (t ) can be observed from the entries of (S(ω)−1)i j , i.e., the zero pattern of the inverse
spectral density of x(t ). In practice, one opts to use the partial coherence which is defined as a normalized
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S(ω)−1 by its diagonal entries. Define D(ω) = diag((S(ω)−1)11, ..., (S(ω)−1)nn). Therefore, the partial
coherence between component xi (t ) and x j (t ) can be expressed as

PCOH(ω) =D(ω)−1/2S(ω)−1D(ω)−1/2, PCOH(ω)i j =
S−1(ω)i jÆ

S−1(ω)i i S−1(ω) j j

.

In conclusion, we say xi (t ) and x j (t ) are partially uncorrelated given the other components, if and only
if PCOH(ω)i j = 0 for all ω (or (S(ω)−1)i j = 0 for all ω). The work that focuses on identification
brain network using coherence and partial coherence is proposed in [73, 71]. In another example [72],
they compare the result in finding interaction among brain regions between using Granger causality
and coherency technique in motor system. There is the use of partial correlation analysis for exploring
functional connectivity explained in [74, 75]. Moreover, [34] has integrated several measures such as
cross correlation, cross coherence, partial correlation and partial coherence functions to learn functional
connectivity and developed the implementation into a public MATLAB toolbox.

Conditional independence

The concept of conditional independence can also be extended from random vector to random process.
Let x(t ) be an n-dimensional Gaussian random process with spectral density matrix S(ω) and assume
S(ω) is invertible for allω. It can be shown that, for Gaussian process, the two time series are concluded
to be conditionally independent if and only if they are partially uncorrelated. Therefore the two random
processes xi (t ) and x j (t ) are said to be independent, conditioning that the other components are given
if and only if (S(ω)−1)i j = 0 for allω.

Measures Based on Autoregressive Models

In this section, we describes typical dependence measures that are defined based on autoregressive (AR)
model both in time- and frequency-domain. We shall first give the definition of AR process and its
basic properties in frequency domain since these measures are defined through the concept of transfer
function and spectral density. It will be shown shortly that they are related and differed by means of
normalization.

Let y(t ) = (y1(t ), y2(t ), . . . , yn(t )) be a multivariate time series. In fMRI study, an autoregressive
model is one of typical models used to explain the dynamic of BOLD responses, and is expressed by

y(t ) =A1y(t − 1)+A2y(t − 2)+ · · ·+Ap y(t − p)+ ϵ(t ), (17)

where y(t ) ∈Rn , A1,A2, . . . ,Ap ∈Rn×n , and ϵ(t ) ∈Rn is an input noise with covariance Σ. To describe
the AR equation in the frequency domain, let us define

A(z) = I − (A1z−1+A2z−2+ · · ·+Ap z−p ).

Therefore, the z transform of the AR equation is A(z)Y (z) = E(z) and the transfer function from ϵ to
y, defined as Y (z) =H (z)E(z) is given by H (z) =A−1(z).

Consider z = e jω. The spectral density matrix of y and its inverse can be expressed in terms of the
transfer function and AR matrix polynomial as

S(ω) =H (ω)ΣH H (ω), S(ω)−1 =AH (ω)Σ−1A(ω) (18)

where the superscript H denotes the Hermittian transpose. The spectral density, transfer function and
their inverses are the key elements for defining the connectivity measures. A unified concept of the
relationship between yi and y j is stated in [8] as follows.
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• Direct causality. We say y j → yi if the prediction of yi using the information of the past y j yields a
lower error than the prediction of yi based on not using y j . This is the concept based on Granger
causality.

• Causality. We say y j ⇒ yi if a series of direct causality exists: y j → ym · · · → yi for some m.
This is classified as an indirect relationship since the cause and effect are transferred through other
variables and sometimes referred to as total causality.

• Direct coupling. We say yi↔ y j if yi → y j or y j → yi .

• Coupling. We say yi⇔ y j if yi ⇒ y j or y j ⇒ yi .

In what follows, we describe each of the dependence measures and its interpretation in terms of the above
concept of connectivity which can be directional or non-directional. These measures can be represented
as a matrix of size n× n where its (i , j ) entry indicates the connectivity between the variables i and j .
To do so, we use the notation diag(A) to represent a diagonal matrix whose diagonals are (A11, . . . ,Ann)
when A is a square matrix.

• Directed coherence (DC) was first defined in [76] as a normalization of the transfer function ma-
trix and a renormalization form is described in [8]with a restrict assumption thatΣ is diagonal. If
we define D = diag(S(ω)) = diag(S(ω)11, . . . , S(ω)nn), then the directed coherence from variable
j to i is defined as

DC=D−1/2H (ω)diag(Σ1/2), DCi j =
Σ1/2

j j H (ω)i jÆ∑n
k=1Σkk |H (ω)i k |2

. (19)

The normalization in DC obeys
∑n

j=1 |DCi j |2 = 1 (unit sum over all columns), meaning that it is
normalized with respect to all the sender variables.

• Directed transfer function (DTF). In [77], DTF is described as another normalization of the
transfer function. Define D = diag(H (ω)H H (ω)).

DTF=D−1/2H (ω), DTFi j =
H (ω)i jq∑n
j=1 |H (ω)i j |2

. (20)

The (i , j ) entry in both DC and DTF is explained as the (i , j ) entry of H (ω) (up to different
scaling). In [78, §2.3], it was shown that H (z) = (I − (∑p

k=1
Ak z−k ))−1 which can be written as

a geometric series expansion. The result shows that H (ω)i j is the cascade product of entries in
polynomials of Ak indicating direct or indirect transfer path from y j to yi . Hence, DTF and DC
can be interpreted as the existence of causality between the two components. The normalization
in the two measures is the collection of all influences on the component yi (summation over all
columns of H ) where the normalization in DC also takes into account the instantaneous effect
from the input noise covariance.

• Partial directed coherence (PDC) was first proposed by [76] as a normalization of A(z)with the
assumption that Σ is diagonal. The form has been renormalized in many ways: to include noise
covariance in the normalization [79], or to provide meaningful connection strength [80]. The
following description is proposed in [79] and described in [8]. Define D = diag(AH (ω)Σ−1A(ω))
and a variant of partial directed coherence is defined as

PDC= diag(Σ−1/2)A(ω)D−1/2, PDCi j =
(1/Σ1/2

i i )A(ω)i jÆ∑n
k=1(1/Σkk )|Ak j |2

.
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Up to the normalization, PDCi j is proportional to A(ω)i j and therefore gives a measure of direct
causality from y j to yi at frequency ω. The characterization of the partial coherence for AR
process is the normalization of S(ω)−1 given in (18). Hence, PDC can be regarded as a factor of
PCOH for AR process.

• Bivariate (pairwise) Granger causality. The analysis of this measure is based on considering
two univariate time series, x(t ) and y(t ), explained by the scalar AR models (17) and examining a
causal influence from y to x. To simplify the notation, we can write (17) as

y(t ) =
�
A1 · · · Ap
�y(t − 1)

...
y(t − p)

+ ϵ(t )
which is further denoted as y(t ) =Ay (p)(t −1)+ϵ(t ) where A=

�
A1 A2 · · · Ap

�
and y (p)(t −

1) = (y(t−1), . . . , y(t− p)) is the direct sum of time series y with p−1 lags. The bivariate Granger
causality [81, 82] consider the two models:

M1 : x(t ) =Ax (p)(t − 1)+ ϵ(t ),

M2 : x(t ) = Ãx (p)(t − 1)+ B̃ y (r )(t − 1)+ ϵ̃(t ),

where the first model does not include the effect of time series y in the equation, while the second
model does. It is clear that once we compute the regression estimates of model parameters, if y
has an influence on x, it should help predict x and the variance of the residual error on the second
model should be decreased. It is stated in [81, 82] that the bivariate Granger causality from y to x
is quantified by the log-likelihood ratio

Fy→x = log
var(ϵ)
var ϵ̃

. (21)

Its value is always greater than zero since var(ϵ)≥ var ϵ̃. If y has indeed no causal influence on x,
then the variances of the errors from the models should be equal and Fy→x = 0.

• Conditional Granger causality. A limitation on the use of bivariate Granger causality is that if
the process in question contains more than two variables, then a conclusion of having an influence
from one to another variable could come from the other mediate variables [81, 82]. Therefore, in
the estimation formulation, we should regress out the effect from other variables, here denoted by
z(t ). This means we consider the two regression models:

M1 : x(t ) =Ax (p)(t − 1)+B z (q)(t − 1)+ ϵ(t ),

M2 : x(t ) = Ãx (p)(t − 1)+ B̃ z (q)(t − 1)+ C̃ y (r )(t − 1)+ ϵ̃(t )

where both models include the effect from the mediate variables; the only difference from the
two models is that the second one includes the effect of time series y. The conditional Granger
causality from y to x (conditional on z) is defined to be the quantity

Fy→x|z = log
var(ϵ)
var ϵ̃

. (22)

We see that Fy→x|z = 0 if adding y to the equation of x does not improve the error variance,
meaning y does not affect x conditional to z. This definition can be extended into the multivariate
case (where x and y can be vectors representing a group of variables) in [83], so the variances of
the residual error become covariance matrices and the measure can be represented as

Fy→x|z = log
detcov(ϵ)
detcov ϵ̃

.
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• Partial Granger causality. One concerns about using the bivariate and conditional Granger
causality is that the association of variables in the system caused by exogenous inputs and unmea-
sured latent variables is not taken into account [84], which becomes an issue for event-related fMRI
experiments since brains are stimulated under some external inputs. The two models for a com-
parison are similar to those used for testing conditional Granger causality except that both models
also include the exogenous inputs and latent variables. The difference between the two models
is that the first model does not include the dynamic of y in the equation for x and z, while the
second model does. The ratio of the conditional covariance of the errors corresponding to the
variable x from the two models (which are in the form of Schur complement on the (1,1) block)
is then defined as the partial Granger causality. Due to the use of lengthy notations, we refer the
reader to the rigorous definition from the original paper [84].

• Characterization of Granger causality. Consider the multivariate AR model in (17). The con-
cept of Granger causality states that a time series yi (t ) is Granger-caused by a time series y j (t ) if
yi (t ) depends on y j (t ) in such a way that y j (t ) helps to predict a time series yi (t ) better than using
only the information of a time series yi (t ) in the past. The definition of Granger causality can
then be translated into a constraint on model parameters which can be included in the parameter
estimation problem. It is shown in [49, §2] that the time series yi is NOT Granger-caused by the
time series y j if and only if

(Ak )i j = 0, for k = 1, . . . , p (23)

Moreover, we say there is no instantaneous Granger causality between y j and yi if and only if

Σi j = 0 (24)

where Σ is the noise covariance in the AR process (17). The two characterizations can then be
considered as the constraints in the estimation procedure. The connectivity between brain re-
gions i and j can be observed from AR coefficients tested by statistical tests or nonzero pattern of
estimated AR coefficient in the model. A short conceptual survey on Granger causality in neuro-
science including fMRI studies can be found in [85] and the work that consider Granger causality
includes [50, 86, 51, 57, 62, 52, 68, 87, 88].

• Isolated effective coherence (iCoh). This measure is a combination between the partial coher-
ence estimated on AR model and Granger causality [89].

iCoh(ω)i j =
(Σ−1)i i |A(ω)i j |2

(Σ−1)i i |A(ω)i j |2+(Σ−1) j j |A(ω) j j |2 .

It is derived and simplified from the partial coherence, which is the (i , j ) entry of the inverse
spectrum subject to zero constraints on A(ω) and Σ as the condition of no causal associations
from other variables. It is interpreted as the effective coherence from j th variable to i th variable
provided that all other associations (in Granger sense) are set to zero.

The aforementioned concepts of relationship among the variables are related to each other. Granger
causality (direct causality) can be concluded from the estimated AR coefficients and PDC is therefore
the normalized frequency-domain dual of Granger causality. For DC and DTF, they can be vaguely
interpreted as the inverse of A(ω) and provide the causality from variable j to i . If n = 2 (two variables),
DC, DTF and Granger causality tests always agree, while these results may not agree for n ≥ 2 [76].
In [78], it was concluded by several counterexamples that DTF and Granger causality do not necessar-
ily imply to each other. DTF measures the total causal influence from one variable to another, while
Granger causality only describes the direct causality.
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Zero pattern from coupling matrices in DCM

We recall the dynamic causal model:

ż = (A+
m∑

j=1

u j B j )z +C u,

where z(·) ∈ Rn , u(·) ∈ Rm , A ∈ Rn×n , B j ∈ Rn×n for j = 1, . . . , m and C ∈ Rn×m . The parameters n
and m denote the number of brain regions and number of experimental inputs respectively. The signal
zi represents the neuronal activity at region i for i = 1, . . . , n. The connectivity between brain regions
is defined by the nonzero entries of coupling matrices A and B j in the model. In particular, the intrinsic
coupling from experimental perturbation can be observed from the zero pattern in A since A represents
the rate of change in z, direct effect of connections, and the change in coupling induced by the exogenous
input u can be observed from a zero pattern in B . The work that describes the causal relationship defined
by this measure includes [68, 40].

5. Inference Method

From sections 3 and 4, we have discussed about model descriptions of various types and dependence
measures for causal inference. In this section, we summarize about how to learn a causal structure un-
derlying in the data. This step is done in the model estimation procedure and typically can be divided
by the two approaches as follows.

5.1. Statistical Test

This approach can also be divided into the nonparametric and parametric approaches. Nonparamet-
ric approach aims to identify a relationship among variables from sample data and ignores to seek out
a model. To determine a relationship among variables, a dependence measure e.g., covariance, correla-
tion, Pearson’s correlation, etc., can be directly calculated from sample data. These measures statistically
obey some distribution and therefore we can perform statistical tests to examine if they are close to zero
up to a significant level. Nonparametric approach is widely used to explore the functional connectivity
(FC) rather than the effective connectivity (EC) since FC requires only the statistical relationship (con-
nection strength) among those variables. For example, [30] used the correlation matrix computed from
time-averaged signal for each voxel as a dependence measure. Coherence and partial coherence functions
were analyzed in [72]. MATLAB toolbox for functional connectivity can be found in [34] where par-
tial/cross correlation and partial/cross coherence functions are used as dependence measures. Moreover,
MATLAB toolbox for leaning brain connectivity in Granger sense is proposed by [54, 90]. Another in-
teresting nonparametric approach is proposed in [82]where the spectral density matrix, representing the
brain connectivity, is computed from matrix factorization without requiring estimating AR coefficients
directly. Although both confirmatory SEM [47, 66] and exploratory SEM [48] are considered to be the
parametric approach but, once the path coefficients are obtained, a t -test may be performed on them to
check the significance of each path strength.

Another direction is a parametric approach. This concerns about fitting a model to given data and
inferring a causal relationship from the model parameters directly or calculating dependence measure
from the estimated model parameters. In DCM technique [40], the connectivity matrices A,B j ,C were
estimated by using Bayesian techniques with a prior distribution assumed on the coupling parameters.
The causal structure among brain regions can be observed from the estimated parameter A,B j ,C in
the model. Another DCM example [68] explored the functional connectivity and showed how to use
the cross spectra and cross covariance function computed by DCM model parameters as a dependence
measure. Granger causality being tested from the null hypothesis on the autoregressive coefficients es-
timated from the ordinary least-squares method can be found in [53, 61]. The exploratory SEM may
also be considered to be this approach [48]. They estimated path coefficient matrices obtained from all
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possible candidate models where each of them was scored by a goodness of fit indicating the discrep-
ancy between estimated and sample covariance matrices. A model selection criterion that penalizes the
model complexity was further applied to select the model. Moreover, [48] also reported the statistical
significance via the t -test on the estimated path coefficients. All the measures based on AR model (DC,
DTF, PDC, iCoh and bivarate/conditional Granger causality) [77, 76, 81, 82, 89] can be examined by
fitting AR model to a given time series first and the measure value is calculated based on the estimated
A(ω) or H (ω)which can be obtained via spectral factorization. Some of these measures can be tested in
frequency domain [91] where full and reduced AR models according to a hypothetical causality struc-
ture are estimated. Time series from the reduced AR models are generated and the measure values of
DC/PDC are calculated from the Fourier transform of these time series.

However, once we have computed the measures or obtained the model parameters, both nonpara-
metric and parametric approaches also require performing some statistical tests to infer about a causal
structure. For example, Granger causality on VAR model can be tested on a null hypothesis that AR
coefficients are zero in some entries, or conditional independence can be tested on a null hypothesis
that the inverse covariance matrix is zero in some entries. We comment that performing a statistical test
typically becomes inefficient when the number of voxels (n) grows as the number of tests is n2− n.

5.2. Causality-Constrained Parameter estimation

This approach also concerns about fitting a model that embeds the function describing the causal struc-
ture in the estimation process. The estimation problem becomes an optimization problem with con-
straints or an optimization problem with regularization. For example, [62] considered a least-squares
estimation with zero constraints on autoregressive coefficients derived from the Granger condition in
(6). If the Granger causal structure is unknown, [59, 62] proposed to add an ℓ1-type regularization into
the estimation problem in order to promote sparsity in the model parameters and solve for numerical
solution by a convex framework. [92] proposed to use a tensor representing tuple AR matrices and
other variables in a sparse formulation for analyzing Granger causality from EEG and fMRI data. The
pattern of brain network in this work can be directly observed from the zero pattern of estimated au-
toregressive coefficients. For confirmatory SEM in [47, 66], The model parameters (path coefficients)
were estimated with the constraints of causal structure from a priori knowledge, i.e., the zero pattern
of A in (7) was given. In other words, the corresponding estimation problem is the minimization of
distance function (10) subject to constraints in (9) and the zero constraints in A. The work that uses
conditional independence as a measure for exploring the functional connectivity among regions by ob-
serving zero pattern of the inverse covariance matrix is found in [93, 23, 25, 35, 94]. They used Gaussian
log-likelihood function with ℓ1-regularization as objective function to obtain a sparse inverse covariance
matrix. As an extension of the problem of learning a brain network, investigating smooth and abrupt
changes of brain network are discussed in [57]. A sticky weight regression model is formed and finding
the model parameters in this study can be considered as an ℓ1-norm minimization with a combination
of total-variation penalty term. The latter term was added to promote a change in the resulting brain
network. The estimation problem can be formulated in a LASSO standard form and numerical solu-
tions can be solved by an optimization toolbox. The pattern of brain network for each time point is
concluded by a corresponding regression coefficient vector and the dynamic of brain network can be
seen by a collection of all these regression coefficients.

6. Relations between Various Measures

In this section, we provide a brief explanation of how various dependence measures are related in Figure 3
and a selected list of literature that applied these measures by means of inference methods in Tables 1
and 2.

In Figure 3, we represent many pairs of measures that are time- and frequency-domain duals which are
correlation function VS spectral density and partial correlation VS partial coherence, denoted through
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operationF (Fourier transform) in the diagram. Most of the measures are defined by a normalization of
well-known dependence quantities (denoted in the diagram by ‘normalization’). For example, coherence
and partial coherence are normalizations of spectral density and inverse spectral density, respectively;
directed coherence is a normalized expression of the transfer function of AR model, or partial directed
coherence is a normalization of AR matrix polynomial. Other dual pairs of measures are related by
the process of ‘partialization’ which means to remove the effect from other mediate or external vari-
ables. These pairs include correlation VS partial correlation, coherence VS partial coherence, directed
coherence VS partial directed coherence, and bivariate/conditional VS partial Granger causalities.

Table 1 and 2 provide examples of papers that applied each of the dependence measures for infering
the connectivity (some paper may not experiment on the fMRI application) where we categorize the
inference methods as explained in section 5.
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Fig. 3. Relation of dependence measures for time series.

Table 1. Dependence measures and inference methods for random variables

Measures Inference Method References

correlation statistical test [30, 37, 24]

conditional independence
statistical test [95]

constrained parametric estimation [23, 25, 35]

path matrix of SEM
statistical test [48, 47, 20, 66]

constrained parametric estimation [48, 47, 20, 66]
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Table 2. Dependence measures and inference methods for time series

Measures Inference Method References

correlation statistical test [34]

partial correlation statistical test [74, 75, 72, 74, 34]

coherence statistical test [91, 71, 72, 34]

partial coherence
statistical test [74, 34]

constrained parametric estimation [96, 97, 98]

directed transfer function
(DTF)

statistical test [77]

partial directed coherence
(PDC)

statistical test [76, 79, 80, 91]

directed coherence (DC) statistical test [76, 8, 91]

isolated effective coherence
(iCoh)

statistical test [89]

bivariate Granger causality statistical test [81, 51, 82, 90]

conditional Granger causal-
ity

statistical test [81, 82, 90]

partial Granger causality statistical test [84]

Granger
statistical test [50, 53, 54]

constrained parametric estimation [61, 50, 99, 59, 100, 62, 101,
52, 92]

DCM statistical test [40, 68]

7. Conclusion

The problem of learning an association structure of human brain from fMRI data becomes one of major
trends for finding a brain network model. Such association structure of interest can be focused into two
types: i) the functional connectivity which gives statistical dependencies among brain regions and ii) the
effective connectivity that describes how a group of neurons interacts to the others via a causal influence
concluded from causal models. Our paper emphasizes on the detailed summary of dependence measures
used to formally explain the existence of brain connection between any two brain regions (or any two
groups of neurons). The functional connectivities are mostly done in a static sense and can be learned by
estimating a covariance matrix of fMRI data and subsequently calculating the dependence measures of in-
terest, which typically are correlation, partial correlation, or conditional independence. The technique
that have been widely used for studying the effective connectivity includes dynamic causal modeling
(DCM), structural equation modeling (SEM), Granger causal modeling (GCM) and many other mea-
sures based on autoregressive models. The justification on the selection of dependence measure is still
an open issue that needs to be extensively discussed in the future.

It is nearly impossible to include all aspects of fMRI connectivity in this paper. Comments on a
more explicit distinction between functional and effective connectivities, and network modeling meth-
ods are discussed in [11, 15] where a comparison on several network models such as correlation, partial
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correlation, conditional independence, mutual information, Granger causality, and coherence, is tested
for validating different connectivities in [11]. For further recent studies on effective connectivity, one
can find more variations of GCM, DCM, and SEM in [13]. A dynamical model capturing the effects
of exogenous inputs from task-related fMRI experiments is a mix of SEM and AR model [102]. Dy-
namic connectivity [103] is another extension where the effective connectivity is allowed to be changed
over time due to a change in experiments or stimuli conditions. Group connectivity also has become
an essentially important aspect for learning effective connectivity from a homogeneous group of pa-
tients [104, 105, 100]. There are other important issues such as i) the effect of indirect measurement
of hemodynamic response for neural dynamics in a model assumption, ii) number of all possible causal
models (as a graph) that is exponentially high when including more voxels in the model, or iii) expla-
nation for different causal structure across individuals. These are some of the six problems for causal
inference worth to be further read from [14].
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Appendix

We describe shortly about matrix operations such as a matrix normalization or the Schur complement
used in section 4. In this paper, we mostly deal with symmetric matrices, so we denote the set of sym-
metric matrices of size n× n as Sn and set of positive definite matrices as Sn

+. Let A∈ Sn
+ and hence, the

diagonals of A are all nonnegative values and their square roots are well-defined. Moreover, let us define
B ∈ Rn×n and D = diag(A) = diag(a11, . . . ,ann) is a diagonal matrix with entries of akk ’s. We see that
pre- or post-multiplying D−1/2 with B gives a way to normalize the rows or the columns of B .

Expression the (i , j ) entry of the expression

D−1/2B
Bi jpai i

BD−1/2
Bi jp

a j j

D−1/2BD−1/2
Bi jp
ai i a j j

The above expressions are used in section 4 to express the dependence measures in a matrix form. We
also use the block matrix inverse of X with four blocks.

X−1 =

A B

C D

−1

=

 (A−BD−1C )−1 −A−1B(D −C A−1B)−1

−D−1C (A−BD−1C )−1 (D −C A−1B)−1


where A−BD−1C is referred to as the Schur complement of A in X and D−C A−1B is called the Schur
complement of D in X [106]. If A∈R2×2 then the Schur complement A−BD−1C is also 2×2. Hence,
(X−1)12 is the (1,2) entry of (A−BD−1C )−1 and given by

(X−1)12 =−(A−BD−1C )12.

Suppose P is the permutation matrix that permutes the i th and j th rows of I to the first and the second
row, respectively. More specifically, let ek be a standard unit vector in Rn where all entries of ek are zero
except at kth component that it is 1. The first row of P is eT

i ; the second row is eT
j ; the i th row is eT

1

and the j th row is eT
2 . Define X = PZP T and it follows that X−1 = PZ−1P T since P is orthogonal. We

see that
(X−1)12 = eT

1 P T Z−1Pe2 = eT
i Z−1e j = (Z

−1)i j .

The conclusion here is that the (i , j ) entry of Z−1 is proportional to the (1,2) entry in the Schur com-
plement of X , provided that X and Z are related by X = PZP T . This observation is used to explain the
partial correlation and partial coherence function in section 4.
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