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Abstract. Meshless method choosing Heaviside function as a test function for solving 
simply supported thin plates under various loads as well as on regular and irregular 
domains is presented in this paper. The shape functions using regular and irregular nodal 
arrangements as well as the order of polynomial basis choice are constructed by moving 
Kriging interpolation. Alternatively, two-field-variable local weak forms are used in order 
to decompose the governing equation, biharmonic equation, into a couple of Poisson 
equations and then impose straightforward boundary conditions. Selected mechanical 
engineering thin plate problems are considered to examine the applicability and the 
accuracy of this method. This robust approach gives significantly accurate numerical 
results, implementing by maximum relative error and root mean square relative error. 
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1. Introduction 
 
The structures of plate are one of the important components in various applications. There are many 
scientists or researchers who have analyzed these structures. Exact analysis for such a plate is usually very 
difficult, in spite of the existence of analytical solution in some special cases of geometry and loads. 
Therefore, various numerical methods have been developed. Meshless methods have become very 
attractive and efficient for development of adaptive methods for solving thin plate bending problems. The 
main advantage of meshless methods is to get rid of or at least alleviate the difficulty of meshing and re-
meshing the entire plate structure. For analysis of thin plate bending, it is well known that high order 
derivatives of field variables in the governing equation give rise to difficulties in solution of boundary value 
problems because of worse accuracy of numerically evaluated high order derivatives. The order of the 
differential operator can be decreased mathematically by decomposing this operator into two lower order 
differential operators with introducing new field variables. To circumvent the problems associated with 
meshing, a number of works for plates have been investigated based on meshless methods. Meshless 
methods can be traced back to 1977 when Lucy, Gingold and Monaghan [1] proposed a smooth particle 
hydrodynamics (SPH) method that was used for modeling astrological phenomena without boundaries, 
such as exploding stars and dust clouds. Krysl and Belytscho [2] first employed the element free Galerkin 
method (EFGM) to analyze the thin plate problems while Liu Gu [3] introduced the idea of moving 
Kriging interpolation (MK) and show how it can be used to formulate a new type of meshless method in 
heat conduction problems. In 1998, the meshless local Petrov-Galerkin (MLPG) method was first 
proposed by Atluri and Zhu [4], [5]. This method has been applied widely and very successfully in recent 
years. This method is based on moving least squares (MLS) approximation for construing nodal shape 
function and used the local weak formulation for substituting the trial function transformed into the 
discretized system of linear equations. The main advantage of this method is that it only requires nodes and 
a description of the external and internal boundary conditions, therefore, no element connectivity, neither 
total nor part, is needed. Effective implementations of MLPG method are keys to success [6], [7], [8], [9]. 
Three years later, Long and Atluri [10] extended the meshless local Petrov-Galerkin (MLPG) for solving 
thin plate bending problems. Sladek et al. [11] applied the new field variable for solving thin plate bending 
problems by meshless method based on the moving least squares approximation (MLS) and point 
interpolation approximation. Recently, Kaewumpai et al. [12], [13] presented two-field-variable meshless 
method based on polynomial augmented radial point interpolation for solving thin plate problems with 
subjected to boundary of the second kind. All of these meshless methods do not need an element mesh for 
the interpolation of the field or boundary variables. The purpose of this paper is to present the meshless 
method with two-field-variable local weak form for solving simply supported thin plate problems subjected 
to various loads as well as regular and irregular domains. Moving Kriging interpolation is employed to 
construct the nodal shape function choosing the Heaviside step function is used as the test function. 
Selected numerical examples are considered comparing with exact solution which measured with the 
maximum of relative error and root mean square of relative error. 
 

2. Moving Kriging Interpolation   
 
Moving Krigking interpolation (MK) can be extended to any sub-domain

 
 x

. Generally, the MK 

interpolation  w x  is defined by 
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and the shape function ( )Φ x  is defined by  
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where ( )p x is a complete monomial basis: 
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and W is fictitious values: 
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Introducing the notation: 
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The matrices ,  P R and  Tr x  are given as follow: 
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and I is an identity matrix. ( , ) i jx x  is the dimensionless correlation Gaussian function between any pair 

of nodal points located at 
ix  and

jx , namely 
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where  ijr i jx x ,  0  is the dimensionless shape parameter and cd  is a characteristic length that is 

related to the nodal spacing in the local domain of the point of interest. 
  

3. Thin Plate Bending Equation and Discretization 
 

3.1.  Governing Equations  
 
In the classical Kirchhoff's theory of bending of thin plates [9], the governing equation which results in the 
biharmonic equation may be written as 

   4 (
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)q
w

D

x
x x   (11) 

where ( )w x  is the plate deflection, ( )q x  is the prescribed load normal to the plate, 
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 is a biharmonic operator, and D is the flexural rigidity. The plate domain 

 [0,1] [0,1]  is enclosed by the following simply supported boundary conditions edge : 
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Introducing the new field variable with assuming the flexural rigidity to be constant, we obtain  
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3.2.   Discretization 
 
Using the local weighted residual method, Eq. (13) and Eq. (14) become  
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where iv  is the test function choosing as the Heaviside step function. Applying the Green’s first identity in 

Eq. (15) and Eq. (16), the following local weak forms can be obtained 
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Next, transverse deflection w  and a new variable m  are interpolated by using MK; consequently, the 

following discrete equation for each node is obtained 
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where  , 1,2, , .i j N  

 

4. Numerical Examples  
 
In this section, some numerical results are presented to verify this approach which compare to an exact 
solution by investigating the accuracy and convergence as well as computational efficiency of presented 
formulation and technique. The accuracy of numerical solutions is illustrated by plotting the selected 
number of nodal points versus the maximum relative error as well as root mean square relative error in tests 
of accuracy of approximation for deflections at evaluation. Both of errors were defined as: 
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First of all, the linear and quadratic bases are chosen in order to construct nodal shape 

function by using moving Kriging interpolation. In all the following examples, correlation 
parameter is set as 0.5 for being a smooth curve while the radius of each local subdomain should 
be big enough such that the union of all local subdomains covers as much as possible in order to 
avoid singularity of calculated matrices. For this reason, the radius of the local subdomain of 
each boundary node is taken as 0.7 times minimum nodal points while 21 Gaussian points are 
used on each section of boundary edge   Conventional nodal and unconventional arrangements 
are chosen as 16(4x4), 25(5x5), 36(6x6), 49(7x7), 64(8x8), 81(9x9), 100(10x10), 121(11x11), 
144(12x12), 169(13x13) and 196(14x14) on domain for each example. Illustratively, selected 
10x10 conventional nodal arrangement and 11x11 unconventional nodal arrangements are 
shown in Fig. 1 and Fig. 2, respectively. 

 
Fig. 1. 10x10 conventional nodal arrangement. 

 
Fig. 2. 11x11 unconventional nodal arrangement. 
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4.1. Sinusoidal Load on a Simply Supported Square Plate 
 
An exact solution in term of deflection is given by  
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a b
D
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  (22)   

 

where 
0q  represents the intensity of the load at center of the plate, D  is the flexural rigidity and  ,a b  are 

the side length of a rectangular plate. The fictitious values w versus exact solution and absolute value of the 
difference between exact solution and approximate solution is shown in Fig. 3. Tabular errors using linear 
basis and quadratic basis for nodal shape construction of Example 4.1 are shown in Table 1 and Table 2, 
respectively. According to both tables, these results show the convergence of this method by increasing the 
number of nodal points. In addition, illustratively, the results of absolute maximum relative errors and root 
mean square relative errors are plotted as a function of nodal points are shown in Fig. 4 and Fig. 5, 
respectively. 
 

 
Fig. 3. An exact solution versus fictitious values (left) and absolute of the difference between an exact    
solution and an approximate solution (right) of Example 4.1 using regular scattered nodes. 
 
Table 1. Maximum relative errors and root mean square relative errors using linear basis of Example 4.1. 
 

N  maxε  
rmsε  

16 0.087161168170710 0.043580584085307 
25 0.050358497618669 0.030113754701725 
36 0.032361053913413 0.021484740518138 
49 0.023035676208513 0.016387047401505 
64 0.017143934984936 0.012673300080537 
81 0.013492037450895 0.010323479185026 
100 0.010879139865142 0.008417391483891 
121 0.002336287440439 0.001632271994812 
144 0.002167180993382 0.001403315986505 
169 0.002084551491908 0.001344174231217 
196 0.002021593515727 0.001195258121948 
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Table 2. Maximum relative errors and root mean square relative errors using quadratic basis of Example 4.1. 
 

N  maxε  rmsε  

16 0.050623969866327 0.045828966736731 

25 0.031908920567838 0.030352930169516 

36 0.022606591744903 0.021037079186475 

49 0.016482360093915 0.015987485213218 

64 0.012806666014302 0.012121872348316 

81 0.010070455041601 0.009807325440163 

100 0.001516655001101 0.007871532231840 

121 0.001257510217670 0.001107414913633 

144 0.001135033256359 0.000889648047242 

169 0.000986069196989 0.000813703288717 

196 0.000916579334735 0.000683806526348 

 

 
 

Fig. 4. Maximum relative errors as a function of nodal points of Example 4.1. 
 

 
 
Fig. 5. Root mean square relative errors as a function of nodal points of Example 4.1. 
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According to Fig. 4 and Fig. 5, it can be seen that both errors have the same results no matter what linear 
or quadratic polynomial bases are used for nodal shape construction; moreover, increasing a number of 
nodal points can be decreased maximum relative errors and root mean square relative errors. It can be 
observed that the agreements between numerical and exact solutions are quite excellent, and the 
convergence is very good as well as computational efficiency. 
 
4.2. Uniformly Distributed Load on a Simply Supported Square Plate 
 
An exact solution in term of deflection is given by  
 

 
 


 



  2 26
2

2 2

16 1
( , ) sin sin , , 1,3,5,...,
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q m x n y
w x y m n

m nD a b
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  (23) 

 
For numerical implementation of Example 4.2, a characteristic length that is related to the nodal 

spacing in the local domain of the point of interest must be reconsidered and changed to include small 
number of nodes in order to avoid the singular of moment matrix leading open-end research for criteria 
which has been satisfied in terms of compact support. Similarly, Fig. 6 shows the fictitious values w versus 
exact solution and absolute value of the difference between exact solution and approximate solution while 
tabular errors using linear basis and quadratic basis for nodal shape construction of Example 4.2 are shown 
in Table 3 and Table 4, respectively. According to both tables, these results show the convergence of this 
method by increasing the number of nodal points. In addition, illustratively, the results of absolute 
maximum relative errors and root mean square relative errors are plotted as a function of nodal points are 
shown in Fig. 7 and Fig. 8, respectively. In addition, the numerical result measured by absolute maximum 
relative errors and root mean square relative errors, which are less than 0.2 percent, are acceptable when 
choosing the number of nodal points more than 121. 

 
 
Fig. 6. An exact solution versus fictitious values (left) and absolute of the difference between an exact 
solution and an approximate solution (right) of Example 4.2 using regular scattered node. 
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Table 3. Maximum relative errors and root mean square relative errors using linear basis of Example 4.2. 
 

N  maxε  
rmsε  

16 0.038353872791667 0.019176936395791 

25 0.009383263980405 0.005072878779049 

36 0.006155993321604 0.003613485915918 

49 0.005060284332652 0.003103139960949 

64 0.004041083163217 0.002483841146979 

81 0.003953994544401 0.002298035513256 

100 0.003141485983959 0.001923332980279 

121 0.003126004082891 0.001816127366002 

144 0.002571966761904 0.001574562565915 

169 0.002578677958295 0.001509485998412 

196 0.002387434960509 0.001347164501525 

 
 
Table 4. Maximum relative errors and root mean square relative errors using quadratic basis of Example 4.2. 
 

N  maxε  rmsε  
16 0.033889642916361 0.016944821458176 

25 0.012693679259642 0.006683190825562 

36 0.006023134861164 0.003519181064498 

49 0.005384610312940 0.003204687405590 

64 0.003139241545075 0.002055803035246 

81 0.002751234756821 0.001806844553070 

100 0.002031131430855 0.001385559902765 

121 0.001848006227889 0.001270315994826 

144 0.001544875691632 0.001034326939625 

169 0.001385554688193 0.000953778434086 

196 0.001144492558726 0.000809861957026 

 
 

 
 
Fig. 7. Root mean square relative errors as a function of nodal points of Example 4.2. 
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Fig. 8. Maximum relative errors as a function of nodal points of Example 4.2. 
 
4.3. Hydrostatic Load on a Simply Supported Rectangular Plate 
 
An exact solution in term of deflection is given by  
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  (24) 

 
Unlike previous numerical examples, we construct MK nodal shape function by using unconventional 

nodal arrangement for numerical result perspectives. 11x11 typical unconventional nodal arrangement is 
chosen for constructing MK nodal shape function with using linear and quadratic polynomial basis. 
Illustratively, the fictitious values and exact solution is shown corresponding linear, quadratic and cubic 
polynomial basis in Fig. 9 and Fig. 10, respectively. Similarly, these figures show that their exact solutions 
versus fictitious values have the same outcome. 

 

 
 

Fig. 9. An exact solution versus fictitious values of Example 4.3 using an 11x11unconventional nodal 
arrangement with linear polynomial basis 
 



DOI:10.4186/ej.2015.19.3.1 

ENGINEERING JOURNAL Volume 19 Issue 3, ISSN 0125-8281 (http://www.engj.org/)                                                      11 

 
 

Fig. 10. An exact solution versus fictitious values of Example 4.3 using an 11x11unconventional nodal 
arrangement with quadratic polynomial basis 
 
4.4. Irregular Domain: A Hollow Square Plate 
 
An analytical solution in term of deflection may be given by 
 

      
  2 2 21 1 1

2

3

2 5
( , ) ( ) ( ) ( ) sin( )sin( )w x y x y x y   (25) 

 
Firstly, before constructing moving Kriging nodal shape function, a 152-nodal-point proper 

arrangement corresponding to problem geometry, a hollow plate, which shown in Fig. 11 is conducted. 
Secondly, choosing linear and quadratic polynomial bases based on MK with this nodal arrangement, we 
obtain the shape function. Finally, computing numerically integrands according to discretization section we 
obtain trial function, namely, an approximate solution of plate deflection 

 
Fig. 11. A hollow-plate nodal arrangement. 

 
For the implementation, using linear and quadratic polynomial basis, an exact solution and an 

approximate solution are shown in Fig. 12 and Fig. 13 respectively. 
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Fig. 12. A comparison of an analytical solution profile (left) and an approximate solution profile (right) of 
Example 4.4. using linear polynomial basis nodal shape function. 
 
 

 
Fig. 13. A comparison of an analytical solution profile (left) and an approximate solution profile (right) of 
Example 4.4. using linear polynomial basis nodal shape function. 
 

The maximum absolute value of the difference between an exact solution and an approximate solution 
is approximately 0.001376 while the maximum of root mean square value of the difference between an 
exact solution and an approximate solution is approximately 0.000722 when using either linear polynomial 
basis or quadratic polynomial basis. 

According to the result of the selected numerical examples in engineering aspects, apparently, both of 
errors using quadratic polynomial basis have a somewhat lower than that of linear polynomial basis; 
moreover, increasing a number of nodal points can be decreased maximum relative errors and root mean 
square relative errors. Normally, quadratic polynomial basis somewhat is better criterion for constructing 
the nodal shape function than that linear polynomial basis; furthermore, increasing a number of nodal 
points can be decreased maximum relative errors and root mean square relative errors. In addition, 
unconventional nodal arrangement can also consider constructing shape function; consequently, there will 
be useful to tackle the problems on the irregular domain. Apparently, it can be seen that the agreements 
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between numerical and analytical results are quite excellent, and the convergence is very good as well as 
computational efficiency. Increasing the number of nodal points is a one of crucial factor for providing the 
convergence of the solution as well as an appropriate choice of nodal shape construction. 
 

5. Conclusions 
 
An alternative meshless method, a specific numerical method, has been presented for solving thin plates 
problems subjected to various loads. Moving Kriging interpolation method is considered for constructing 
nodal shape functions as well as two field variables scheme is proposed by decomposing the biharmonic 
equation into a coupled of Poisson’s equations; furthermore, two-field variables local weak forms using 
Heaviside function enable us to tackle the complicated conventional local weak form of the biharmonic 
equation in the sense of numerical quadrature occurring in conventional local weak form  as well as impose 
straightforward the simply supported boundary condition, For these reasons, computer literacy is also 
conducted systematically in the sense of easiness and robustness and its implementation is also acceptable 
as well. Comparing between exact solution and approximate solution for all examples, numerical results 
show that using the quadratic polynomial or linear basis gives quite accurate numerical results. Using 
moving krigking method for constructing nodal shape function, it can be concluded that there are no the 
difference between absolute maximum relative error and root mean square relative error results when using 
many more the number of nodal points. 
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