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Abstract. We study an application of the can-order policy in one-warehouse n-retailer 
inventory systems, and propose a heuristic approach for setting the appropriate inventory 
policy. On the can-order policy, an order is triggered when a retailer’s inventory position 
reaches its must-order level. Then other retailers are examined whether their inventory 
reaches their can-order level, and if so they are filled by this order as well. Warehouse 
fulfills all involved retailers’ inventory to their order-up-to levels. The can-order policy is 
not only able to save the total system-wide cost from joint replenishment, but it is also 
simple to use. Computer simulation is utilized to preliminarily study and to determine the 
best-known solution. We propose a heuristic approach utilizing the decomposition 
technique, iterative procedure, and golden section search to obtain the satisfying total 
system-wide cost. This can save our computational time to find the appropriate inventory 
policy setting from the reduced search space. We found that the proposed heuristic 
approach performs very well with the average cost gap of less than 2% comparing to the 
best-known solution. Thus, the can-order policy can be very useful for such systems. 
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1. Introduction 
 
This paper focuses on the one-warehouse n-retailer inventory system (OWNR) which is a general pattern 
of two-echelon supply chain. Such system confronts the uncertainty of demand in reality. Supply 
coordination called “centralized control” has been widely applied to reduce the total system-wide cost and 
the demand variation, as well as to improve supply performance including inventory planning process [1-3]. 
In addition, various supply chains give their attention into continuous replenishment according to the 
responsive information technology. This can not only reduce their buffer stocks but also improve the entire 
system’s performance. Hence, we concentrate on the inventory policy for controlling such system under 
stochastic demand and continuous replenishment. 

A number of researches on OWNR have been conducted under either continuous or periodic 
replenishment. They proposed mathematical models and solution approaches for setting an appropriate 
inventory policy. Most of the works studied two major types of the inventory policies: Fixed-interval order-
up-to policies and Stock-based batch-ordering policies, on different conditions and relevant parameters. 
Further details can be seen in the reviews of Axsäter et al. [4], Wang et al. [5], and Schneider et al. [6]. 
Focusing on continuous replenishment, most researches manage multiple retailers by individual ordering 
decision. Factually, multiple retailers can coordinate their ordering decision to share the ordering cost when 
an order is triggered. It creates an opportunity for reducing the total system-wide cost. We found that just a 
few works concerned this cost-saving opportunity in their ordering decisions. 

With regard to coordinated ordering decision, most literatures applied joint replenishment problem 
(JRP) to OWNR due to the similarity of cost functions and solution procedures [7, 8]. JRP is originally 
developed for the multi-product inventory problem with the replenishment coordination of a group of 

items jointly ordered from the same supplier. Cheung and Lee [9] studied the ( ,Q S ) policy. When the 

cumulative demands over all retailers reach a given Q  units (i.e. truckload size for all retailers in single trip), 

an order is placed at the warehouse to replenish the retailer to their order-up-to level S . At the warehouse, 
a traditional reorder point-fixed order quantity policy was employed. 

Özkaya [10] proposed analytical models and heuristic approaches for four types of joint replenishment 
policy at the retailers, and utilized a traditional reorder point-based stock policy at the warehouse. Four 

types of joint replenishment policy are ( ,Q S ) policy, ( , ,Q S T ) policy, ( , |Q S T ) policy, and ( , 1,s S S ) 

policy. The ( ,Q S ) policy of Cheung and Lee [9] and Özkaya [10] was studied on different structures. The 

former sets the target service level at the warehouse and the penalty cost at the retailers; meanwhile the 

latter sets the target service level only at the retailers. The ( , ,Q S T ) policy is a hybrid continuous and 

periodic replenishments. An order is placed at the warehouse either when the cumulative demands over all 

retailers reach Q  units or when at least one demand arrives in T time units after the last ordering instance. 

The ( , |Q S T ) policy is a periodic replenishment policy and the ordering decision arises every T time units. 

At the decision epoch, if at least Q  demands have accumulated for the retailers since the last ordering 

instance, an order is placed at the warehouse. The ( , 1,s S S ) policy is a continuous replenishment policy 

when an order is triggered and any retailer’s inventory position reaches its must-order level s . Then other 
retailers in the system will be also included by this order if at least one demand arrives to each retailer. All 

proposed policies commonly have the retailer’s order-up-to level S  to which the warehouse replenishes all 
retailers’ inventories. Özkaya [10] showed comparative results among these policies without comparing to 
the lower bound or the best-known solution. Then, we tested Özkaya [10]’s results in the case of cross-
docking system (no inventory on-hand at the warehouse) in order to develop a simple lower bound1 for 
comparison. The testing results showed a vast amount of cost gap between the Özkaya [10]’s best solution 
and the lower bound (156% on average). 

Gou et al. [11] introduced a joint replenishment policy where the warehouse takes a traditional reorder 

point-based stock policy and the retailers utilize the can-order ( , ,s c S ) policy. The can-order policy has the 

same mechanism as the ( , 1,s S S ) policy except the can-order level c . When an order is triggered by a 

retailer, other retailers whose inventory position reaches its can-order level c  will be included by this order 

                                                 
1 The simple lower bound can be determined by two steps. The first step is to find the order quantity Q  for all retailers by 

assuming that they are replenished at the same order interval. The second step is to find the reorder point s  responding to the 

target service level. Thus, the total system-wide cost can be calculated from such two decision variables. 
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as well. Even though zero lead time was assumed in their study, they cannot provide an analytical model 
due to the complication. Thus, computer simulation was used instead. Their result showed that about 5 to 
20% of the cost can be saved as comparing with the independent controlled policy at the retailers. 
Pukcarnon et al. [12] also confirmed the advantage of the can-order policy on OWNR by experimenting on 
the broader ranges of relevant factors. The can-order policy can save the total system-wide cost by over 30% 
depending on relevant factors. Nevertheless, both works did not provide a solution approach for setting the 
appropriate inventory policy. There are other researches on joint ordering decision conducted on different 
cost structures. Cross-docking systems were carried out in Özkaya  [8] and Gürbüz [13]. Cetinkaya and Lee 
[14] studied vendor managed inventory (VMI) system without the holding cost at retailers. Axsäter and 
Zhang [15] developed a joint ordering policy by not concerning the shared ordering cost. 

According to the existing literatures, coordinated ordering decision has been considered in various 
systems. It is interesting to study inventory policy setting for both warehouse and all retailers under typical 
cost structure containing the ordering costs and the holding costs at warehouse and all retailers. Since the 
can-order policy not only performs well as found in Gou et al. [11] and Pukcarnon et al. [12] but also be 
straightforward and appealing to one’s common sense [16]. Thus, in this paper we focus on the can-order 
policy for OWNR. The can-order policy was first introduced by Balinfy [17], and then it was carried out by 
many researchers in different ways [18-24]. The can-order policy was intensively studied on the multi-item 
single-location inventory system. Heretofore few of previous researches focused on determining the 
appropriate inventory policy setting for the can-order policy in OWNR. Hence, this paper’s objective is to 
propose a heuristic approach to determine the appropriate can-order policy in OWNR. We extend the 
knowledge of the can-order policy into the two-echelon inventory system in this study. 

The paper is organized into six parts. Section 2 describes our problem with the relevant factors and 
assumptions. Section 3 explains overall methodology used in the research. Section 4 proposes a heuristic 
approach with preliminary analysis, concept, mathematical model and algorithm. Section 5 demonstrates 
the experimental results with analysis and discussion. Section 6 concludes all valuable findings and proposes 
ideas to extend this research on the can-order policy for OWNR in future studies. 

 

2. Problem Description 
 
The system consists of a warehouse and multiple retailers with single commodity. Let n  denote the number 

of retailers and i  denote the location  where the warehouse is set by i = 0 and the retailer i N , N  {1, 
2, ..., n }. Warehouse is assigned in the first echelon called warehouse echelon, and all retailers are assigned 
in the second echelon called retailer echelon. Demands come from each retailer’s customers defined as end 
customers. A warehouse and multiple retailers are cooperated as a single firm to concern the total system-
wide cost under global information and centralized control. The warehouse is available to hold inventories 
for supplying all retailers’ orders. Inventories at warehouse are fulfilled by an outside supplier whose ample 
stock is not considered in the problem. The warehouse distributes all required items to the retailers in a 
single trip without splitting lot. It is supposed that uncapacitated vehicle is available to supply all required 
items in the order. Multiple retailers have their own inventories to serve their customer demands. Poisson 

demand is assumed to represent the customer demands, denoted by i  which is a constant mean of 

customer demand at the retailer i .  

Regarding the can-order ( , ,i i is c S ) policy applied to our system, it has two reorder points: the must-

order level is  providing normal replenishment, and the can-order level ic  making special replenishment. 

Special replenishment is an opportunity of a retailer’s joint replenishment when other retailers reach their 

must-order levels. When the inventory position of any retailer drops to or below its must-order level is , an 

order is triggered to create normal replenishment. Then, other retailers in the system can also be included 

by this order if their inventory position is at or below its can-order level ic ; a special replenishment is 

occurred. All the involved retailers’ inventories are fulfilled from the warehouse to their own order-up-to 

level iS . Considering single commodity, the warehouse modifies the can-order policy to a traditional 

( 0 0,s S ) policy by setting its can-order level equals its must-order level. The warehouse issues an order when 

its inventory position reaches its must-order level 0s . Then the outside supplier will replenish the 

warehouse’s inventory to its order-up-to level 0S . The warehouse places an order to the outside supplier if 

and only if retailer echelon triggers an order to the warehouse. We differentiate between order cycle at 
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retailer echelon and order cycle at warehouse echelon by defining “dispatch cycle” and “replenishment 
cycle” for retailer echelon and warehouse echelon, respectively. 

Our system considers all inventory costs at both echelons. The inventory costs are composed of 1) The 
holding costs at the warehouse and all retailers, 2) The major ordering costs for warehouse echelon and 
retailer echelon, and 3) The minor ordering costs for retailer echelon. The holding cost occurs at each 

location having physical stock. The total holding cost over the time period at location i  (
iHC ) can be 

determined from the unit holding cost (
ih ) and the accumulated inventory over the time period (

iINV ). 

The major ordering cost is the fixed cost occurring once an order is triggered. This cost includes 
administrative costs, material handling costs, and transportation costs which do not depended on the 
number of retailers in the order. So, the retailers in the system can share the major ordering cost together 
for replenishing in one round trip. The total major ordering cost over the time period at retailer echelon 

(
rMJ ) is the retailers’ major ordering cost per order (

rK ) multiplied by the number of dispatch cycle 

(
rND ). Similarly, the total major ordering cost over the time period at warehouse echelon (

wMJ ) is the 

multiplication of the warehouse’ major ordering cost per order (
wK ) and the number of replenishment 

cycle (
wNR ). The minor ordering cost is an additional cost of each retailer when replenishing their 

inventories, such as additional transportation cost relating to distance or other charges. This cost depends 

on the number of involved retailers in that order. The total minor ordering cost over the time period (
rMN ) 

is accumulated from the involved retailers in each order multiplied by its minor ordering cost of retailer i  

( i
) over the time period. Prior works on coordinated ordering decision ignored this additional cost in 

spite of the fact that this additional cost directly affects the inventory policy setting [23, 24]. 
The concept of the can-order policy is balancing among reduced major ordering costs, varied minor 

ordering costs, and increased holding costs. Reduced major ordering cost occurs if a special replenishment 
is included in an order. On the other hand, from special replenishment there is a residual stock [23] which 
is a stock left above the must-order level at the order-triggered point. Then, the involved retailers have to 
hold more stock increasing the holding cost. Meanwhile, the minor ordering costs can be either reduced or 
increased depending on the order frequency at each retailer. Hence, we have to consolidate all relevant 
costs to determine the appropriate inventory policy setting under the total system-wide cost minimization. 

It is, however, difficult to deal with the problem mainly because of the demand uncertainty, variation of 
retailers’ order quantity, retailer’s two-order point setting, and order time synchronization at all locations. In 
this paper we simplify the problem by assuming zero lead time. Retailers’ order is instantly dispatched from 

the warehouse. All retailers’ must-order levels are then equal to zero ( is = 0, i N ). The warehouse’s order 

is also replenished from the outside supplier immediately. In this case, warehouse’s must-order level is equal 
to -1 because the warehouse is allowed to hold zero inventory level until the next replenishment will be 
issued. This can help the warehouse not to keep the excessive stock waiting for the next dispatch to retailer 

echelon. Therefore, decision variables are ic , iS  and 0S . The notations and problem formulation are 

demonstrated as follows: 
 

n  = Number of retailers in the system 

i  = Index of location ; the warehouse i  = 0 and the retailer i N  

T  = The time period considered in the problem (time units) 

0s  = The must-order level at the warehouse (units); (Assign 0s = -1 from the zero-lead time assumption) 

0S  = The order-up-to level at the warehouse (units) 

is  = The must-order level at retailer i  (units); (Assign is = 0 from the zero-lead time assumption) 

ic  = The can-order level at retailer i  (units) 

iS  = The order-up-to level at retailer i  (units) 

i  = Demand rate of retailer i  (units/time unit) 

0h  =  The unit holding cost per unit time at the warehouse ($/unit – time unit) 

ih  =  The unit holding cost per unit time at retailer i  ($/unit – time unit) 

wK  = The warehouse’s major ordering cost per a replenishment cycle ($/time) 

rK  = The retailers’ major ordering cost per a dispatch cycle ($/time) 
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 i
 = The minor ordering cost at retailer i  ($) 

0( , , )i iTC c S S  =  The total system-wide cost per unit time ($/time unit) 

iHC  = The total holding cost at location i  over the time T units ($) 

rMJ  = The total major ordering cost at retailer echelon over the time T units ($) 

rMN  = The total minor ordering cost at retailer echelon over the time T units ($) 

wMJ  = The total major ordering cost at warehouse echelon over the time T units ($) 

iINV   = The accumulated inventory over time period at location i  (unit – time unit) 

rND   = The total number of dispatch cycle over the time T units (times) 

wNR   = The total number of replenishment cycle over the time T units (times) 

( , ) i j   = An indicator which equals 1 when retailer i  is included in the dispatch cycle j  and equals 0 

otherwise 
 
Objective function: 

Minimize  
0

0( , , )


 
   

 



n

i r r w

i

i i

HC MJ MN MJ

TC c S S
T

 (1) 

 

where   i i iHC h INV  (2) 

 

 r r rMJ K ND  (3) 

 

( , )

1 1

 
 


rND n

r i j i

j i

MN  (4) 

 

 w w wMJ K NR  (5) 

 

The objective function of the problem is to minimize the total system-wide cost per unit time. Since is  

and 
0s  can be given by the zero-lead time assumption, the total system-wide cost per unit time can be a 

function of only three decision variables: 0, ,i ic S S . This enables us to simpler manipulate the problem. 

However, the problem remains the complications, such as demand uncertainty, variation of retailers’ order 
quantity, and order-time synchronization at all locations.  
 

3. Methodology 
 
Dealing with the complication of our problem, the optimal solution cannot be simply derived from an 
analytical approach. Hence, we initially study the can-order policy on OWNR by using computer simulation. 
Computer simulation is an efficient approach representing the inventory process even in the complicated 
system. The preliminary study leads us to developing a heuristic approach. In addition, from the simulation 
we can determine the best-known solution used to measure the proposed heuristic approach’s performance.  
 
3.1. Computer Simulation 
 
The computer algorithm representing the inventory process is illustrated in Fig. 1. The inputs for simulating 
the system can be divided into three groups as follows:  
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Fig. 1.  The computer algorithm for simulation  

 

1) Decision variables ( 0, ,i ic S S ): Each variable is inputted as a range of minimum and maximum 

values. A combination of ( 0, ,i ic S S ) is called “solution”. A solution provides a value of the total system-

wide cost and its transaction (e.g. number of dispatch cycles, number of replenishment cycles).  
2) Relevant factors (i.e. cost parameters, demand rates, and number of retailers): We set a combination 

of relevant factors to “scenario”. A scenario contains different solutions. The best solution providing the 
minimum total system-wide cost is selected for each scenario.  

3) Experiment setting: Let ( )iI t  denote the inventory level of location i  at time t . At the beginning of 

the running period, all locations’ initial inventory levels start at zero, (0)iI = 0. We chose 10,000 running 

periods for our simulation, since this running period provides the steady state for the system. Additionally, 
various seed numbers are tested to verify the solutions since different seed numbers generate different 
inter-arrival time sets.  

Finally, we obtain a report of the inventory costs and its transaction. In consequence, we can find the 
minimum total system-wide cost for each range of decision variables inputted under a given scenario. 
 
3.2. The Best Solution Finding 
 
3.2.1. Input parameters 
 
First of all, we randomly select a seed number between [0, 99] to use for the first replication (i.e. a 
replication comes from a seed number). Decision variables are inputted as a range of minimum and 
maximum values. The range is dynamic depending on our setting. In the experiment, we set the width of 

range to be 5 units for ic  and iS  and 20 units for 0S . Since over 5 units of ic and iS  creates multiplied 

combinations spending more running time. Whereas the 0S  range is larger because 0S  linearly creates 

combinations. The first range can be set from the initial point of 0S and iS  calculated by 

Input parameters

Relevant Factors:

n = Number of retailers

λi = Demand rate at retailer i

h0 = Unit holding cost at the warehouse

hi = Unit holding cost at retailer i 

Kw = Warehouse’s major ordering cost

Kr = Retailers’ major ordering cost 

кi = Minor ordering cost at retailer i

Decision variables:

Warehouse   s0  = -1

  S0 = [min,max]

Retailer i   si  = 0 

  ci  = [min,max]

  Si = [min,max]

Experiment setting:

I0(0) = Initial inventory level at the  

           warehouse; I0(0) = 0

Ii(0) = Initial inventory level at retailer i; 

           Ii(0) = 0

T = Time period; T = 10,000

Seed number = [0, 99] 

Computer algorithm

START

Set Dispatch cycle j = 1

Replenishment cycle r = 1

Output section

A report of inventory costs and 

transactions

Generate inter-arrival time of 

demands and sort all demands 

by arrival time

For each retailer i,

Monitor demand arrival 

of the system

Subtract demand from 

inventory position

Ii(t) = Ii(t) - demand

For retailer i who owns an arrived demand,

Is Ii(t) ≤ si ?

Yes

Record dispatch event and set 

dispatch cycle j = j+1

Dispatch quantity = Si - Ii(t), 

set Ii(t) = Si ,

and set δ(i,j) = 1

For each retailer k ≠ i,

Is Ik(t) ≤ ck ?

Yes

Dispatch quantity = Sk - Ik(t), 

set Ik(t) = Sk ,

and set δ(k,j)  = 1

Collect total dispatch quantity

Dispatch 

quantity = 0

and set 

δ(k,j)  = 0

No

Subtract total dispatch quantity 

I0(t) = I0(t) – total dispatch quantity

For warehouse,

Is I0(t) ≤ s0 ?

Yes
Record replenishment event and set 

replenishment cycle 

r = r +1

Replenishment quantity 

= S0 – I0(t) and set I0(t) = S0

No

No

END

No Is demand arrival time 

< T ?

Yes

Calculate inventory costs

Calculate total system-wide costs 

per unit time
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0 02 


 w i

i N

S K h  and 2 i r i iS K h due to the zero-lead time assumption and the concept of 

economic order quantity. For example, initial 
0S = 45 and initial 

iS = 14, the first ranges are identified as 

0 S  [41, 60], iS  [11, 15], and ic  [10, 14].  

The next step is the process of moving the ranges until the solution seems to be worse continuously. 

The 
0S  range is moved upward and downward by fixing the range at all retailers. Then, we find the 

ic  and 

iS  ranges at the retailer i  by keeping the same range of 
0S and the jc  and jS  ranges at the retailer j i . 

0S , 
ic  and 

iS  ranges are changed repeatedly. We select the best solution providing the minimized total 

system-wide cost for the first replication. After that, the validation process shown in the next part is utilized 
to get the typical best solution.  
 
3.2.2. Output validation 
 

The typical best solution is a representative of the best solutions from various replications. We define the 
typical best solution as “the best-known solution” to generally use in later sections. Since abundant 
combinations are run in the first replication, in this process we can reduce unnecessary ranges by starting at 
the best solution’s range from the first replication. By this process, we can find the best solution for other 
replications faster. If there is an error from the first replication, cross-checking is occurred.   

In the pilot testing (10 scenarios), we tested on ten random seed numbers to determine the best 
solution for each seed number. We found that the best-known solution appeared since the first three 
random seed numbers were conducted. Thus, instead of a number of the experiments we could save the 
computational time on five random seed numbers for determining each seed number’s best solution. 

Consequently, we test another four replications on different random seed numbers (after the first 
replication has been done previously). Most replications provide the same best solution; however, some 
different solutions can appear. Then, for each best solution we determine the average total system-wide 
cost by additional 10 random seed numbers. The best-known solution is provided by the best solution with 
the minimum average total system-wide cost.  

 
3.3. Performance Measurement 
 
Since this paper’s objective is to propose a heuristic approach for setting the appropriate can-order policy, 
the best-known solution is utilized to compare with the heuristic’s best solution. Heuristic’s performance is 
measured in terms of the cost gap calculated from the following equation. 
 

( ) ( )

( )

( ) 100
( . .)

 


HRT BS

BS

TC TC
CostGap C G

TC
 (6) 

where ( )HRTTC  and ( )BSTC are the average total system-wide cost per unit time of the heuristic approach 
and the average total system-wide cost per unit time of the best-known solution, respectively. 

 

4. Heuristic Approach 
 

This section demonstrates preliminary analysis which is the main findings from the computer simulation 
leading us to developing a heuristic approach, as well as we simplify the complicated model and propose an 
algorithm to determine the inventory policy setting. 

 
4.1. Preliminary Analysis 

 
In the preliminary study, the experiment was conducted for 208 scenarios (see Appendix A). Identical 
retailers are considered in the experiment to study the effect of relevant factors. Significant findings are 
demonstrated as follows: 
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4.1.1. The order-up-to level at the warehouse  
 

For a given 
0S , we can find the solution of ( ,i ic S ) providing the minimum average total system-wide cost 

as illustrated in Fig. 2. There are two local minimum solutions located in two ranges: Range I – the solution 

occurs at 
0S = 0 and Range II – it occurs at 

0S > 0. For Range I, 
0S  starts from zero and then increases to 

reach the last value before the cost line turns to a convex function. For Range II, it is defined after that last 
value to positive infinity. The best-known solution (global minimum solution) definitely occurs in either 
Range I or Range II.  
 

  
(a)       (b)  

Fig. 2. Two ranges of the best-known solution: (a) the best-known solution occurred in Range I; and (b) 
the best-known solution occurred in Range II. 

 
For Range I, none of holding stock at the warehouse provides the lowest total system-wide cost since 

the increasing 
0S  creates the excessive stock. Whenever retailer echelon triggers an order all excessive stock 

is consumed and the warehouse’s must-order level is always reached. The warehouse is replenished every 
dispatch cycle; therefore, it is not necessary to keep stock waiting for the next dispatch cycle. For Range II, 

a trade-off between the increasing holding costs and the reduced ordering costs for an increasing 
0S is 

occurred as found in the economic order quantity.  

We can set 
0S = 0 for a high 

0 / ih h  ratio, since more stock creates more inventory cost (i.e. the 

increased holding cost is larger than the reduced ordering cost). However, there is a possibility that the 
best-known solution can move from Range I to Range II when a relevant factor is changed, such as smaller 

0 / ih h  ratio, higher wK , or higher number of retailers since such situations affect the warehouse to hold 

inventories so as to reduce the frequency of replenishment. 
 
4.1.2. The can-order level at the retailers 
 
From the existing literatures, the ratio of the major ordering cost and the minor ordering cost is one of the 
most significant factors for the can-order policy’s performance, since such ratio affects the can-order level 

ic  to create a combination of retailers in an order [23, 24]. Therefore, we consider the experiments in case 

of zero minor ordering cost and non-zero minor ordering cost. 
Regarding the case of zero minor ordering cost (154 scenarios), a result demonstrates that for 87.66% 

of all scenarios (135 scenarios) the value 


ic  = 


iS - 1, where 


ic and 


iS denote the optimal can-order level 

and the optimal order-up-to level of retailer i . This result is consistent with the study of van Eijs [23] 

which showed that when /r iK ratio is approaching infinity, then 


ic = 


iS - 1 for all items. It implies that 

all items are jointly replenished as soon as an item triggers an order. Other items are not ordered if there 
has been no demand after the preceding order. This concept’s purpose is to mostly reduce the ordering cost 

from jointly replenishing all items in the order. For other 19 scenarios occurring the best solution at 


ic   


iS - 1, the result indicates that *

( 1)iS
TC  is greater than TC 0.01% on average with a standard deviation of 
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0.02% where TC is the optimal average total system-wide cost and *

( 1)iS
TC  is the minimum average total 

system-wide cost of the solution at ic = iS - 1.  

In case of non-zero minor ordering cost (54 scenarios), smaller /r iK  ratio influences a large 

difference between *

ic  and *

iS  as shown in Fig. 3(a). Since such difference can reduce the number of 

involved retailers in the order and dispatch quantity, but increase dispatch frequency. In the multi-item 

single location problem, van Eijs [23] ruled that if /r iK  ratio is less than 5, the can-order policy might 

not happen to be 

ic = 

iS - 1. Additionally, high demand rate affects a higher level gap between *

ic  and *

iS .  

Comparing *

( 1)iS
TC and TC , the result indicates that *

( 1)iS
TC  is greater than TC by 0.91% on average 

with a standard deviation of 1.85%. Smaller /r iK  ratio increases cost gap as shown in Fig. 3(b). Setting 
ic  

near iS increases the total ordering cost because of too many retailers included in an order.  

 

  
  (a)      (b) 

Fig. 3. The effect of /r iK  ratio on the can-order level at the retailers: (a) Average level gap between 
*

ic  

and 
*

iS , and (b) Average percentage of cost gap between *

( 1)iS
TC and TC . 

 
4.1.3. The order-up-to level at the retailers 
 
When we fix the inventory policy at the warehouse, the average total system-wide cost at retailer i  is a 

convex (unimodal) function of iS  as shown in Fig. 4. Figure 4(a) and Figure 4(b) illustrate different 

scenarios but provide the same pattern. The convex function occurs from a trade-off between the 

increasing holding costs and the reduced ordering costs for an increasing iS , then the economic order 

quantity is determined. 
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 (a)                   (b) 

Fig. 4. Convex function of 
iS on given 

0S : (a) Scenario at 
wK = 100, 

rK = 50,  i
= 0, 

0h = 2.5, 
ih = 25, 

i
= 20, n = 2, 

0S = 48; and (b) Scenario at 
wK = 100, 

rK = 50,  i
= 25, 

0h = 2, 
ih = 10, i

= 5, 

n = 4, 
0S = 27. 

 

As the above results, we can simplify the mathematical model by using the can-order level 
ic = 

iS - 1 

since small average cost gap between *

( 1)iS
TC and TC is occurred. Additionally, a convex function of 

iS  

enables us to develop a heuristic approach at ease with one-dimensional search.  
 
4.2. Mathematical Model 

 

Our purpose of developing a heuristic approach is to provide an appropriate inventory policy ( 0, ,i ic S S ). 

The total system-wide cost of mathematical model is able to be approximated as long as the acceptable 
solution is provided. This can reduce the complexity of our model. Hence, relating to the preliminary 

analysis our mathematical model utilizes the can-order level at ic = iS - 1. Then, there exists only two 

decision variables ( 0,iS S ) concerned in the mathematical model. Van Eijs [23] developed exact equations 

by using ic = iS - 1 for non-identical items on single location. His model used the exact probability of the 

special replenishment, unlike other models assuming Poisson distributions. It performed very well when the 

/r iK  ratio is more than 5. Therefore, we adapt his work into our consideration. 

Based on van Eijs [23], we can calculate the inventory cost at the retailer echelon close to the exact 
value. However, determination of inventory cost at warehouse is another difficult part. The warehouse’s 
inventory level is consumed by an uncertain lot-sizing order from retailer echelon. From preliminary testing, 
we determine the expected dispatch quantity at retailer echelon by using the exact model of van Eijs [23]. 
We found that the expected dispatch quantity per dispatch cycle is always equal to the cumulative demand 
from all retailers. Thus, we simplify this part by assuming that the warehouse’s inventory level is consumed 

continuously following the total Poisson demand cumulated from all retailers, 
0 



 i

i N

. By this 

assumption, warehouse echelon and retailer echelon are independent to find the minimum inventory costs 
at each echelon. Even though the assumption provides the approximate warehouse’s inventory cost higher 
than the warehouse’s actual inventory cost, we compensate the approximate value by utilizing the minimum 
inventory cost at retailer echelon. 

The cost model can be formulated for a given ( 0,iS S ) policy. It follows that, 
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0

0
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r i i i

i N w
i

K S E H
K E H

TC S S
E DT E RT

 (7) 

 

0( , )iTC S S  =  The long-run average total system-wide cost per unit time ($/time unit) 

( ) iS   = The probability that no demand arrives for retailer i  during a dispatch cycle 

[ ]iE H  = The expected holding cost of retailer i  during a dispatch cycle ($) 
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0[ ]E H  = The expected holding cost of the warehouse during a replenishment cycle ($) 

[ ]E DT  = The expected length of a dispatch cycle (time unit) 

[ ]E RT  = The expected length of a replenishment cycle (time unit) 

 
According to the equation (7), we consider the probability that at least one demand arrives for retailer 

i  during a dispatch cycle to be consistent with the value 
ic = 

iS - 1. Such probability affects the occurrence 

of the minor ordering cost.  
 
Retailer Echelon 

The model is developed according to the independent Poisson process of demands for individual 
retailers, so inter-arrival times of demands are exponentially distributed. Suppose a dispatch cycle starts at 
time 0. We define the following variables according to stochastic process: 

iDT  =  Time until retailer i  triggers an order to the warehouse (time unit) 

DT  =  Time until any retailer triggers an order to the warehouse; min( ) iDT DT  (time unit) 

( )if t  = Probability density function of 
iDT  

( )iF t  = Distribution function of 
iDT  

( )f t  = Probability density function of DT  

( )F t  = Distribution function of DT  

Retailer i  will trigger an order if the total demand for retailer i  from time 0 equals 
iS . Thus, according 

to the exponential distribution of inter-arrival times of demands, 
iDT  follows Erlang distribution with 

parameters i
 and 

iS . The value of ( )if t  and ( )iF t  are determined by the general formula of Erlang 

distribution [25]. Then, the probability density function and distribution function of DT can be calculated 
by 
 

 ( ) ( ) 1 ( )
 

  i i

i N j i

f t f t F t  (8) 

 

 ( ) 1 1 ( )


   i

i N

F t F t  (9) 

 
Thus, the expected length of a dispatch cycle is  
 

   
0 0 0

[ ] ( ) 1 ( ) 1 ( )

  

  

       i

i Nt t t

E DT tf t dt F t dt F t dt  (10) 

 
The expected holding cost of retailer i  during a dispatch cycle is associated with the retailer’s inventory 

on hand at the beginning and at the end of the dispatch cycle. At the beginning of the cycle, setting ic = iS

- 1 makes all retailers’ inventory on hand equal iS . At the end of the cycle, the inventory on hand depends 

on the residual stock level, which is a stock above the must-order level when an order is triggered. Thus, we 

define ( )i x  as the probability that at time DT  the residual stock of retailer i  equals x . There are two 

cases for determining ( )i x . The first case is when the residual stock level of retailer i  is equal to zero; 

only retailer i  triggers an order. The second case is when the residual stock level of retailer i  is positive. So, 

an order is triggered by retailer j i . Thus, the value of ( )i x can be calculated by the following 

expressions: 
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,

( ) ( ) 1 ( )

 

  
i

j k

j i k j i

f t f t F t  (13) 

where ( , )iPois m is the probability density function of Poisson demand at retailer i  , and ( ) ( )if t  is the 

probability density function that at time t  any retailer j i  triggers an order. Thus, ( ) iS  illustrated in 

equation (7) can be calculated by using equation (11) as well. 
The expected holding cost of retailer i  during a dispatch cycle is then given by 

 

0 0

( )
[ ] ( ) ( )

2



 

  
  

  
 

iS

i i
i

x t

h S x t
E H x f t dt  (14) 

 
According to the equation (10) and (14), we transform the expression to determine the expected holding 
cost of retailer i  per unit time instead. Thus,    
 

0

[ ] ( )
( )

[ ] 2

 
  

 


iS

i i i

x

E H h S x
x

E DT
 (15) 

 
Warehouse Echelon 

To simplify this part, we assume that the warehouse’s inventory level is consumed continuously by all 

retailers’ Poisson demands with rate 
0 . Inter-arrival times of demands are exponentially distributed, and 

then the distribution of time until warehouse triggers an order to an outside supplier is Erlang, similar to 

the retailer echelon. Let RT  denote the time until warehouse triggers an order to an outside supplier. The 

warehouse will trigger an order if the total demand from time 0 equals 0S , so the distribution of RT  is 

Erlang with parameters 0  and 0S . The expected length of a replenishment cycle is the mean of Erlang 

distribution. Thus, 0 0[ ] E RT S . 

In case of holding inventory at the warehouse, the expected holding cost of the warehouse during a 
replenishment cycle is estimated following the continuous demands from the retailer echelon. Then, we can 

determine the expected holding cost of the warehouse per unit time by 0 0 0[ ]

[ ] 2


E H h S

E RT
. According to the 

expression at the warehouse, we can find the optimal order-up-to level at the warehouse 
*

0S  from the 

derivative of the cost function with respect to 0S . We found that 
*

0S  can be easily calculated from EOQ  

formula. Then, *

0 0 02  wS K h  

Consequently, we can figure out the long-run average total system-wide cost per unit time for a given 

( 0,iS S ) policy. Then, the next section will demonstrate the algorithm of heuristic approach to determine 

the appropriate decision variables by using the cost model.  
 
4.3. The Algorithm of Heuristic Approach 

 
With regard to the preliminary analysis and the mathematical model, the following analyses demonstrate 
our concept for developing the heuristic approach. 
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1) According to two local minimum solutions located into two ranges, we can identify the value of 0S  

to 0S = 0 for Range I and 
0 0 02  wS K h for Range II. 

2) To develop an initial solution at retailer echelon by assuming
ic = 

iS - 1, we can use deterministic 

model to find economical joint ordering time when every retailers is replenished in an order. 
3) Fixing inventory policy at retailer j i  and at the warehouse, the total inventory cost at retailer i  is 

a convex function of 
iS . We can find the local minimum 

0( , )iTC S S at the given j iS  and 0S . Therefore, 

the decomposition technique and iterative procedure can be applied to break multiple locations into a single 
location and to recurrently find the minimum solution as far as the best solution has been found. Both 
techniques have been intensively used in JRP [19, 22-24, 26-28]. 

4) Since the total inventory cost at retailer i  is a unimodal function under one-dimensional 
unconstrained problem. We apply the line search called “golden section search” which is a simple and 
efficient method for finding the extremum of a unimodal function [23, 29, 30]. The golden section search is 
suitable for the case of non-derivative function, like our model, by successively narrowing the range of 
search space until the desired accuracy in the minimum value of the objective function is achieved. A 
golden ratio, which is a constant reduction factor for the size of the interval, is utilized to maintain the 
successive range of dynamic triples of points (i.e. upper point, middle point, and lower point). 
Advantageously, each successive range we only want to perform one new function evaluation. From this 

technique, we can determine the optimal *

iS for the given j iS  and 0S and save computational time. The 

golden section search was verified to efficiently use with the can-order policy in van Eijs [23]’s work. 
Hence, the heuristic approach is outlined in the following algorithm illustrated in Fig. 5. 

In step 1 – determination of the initial solution 
iS , we calculate the joint dispatching time (

dT ) by 

deterministic model according to the following expression: 
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
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i N
d

i i

i N

K

T
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 (16) 

 

Then, the initial iS  for retailer i  is determined by adapting Love [16]’s method. It is selecting iS  which 

provides the minimum gap between two probabilities: 1) the probability that the demand for retailer i  

during time dT  is less than or equal to such iS  and 2) the probability that an order is triggered by any 

retailer (i.e. including normal replenishment and special replenishment). Thus, 
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1 1
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i

n n
m if Pois T m Pois T m

S n n

m Otherwise

 (17) 

 

The initial iS  from equation (17) is closer to the optimal solution than iS  obtained from i i dS T  . 
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Fig. 5. The algorithm of heuristic approach. 

 

Step 2 is the most important procedure for the heuristic in order to determine the optimal iS  for each 

range of range 
1R  and 

2R  (note that for range 
1R , the local optimal solution occurs at 

0S = 0 and 

[ ] [ ]E RT E DT , and for range 
2R , it occurs at 0 0 02  wS K h  and 0 0[ ] E RT S ). We use 

0S and 

the initial iS  from step 1 to calculate the initial long-run average total system-wide cost per unit time, 

0( , )initial iTC S S . The next step (2.2) is an iterative procedure containing steps (A) to (F). For each iteration, 

a golden section search is carried out for retailer i : vary iS  and fix j iS  given from the previous iteration. 

0( , )iTC S S  is an objective function for golden section search. The iterative process terminates as soon as 

every iS  does not change n  iterations in a row, or the minimum long-run average total system-wide cost 

per unit time, min 0( , )Rk iTC S S , from the current loop does not decrease from the previous loop by more 

than %  (i.e. when all retailers have been run, one loop is counted). From step 2, we obtain the local 

minimum cost min 0( , )Rk iTC S S  for k {1, 2}.  

Lastly, the comparison of min 0( , )Rk iTC S S for k {1, 2} is carried out in step 3. The minimum long-run 

average total system-wide cost per unit time is equal to  min 1 0 min 2 0min ( , ), ( , )R i R iTC S S TC S S .  

 

5. Experimental Results 
 

The heuristic approach has been tested on various scenarios. The experiments on identical retailers are 
analyzed, specifically in the case of zero minor ordering cost and non-zero minor ordering cost. Since both 

cases affects the can-order policy at given ic = iS - 1 on different results as shown in the preliminary 

analysis. In addition, the experiment on non-identical retailers is also conducted to measure the heuristic’s 
performance on the dissimilar situation. 

 

START

Step 1: 

Determine initial Solution Si at 

retailer echelon

Step 2: 

Determine the local optimal 

solution Si for each range 

Rk: k = {1,2}

Step 1

Step 1.1: 

Calculate joint dispatching time 

(Td)

Step 1.2: 

Find initial Si from Td 

by using Poisson probability function

Step 2

Step 2.1: 

(A) Set values at the warehouse for range Rk: k = {1,2}

(B) Calculate TCinitial(Si,S0)

Step 3: 

Select the best solution at

TCmin(Si,S0)= 

min{TCminR1(Si,S0), TCminR2(Si,S0)} 

Output: 

Si

Output: 

TCminRk(Si,S0)

END

For range R1, set S0 = 0 and 

E[RT] = E[DT]

For range R2, set S0 = √2Kwλ0/h0 and 

E[RT] = S0 / λ0

Step 2.2: Iterative procedure for determining 

the local optimal solution (Si) for each range Rk

(A) Set initial value: 

- Set loop y = 0, iteration m = 0, and assign TCminRk(Si,S0) = TCinitial(Si,S0) for such 

initial value

- Assign retailer i = 0 

(B) Set retailer i = i +1, fix Sj≠i and S0

(C) Use golden section search for determining the optimal Si under given Sj≠i and S0

(D) Update TCminRk(Si,S0) and Si  if the better solution has been found

(E) Count iteration m = m +1, go back to step (B) until i = n 

If i = n , count loop y = y +1 

(F) Stop if 

- Si for i ={1,...,n} does not change n iterations in a row, or

- TCminRk(Si,S0) of loop y and TCminRk(Si,S0) of loop y - 1 does not decrease by 

more than ε%

Otherwise go back to step (B)
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5.1. Identical Retailers 
 
5.1.1. Zero minor ordering cost 
 
According to three relevant factors (i.e. cost parameters, demand rates, and number of retailers), they are 
designed to examine the heuristic’s performance under 154 scenarios (see Appendix A). Table 1 shows 
some numerical examples relating to the best-known solution of the system and the best solution from the 
heuristic approach. We found that the performance of heuristic approach depends on all relevant factors. It 
provides an average cost gap at 1.05% with standard deviation of 1.11% over various scenarios. Our 

approach performs well for high number of retailers, high /w rK K ratio, and high 
0 / ih h  ratio. 

Let ( )BS

iS and ( )

0

BSS denote the best-known order-up-to level at retailer i  and at the warehouse 

determined from the computer simulation. Let ( )HRT

iS  and ( )

0

HRTS  denote the best order-up-to level at 

retailer i  and at the warehouse and they are calculated by the heuristic approach. Theoretically, a large 
number of retailers increases the joint replenishment opportunity from special replenishment, this can 

reduce 
iS . Thus, a higher number of retailers reduces ( )BS

iS  to be closer to ( )HRT

iS and also increases ( )

0

BSS  

to be closer to ( )

0

HRTS . Therefore, the cost gap can reduce. For higher /w rK K ratio, iS and 0S are affected 

in a similar pattern.  

Regarding the 
0 / ih h  ratio, higher ratio influences the warehouse’s stock equal to zero. Consequently, 

the inventory cost at retailer echelon becomes the main part of the system. Our mathematical model 
provides cost expression at retailer echelon near the exact value and heuristic approach can determine the 
minimum solution at retailer echelon. Then, the heuristic approach provides the (near) best-known solution. 

 
Table 3. Numerical examples for comparison of the best-know solution and the heuristic’s best solution 

under identical retailers without minor ordering cost. 

Instance 
Relevant factors Best-known Solution (BS) Heuristic Approach 

wK  rK  
0h  ih  i  n  

0 , ,i iS c S  ( )BSTC  0 , ,i iS c S  . .C G  

1 100 50 20 100 20 2 13,3,4 1,280.75 20,3,4 0.52% 

2 100 50 40 100 20 2 0,5,6 1,420.94 0,5,6 0.00% 

3 100 50 2 10 20 2 45,9,12 359.73 63,10,11 2.03% 

4 100 50 4 10 20 2 25,12,13 392.37 0,18,19 1.88% 

5 100 10 2 10 20 2 58,4,5 244.97 63,4,5 0.05% 

6 100 90 2 10 20 2 31,15,16 424.21 63,14,15 4.34% 

7 125 50 2 10 20 2 49,12,13 376.43 71,10,11 2.50% 

8 250 50 2 10 20 2 86,11,12 436.63 100,10,11 0.98% 

9 100 50 2 10 10 4 42,6,7 427.16 63,5,6 0.36% 

10 100 50 2 10 10 8 78,4,5 697.16 89,4,5 0.11% 

11 100 50 2 10 10 12 93,4,5 932.60 110,4,5 0.15% 

12 100 50 2 10 20 4 79,8,9 576.83 89,8,9 1.03% 

13 100 50 2 10 20 8 100,6,7 925.98 126,6,7 0.29% 

14 100 50 2 10 20 12 142,5,6 1,230.39 155,5,6 0.17% 

 
5.1.2. Non-zero minor ordering cost 
 

Although the can-order level is not necessary to be equal to iS - 1 when there is a minor ordering cost, our 

heuristic approach can be applied into this problem in some situations. To identify such a situation, we 

tested on 54 scenarios (see Appendix A) by mainly varying the minor ordering cost  i . The value of 

/r iK ratio are identified following van Eijs’s work [23]. The experimental results are depicted in Fig. 6.   
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  (a)      (b) 

Fig. 6. The effect of /r iK  ratio on the can-order level at the retailers: (a) Heuristic’s performance and 

simulation’s performance when fixing 
ic =

iS - 1, and (b) The effect of 
0 / ih h  ratio. 

 
We found that the heuristic approach provides an average cost gap at 1.64% with standard deviation of 

2.03% over various scenarios. Heuristic’s performance is associated with two reasons. Firstly, our heuristic 

assumes 
ic =

iS - 1. As shown in Fig. 6(a). Relating to computer simulation, we compare the best-known 

solution with the best solution fixing ic = iS - 1. Average percentage of cost gap provides in simulation’s 

line. A smaller /r iK ratio provides a larger cost gap in simulation’s line, consequently our heuristic also 

performs in the same way. Secondly, the inventory cost at the warehouse is approximate. Cost gap of the 
heuristic’s line is also added from the simulation’s line. 

Considering the 
0 / ih h  ratio, a higher ratio (

0 / ih h  is 0.4 and 0.6) influences the warehouse’s stock 

equal to zero. Then, the heuristic approach provides the (near) best-known solution. On the other hand, a 

higher cost gap at the lower 
0 / ih h  ratio comes from an approximate inventory cost at the warehouse, 

especially for a small demand rate and high number of retailers by the reason that our heuristic gets 0S = 0 

whereas the best-known solution is 0S > 0. The difference of solution creates a larger cost gap. 

 
5.2. Non-Identical Retailers 

 
To extend the experiment on non-identical retailers, we aim at studying the can-order policy on the retailers’ 
different demand rates because in reality we frequently encounter such situation. In addition, non-identical 
demands can create the different discount opportunities from the shared ordering cost. Hence, it is 
interesting to investigate and this inquiry has not been studied in the existing literatures. We tested on two-
retailer scenarios and three-retailer scenarios (see Appendix B). Figure 7 depicts the cost gap from our 
heuristic approach, as compared to the best-known solutions. 

The heuristic approach provides an average cost gap at 2.18% with standard deviation of 0.82% for 
two-retailer scenarios, and an average cost gap at 1.80% with standard deviation of 0.51% for three-retailer 
scenarios. At small demand rate ratio the heuristic approach performs well because order cycle of each 
retailer is not quite different. So, the retailers’ ordering cost can be more shared with the balancing holding 
costs. However, at a higher demand rate ratio heuristic’s performance does not depend on the different 
demand rates (i.e. there is no trend of the cost gap following the demand rate ratio).  
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            (a)      (b)   

Fig. 7. Heuristic’s performance under non-identical retailers: (a) Two-retailer scenarios, and  
(b) Three-retailer scenarios. 

 
As the experimental results in various scenarios, the heuristic approach provides the best solutions at a 

small average cost gap comparing to the best-known solution. Moreover, the heuristic approach’s 
computational time can be saved from the reduced search space as comparing to the computer simulation’s 
computational time. Since the golden section search can save the computational time by reducing the 
searching points. It is a satisfactory approach to use for the can-order policy setting under OWNR. 

 
6. Conclusions 
 
This paper proposed a heuristic approach for determining on appropriate can-order policy into one-
warehouse n-retailer inventory system. Dealing with the complication of our problem, computer simulation 
was employed to explore insights into the can-order policy and to determine the best-known solution. The 
insights led us to developing the mathematical model and the algorithm of the heuristic approach.  

The main findings showed from computer simulation that the average total system-wide cost is a 

unimodal function of the retailer’s order-up-to level iS  , when given j iS  and 
0S are fixed. Decomposition 

technique and iterative procedure can be applied to break multiple locations into a single location and to 
successively find the minimum as far as the best solution has been found. Since our mathematical model is 
a non-derivative function, we utilized golden section search for finding the minimum of a unimodal 
function. This can save our computational time to find the appropriate inventory policy setting. 

The heuristic approach under simplified mathematical model and fixed 1 i ic S  performs very well, 

especially in case of high /r iK ratio. Overall, the experiments tested on the wide range of data provided 

the cost gap of heuristic approach of less than 2% on average. With satisfactory computational time and 
small cost gap, the heuristic approach is well worth using for the can-order policy setting under the one-
warehouse n-retailer inventory system. 

In this research, two main contributions were gained. Firstly, the zero lead time assumption can be 
interpreted and applied in the situation when the ratio of lead time to order cycle duration is very small. 
Secondly, our study can be used as the base case when we extend into non-zero lead time. Furthermore, 
multiple items should be concerned to totally utilize the can-order policy on the warehouse. 
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Appendix A: Preliminary Experiment 
  
In the preliminary study, the experiment is designed on the identical retailers. The following table shows 
208 scenarios experimented in sequence. The asterisk (*) in the table means that parameter is varied.  
 
Table A1. Numerical input for preliminary experiment under the identical retailers 
 

Scenario No. 
Fixed Parameters 

Varied Parameters 
wK  

rK   i
 

0h  
ih  

0 ih h  i
 n  

1) Relationship between 
0h and 

ih  (80 scenarios) 

1-50 100 50 0 * * * 20 2 ih  {10, 25, 50, 100, 250}; 
0 ih h {0.1, 0.2, ...,1} 

51-80 100 50 0 * * * 20 2 
ih  {0.1, 0.5, 1, 2.5, 5};  

0 ih h {0.1, 0.3, 0.5, 0.7, 0.9, 1} 

2) Relationship between 
0h , 

ih  and 
rK  (20 scenarios) 

81-92 100 * 0 * 25 * 20 2 rK {10, 90}; 
0 ih h {0.1, 0.3, 0.5, 0.7, 0.9, 1} 

93-100 100 * 0 * 10 * 20 2 rK {10, 90}; 0 ih h {0.2, 0.4, 0.6, 0.8} 

3) Relationship between 
0h , 

ih  and 
wK  (20 scenarios) 

101-112 * 50 0 * 25 * 20 2 wK {75, 200}; 0 ih h {0.1, 0.3, 0.5, 0.7, 0.9, 1} 

113-120 * 50 0 * 10 * 20 2 wK {125, 250}; 
0 ih h {0.2, 0.4, 0.6, 0.8} 

4) Relationship between 
0h , ih , and /w rK K  (14 scenarios) 

121-134 * 50 0 * * 0.5 20 2 / w rK K {1.5, 3, 4, 5, 10, 100, 1500}; ih {1, 25} 

5) Relationship between 
0h , ih , and i  (10 scenarios) 

135-142 100 50 0 * 25 0.5 * 2  i {0.5, 1, 3, 5, 10, 40, 100, 500} 

143-144 100 50 0 * 10 0.2 * 2  i {0.5, 10} 

6) Relationship between 
0h , ih , i and n  (10 scenarios) 

145-148 100 50 0 * 25 0.5 20 * n {4, 8, 12, 20} 

149-154 100 50 0 * 10 0.2 * *  i {0.5, 10}; n {4, 8, 12} 

7) The effect of  i  (54 scenarios) 

155-208 100 50 * * 10 * * * 
 i {5, 10, 25}; i {0.5, 20}; 

0 ih h {0.2, 0.4, 0.6}; n{2, 4, 8} 
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Appendix B: The Experiment on Non-Identical Retailers 
 
The following table shows 45 scenarios on two-retailer problem and three-retailer problem. All scenarios 

set identical cost components by 
wK = 100, 

rK = 50,  i
= 0, 

0h = 2, and 
ih = 10. 

 
Table B1. Numerical input for the experiment on non-identical retailers: 
 

S
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a
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N
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. 

Demand Rate 

 S
c
e
n

a
ri

o
  

N
o

. 

Demand Rate  

S
c
e
n

a
ri

o
 

N
o

. 

Demand Rate 

1  
2  

3  
Demand  

Rate Ratio 1  
2  

3  
Demand  

Rate Ratio 
 
 1   

2  
3  

Demand 
Rate Ratio 

1 20 20 - 

1 

 16 20 1 - 

20 

 31 20 0.67 0.67 30 

2 10 10 -  17 10 0.5 -  32 20 0.5 0.5 40 

3 40 40 -  18 40 2 -  33 20 20 10 2 

4 20 10 - 

2 

 19 20 0.67 - 

30 

 34 20 20 5 4 

5 10 5 -  20 10 0.33 -  35 20 20 2.5 8 

6 40 20 -  21 40 1.33 -  36 20 20 2 10 

7 20 5 - 

4 

 22 20 0.5 - 

40 

 37 20 20 1 20 

8 10 2.5 -  23 10 0.25 -  38 20 20 0.67 30 

9 40 10 -  24 40 1 -  39 20 20 0.5 40 

10 20 2.5 - 

8 

 25 20 20 20 1  40 20 10 5 2, 4 

11 10 1.25 -  26 20 10 10 2  41 20 10 0.5 2, 20, 40 

12 40 5 -  27 20 5 5 4  42 40 20 10 2, 4 

13 20 2 - 

10 

 28 20 2.5 2.5 8  43 40 20 1 2, 20, 40 

14 10 1 -  29 20 2 2 10  44 20 2 0.5 4, 10, 40 

15 40 4 -  30 20 1 1 20  45 40 4 1 4, 10, 40 
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