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Abstract. Methyl methacrylate (MMA) production in an exothermic batch reactor 
provides a challenging problem for studying its dynamics behavior and temperature 
control. This work presents a neural network forward model (NN) to predict a 
concentration of methyl methacrylate, a jacket temperature and temperature profile in the 
reactor. An optimal NN model has been employed to predict state variables incorporating 
into a model predictive control (MPC) algorithm to determine optimal control actions. To 
control the temperature, neural network based control approaches: a neural network direct 
inverse control (NNDIC) and a neural network based model predictive control (NNMPC) 
have been formulated. In addition, a dynamic optimization approach has been applied to 
find out an optimal operating temperature to achieve maximizing the MMA product at 
specified final time. The robustness of the proposed control strategy is investigated with 
respect to changes in operating parameters: rate of reaction, heat of reaction and overall 
heat transfer coefficient. Simulation results have indicated that the NNMPC is robust and 
gives the best control results among the PID and NNDIC in all cases. 
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1. Introduction 
 
Methyl methacrylate (MMA), which is used to produce polymethyl methacrylate (acrylic plastics) and 
polymer dispersions, is an important chemical polymer intermediate. The world production capacity has 
been double increased in past 15 years and the MMA demand is still expected growth in the future [1]. The 
MMA can be manufactured by many routes. An esterification of mathacrylic acid with methanol in a batch 
reactor is a successful route on account of achieving the maximum yield. In a batch reactor with 
exothermic reactions, the heat-released of reactions in heating period may become very large very quickly 
and the heat-generated can exceed the cooling capacity of the reactor and then runaway reactions take place 
[2-3]. To overcome the problem, model based control strategies have been proposed to solve the problem 
[4-7]. However, control performances of such control strategies rely upon the accuracy of mathematical 
models developed.  

To overcome the problem, neural networks studied and provided successfully to capture the dynamics 
of nonlinear and complex systems have been proposed and formulated [8-13]. Neural networks have 
several advantages of distributed information processing and the inherent potential for parallel 
computation. The potential for the processing and approximation relates to operating data without the 
prior knowledge of the process. They can learn adequately accurate models and give good non-linear 
control when model equations are not known or only partial state information is available. Neural networks 
can be employed to be mathematical model, estimator and controller. Kittisupakorn et al. [14] 
demonstrated dynamic neural network modeling for hydrochloric acid recovery acid process to predict the 
concentration profile of a hydrochloric acid recovery process consisting of double fixed-bed ion exchange 
columns. Rusinowski and Stanek [15] presented a method and example results of calculations of neural 
modeling of steam boilers. Charoenniyom et al. [16] applied neural network to be a modeling for the 
methyl methacrylate production process in a batch reactor and Thampasato et al. [17] proposed neural 
network modeling for a batch crystallizer. For the process control, Nueaklong et al. [18] investigated neural 
network modeling for hard chrome electroplating process to predict the plating solution temperature in 
hard chrome electroplating bath and applied the neural network inverse model as a controller for 
controlling plating solution temperature to the desired temperature range. Daosud et al. [19] presented the 
neural network for inverse model to be a controller for a steel pickling process. Kittisupakorn et al. [20] 
presented a multi-layer feedforward neural network based model predictive control for a steel pickling 
process. The neural network for forward model is applied as mathematical model to predict the state 
variables in the model predictive control algorithm. For use the neural network as an estimator, 
Arpornwichanop and Shomchoam [21] applied neural network as an estimator to estimate the unmeasured 
state variables for fed-batch bioreactors. 

The goal of this paper is to provide an effective control technique to control the system. To achieve 
this, this paper has developed the neural network forward model to predict the dynamics behavior and the 
neural network inverse model to control the process integrated with the dynamic optimization. Both neural 
network forward and inverse models have been developed based on the Lenvenberg-Marquardt training 
algorithm. An optimal neural network structures for forward and inverse models are chosen based on mean 
square error (MSE). The obtained optimal neural network structure for forward model has been employed 
to predict state variables over a predictive horizon within a model predictive control (MPC) algorithm for 
searching optimal control actions via successive quadratic programming (SQP). Robustness tests of the 
proposed controls have been studied with respect to changes in operating parameters. 
 

2. Mathematical Models for Methyl Methacrylate Production Process in a Batch Reactor 
 
Mathematical models for esterification reaction of a methyl methacrylate in a batch reactor studied in this 
work have been developed. The esterification reaction involved in this study is given below.  
 

CH2=C(CH3)-COOH + CH3OH      CH2=C(CH3)-COOCH3+H2O 
         (A)                 (B)                             (C)           (D) 

 
It is assumed that the kinetic equation of the esterification reaction of methacrylic acid with methanol 

is reversible and the reaction takes place in liquid phase. From Witczak et al. [22], the reaction rate 
constants for this reaction are described by the following equations. 
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where CA, CB, CC, CD and Ccat refer to concentration of methacrylic acid, methanol, methyl methacrylate, 
water and catalyst in mol/m3, respectively.  

The mass and the energy balances described the change of each component and temperatures are: 
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where Q, ΔH  and U are heat released from reaction (kJ/min), heat of reaction (kJ/kmol) and heat 
transfer coefficient (kJ/(min m2 °C)), respectively. 
 

3. Neural Network Modeling 
 
Neural networks consist of an input layer, hidden layer(s) and an output layer with each layer composing of 
a processing unit. The input layer receives the external inputs from the outside of the network. The output 
layer will produce the output of the network according to the input data sets. In the hidden layers, the value 
from each input neuron is multiplied by a weight and is calculated by transfer function.  
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In this part, neural network forward model is applied to predict the dynamic behavior of the system. 
The training, testing and validating data sets for neural network modeling are generated from the first 
principle mathematical model covering several possible scenarios consisting of nominal and plant 
uncertainty cases. Rate of reaction, heat of reaction and overall heat transfer coefficient are considered as  
plant/model mismatches. In addition, the manipulated variable (the set point of the jacket temperature) is 
adjusted as step change and random change. 
 
Table 1. Physical properties simulation system geometric characteristics. 

Heat capacity of methacrylic acid (J/mol K) 167.817 
Heat capacity of methanol (J/mol K) 81.080 
Heat capacity of methyl methacrylate (J/mol K) 191.202 
Heat capacity of water (J/mol K) 1000 
Heat capacity of water in jacket (J/mol K) 1000 
Density of methacrylic acid (kg/m3) 1015 
Density of methanol (kg/m3) 791.8 
Density of methyl methacrylate (kg/m3) 940 
Density of water (kg/m3) 1000 
Density of water in jacket (kg/m3) 1000 
Heat of reaction (J/mol) -57500 
Molecular weight of methacrylic acid (kg/kmol) 86.08 
Molecular weight of methanol (kg/kmol) 32.04 
Molecular weight of methyl methacrylate (kg/kmol) 100.12 
Molecular weight of water (kg/kmol) 18.00 
Volume of reactor (m) 0.0025 
Overall heat transfer coefficient (J/sec m2 K) 274.42 
Area of jacket (m2) 0.05 
Volume of jacket (m3) 0.001 
Gas constant (kJ/kmol K) 8.314 
Flow rate of jacket (m3/sec) 3.5×10-5 

 
After that, all generated data subsets are integrated to one overall set consisting of 4,500 patterns and 

the pattern in the overall set is randomized. The obtained data set are classified into 3 sets consisting of 
60%, 30% and 10% of the obtained total data as a training, testing and validating data set, respectively. The 
number of samples for training, testing and validating data sets are shown in Table 2. 

The generated data requires normalization for achieving a good performance neural network modeling. 
In the normalization step, all data were scaled in range of minimum and maximum value. The minimum 
and maximum data were compared to 0.05 and 0.95, respectively. The equations for data normalization and 
converting back can be expressed as follows:  
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where x and xnor are the actual and normalized values, respectively.  

 In the training step, the Levenberg Marquardt algorithm is used to train the both neural network 
models. During the training, the neural network adjusts the weights and biases in each node connection but 
there does not adjust during the testing and validating to evaluate the neural network performance.  The 
structure for the neural network forward model consists of 8 nodes in an input layer and 3 nodes in an 
output layer as shown in Fig. 1. The input layer nodes are composed of the past and present values of the 
reactor temperature, the concentration of methyl methacrylate, the jacket temperature and the set point of 
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the jacket temperature. The output layer nodes are the future values of the reactor temperature, the jacket 
temperature and the concentration of methyl methacrylate. 
 

 

 

 

 

 

 
 
 
 
Fig. 1. Input/output pattern for the forward model. 

 
In the neural network design step, the appropriated neural network structure is defined by choosing 

the number of nodes in the hidden layer. Both neural network forward and inverse models have been 
developed based on the Lenvenberg-Marquardt training algorithm. The sigmoid function is used as the 
activation function of the nodes in the hidden layer and the linear transfer function is used as the activation 
function in its output layer. A common objective of the neural network training is to minimize an error 
between predicted neural network values and actual targeted values. An equation for MSE calculation is 
shown below: 
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where Tac is the actual targeted values and Tp is the predicted neural network values. 
After training step, the trained neural network model is tested with testing data sets. If the MSE values 

of the testing data are out of a specified value, the obtained neural network model is inapplicable and more 
training is required by reinitialize the weights and biases. Alternatively, another neural network structure is 
considered. On the other hand, if the MSE values of the testing data sets are satisfied, the obtained neural 
network model is validated by validating data set. If the MSE values of validating set are not out of a 
specified value, the network structure is changed by changing the number of hidden layers and the number 
of nodes in the hidden layer. In this paper, the number of hidden layer is varied from 1 node to 20 nodes. 

Basic steps of the neural network designing are shown in Fig. 2. Many procedures of the neural 
network designing are summarized in this figure. 
 
Table 2. The MSE of the testing and validation sets of forward and inverse models.  

 Data sets Forward model (MSE) Inverse model (MSE) No. of samples 
 Training 

Testing set 1 
Testing set 2 
Validating set 

4.6068 x10-5 
3.5618 x10-5 
3.1400 x10-5 
5.0784 x10-5 

3.6992 x10-5 
2.0184 x10-5 
1.0795 x10-5 
2.0489 x10-5 

2700 
675 
675 
450 

 

4. Neural Network Direct Inverse Control (NNDIC) 
 
In this part, a neural network inverse model is applied to formulate a neural network direct inverse 
controller to control the process. The detailed procedures to find the inverse neural network model are 
summarized in the Fig. 2. A neural network inverse model structure consists of 8 nodes in an input layer 
and a node in an output layer.  
 An optimal neural network inverse model is utilized to predict a manipulated variable (a set point of a 
jacket temperature). The neural network inverse model for the set point of the jacket temperature 
prediction requires the past and present values of the process outputs and the past values of manipulated 
variable and the set point of the reactor temperature. The input and output patterns for the neural network 
inverse model is shown in Fig. 3. 
 

CC(k-1) CC(k) CC(k+1)  Output 

Tr(k-1) Tr (k) Tr (k+1)  Input 

Tj(k-1) Tj(k) Tj(k+1)  

Tjsp(k-1) Tjsp(k) 
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Fig. 2. Procedures of the neural network designing. 

 
 

 
 
 
 
 
 

 
Fig. 3. Input/output patterns for the inverse model. 
 
 The NNDIC strategy for controlling the temperature is shown in Fig. 4. The control performance is 
tested under the uncertainly of the process including changes of kinetic rate, heat of reactions and heat 
transfer coefficient. 

CC(k-1) CC (k) 

Tr(k-1) Tr (k) Tr (k+1) 

Tjsp(k-1) Tjsp (k) 

Tj(k-1) Tj (k) 

Output 

Input 
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Fig. 4. The structure of NNDIC strategy. 

 
5. Dynamic Optimization 
 
The goal of a dynamic optimization problem is to find an optimal control profile of one or more control 
variables or control parameters of a system. Optimality is defined as a minimization or maximization of an 
objective function without violating given the process constraints [23-24]. In this work, a program is 
written to solve the optimization problem using a sequential quadratic programming (SQP) algorithm in 
Matlab Optimization Toolbox. The written program is tested to determine an optimal temperature of the 
exothermic batch reactor studied by Aziz et al. [25].  
 In this work, an objective is to determine the optimal temperature policy maximizing the amount of a 
desired product concentration for a given fixed batch time subject to bounds on the reactor temperature. 
The problem can be written mathematically as: 
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                    rx=f(x(t),T ,p,t)          process model                                                        (16) 
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where x is the vector of state variables, x  is the derivative of x with respect to time (t) and p is the process 
parameters. The batch time (tf) is specified at 10 hours. The lower bound on the temperature is the initial 
temperature that operates at the ambient condition and the upper bound is dictated by the maximum 
temperature of the experimental data used by Witczak et al. [22]. 
 

6. Neural Network Based Model Predictive Control (NNMPC) 
 
MPC appears to be one of general approaches which can handle most common process characteristics and 
industrial requirements in a satisfactory way [26-27]. The key success factor in the use of MPC in these 
process problems is the existence of accurate process models. [28-29] Then, the obtained neural network 
forward model in the neural network modeling part is applied as a predictor to predict the future values of 
outputs over a prediction horizon (p) within a model predictive control algorithm. An optimal manipulated 
variable (Tjsp) is determined by solving the optimization problem to minimize a specified objective function 
subject to the neural network model and lower and upper bounds of the manipulated variable (a set point 
of a jacket temperature). Figure 5 illustrates the structure of a neural network model predictive control 
(NNMPC) strategy. A program is used to solve the optimization problem using a successive quadratic 
programming (SQP) algorithm. The optimization problem is shown below: 
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                          (20) 
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Subject to 
  Neural network forward model  

             260 K ≤ Tjsp(k+1) ≤ 380 K, i = 1,2,3,…,P                                                                          (21) 
  Tr(k+p) = Trsp(k+p)                                        (22) 
 
where p is a parameter specifying the prediction horizon, M is the control horizon, Wi is the weighting 
parameter used to give different weights to different squared tracking error and Trsp is the set point of the 
reactor temperature obtained off-line optimization. 
 

 
Fig. 5. The NNMPC strategy. 
 

7. Simulation Results 
 
7.1 Neural Network Forward and Inverse Models 
 
After training the neural network models, the neural network forward and inverse models are validated by 
the sets of validating data for the performance monitoring. Optimal structures for the forward and inverse 
models are [8-6-8-3] and [8-4-8-1] respectively and their MSEs for the testing and validating sets are 
presented in the Table 2. This table shows that the neural network forward model can predict the values of 
the concentration of MMA, the jacket temperature and the reactor temperature with great accuracy and the 
neural network inverse model gives good prediction of the set point of jacket temperature. 
 
7.2 Dynamic Optimization 
 
The dynamic optimization maximizing production concentration with respect to variations of time intervals:  
1, 2, 4 and 8 intervals have been carried out. The simulation results with different time intervals are shown 
in Fig. 6. Table 3 reports the temperature and the concentration of MMA (desire product) of each time 
intervals. It has been found that at the final time, the maximum product achieves at the case of 8 intervals. 
The obtained optimal temperature profile is then applied as set points of the reactor temperature for 
control design.  
 
Table 3. Optimization results 

Interval Off-line optimal temperature (K) CC(tf) 

1 
2 
4 
8 

342.45 
348.00, 329.77 
348.00, 347.98, 336.32, 325.21 
348.00, 348.00, 347.47, 345.88, 341.60, 333.48, 328.15, 324.84 

13.932 

13.949 

13.952 

13.962 
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Fig. 6. Temperature profile for the optimization problem. 
 
7.3 Neural Network Model Based Control 
  
For this case, the controllers are adjusted with the same IAE for the same control performance. The 
objective of the control is to control the reactor temperature to the desired set point by adjusting the set 
point of a jacket temperature. The controlled simulations are divided into two cases which are nominal case 
and plant/model mismatch case. The conditions of the mismatch case are defined by 30% increasing and 
30% decreasing of the model parameter values from the nominal condition (Table 1., Eq. (2) and Eq (3)) 
such as k1, k2, ΔH and U. The closed-loop performance of the NNMPC, the NNDIC and the PID control 
are indicated by the integral of absolute value of an error (IAE).  
 The simulation results of the nominal case with the process parameters presented in Table 1 indicate 
that the NNMPC can bring the temperature closely to the set point without overshoot, oscillations and 
offset as show in Fig. 7. In contrast, the NNDIC and the PID control cause the overshoot and oscillation 
of the control variable (reactor temperature) as show in Fig. 8 and 9, respectively. Moreover, the dynamic 
behavior of NNMPC manipulated variable is smoother than the NNDIC and the PID control. 
 For the plant/model mismatch cases, a rate of reaction for forward reaction, a rate reaction for reverse 
reaction, a heat of reaction and an overall heat transfer coefficient are considered as the plant/model 
mismatch parameters because these parameters are prone to errors in the real process.  Then the model 
mismatch cases are divided into 6 cases as follows 

 30% increasing of k1 case  

 30% decreasing of k2 case 

 30% increasing of k1 and 30% decreasing of k2 case 

 30% increasing of ΔH case 

 30% decreasing of U case 

 30% increasing of k1, 30% decreasing of k2, 30% increasing of ΔH and 30% decreasing of U 
case 

The simulation results in the case of the decrease in U of 30% for the NNMPC, PID and NNDIC are 
shown in Fig. 10, 11 and 12, respectively. These figures illustrate that the NNMPC strategy can bring the 
reactor temperature to the set point by gradually adjusting the jacket temperature set point which then gives 
smooth control response. The NNDIC and PID, on the other hand,  can control the reactor temperature 
to the set point but with drastic adjustment of the jacket temperature set point causing the oscillation and 
overshoot in the process response. For the control comparison, the NNMPC give the best control 
performance in all parameter mismatch cases and the NNDIC is more robust than PID control. The 
performance index in term of the absolute error (IAE) of three different controllers in nominal case and 
parameter mismatch cases are summarized in Table 4. 
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(a) 
 

 
 

(b) 
Fig. 7. The temperature control using NNMPC under the nominal case: (a) the control variable (T r) and 

(b) the manipulated variable (Tjsp). 
 

 
 
 
 
 
 
 
 
 



DOI:10.4186/ej.2014.18.1.145 

ENGINEERING JOURNAL Volume 18 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 155 

 
 

 
(a) 
 

 

(b) 
 

Fig. 8. The temperature control using NNDIC under the nominal case: (a) the control variable (Tr) and 
(b) the manipulated variable (Tjsp). 
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(a) 

 
(b) 

 
Fig. 9. The temperature control using PID control under the nominal case: (a) the control variable (Tr) 

and (b) the manipulated variable (Tjsp). 
 
   
Table 4. Performance indices of NNMPC strategy, PID control strategy and NNDIC strategy for 

nominal and model mismatch cases. 

Cases NNMPC PID NNDIC 
Nominal  
+30%k1 
-30%k2 
+30%k1, -30%k2 
+30%ΔH 
-30%U 
+30%k1,-30%k2,+30%ΔH,-30%U 

422.0569 
421.0025 
421.1529 
421.4568 
415.2102 
435.0598 
447.0252 

422.9892 
433.2399 
424.3498 
434.5736 
433.8296 
550.6485 
584.9196 

422.4777 
421.2645 
422.0130 
421.6259 
419.5642 
456.2135 
462.7851 
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     (a) 

 

 
         (b) 

 
Fig. 10. The temperature control using NNMPC under the parameter mismatch case (-30% U): (a) the 

control variable (Tr) and (b) the manipulated variable (Tjsp). 
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(a) 
 

 
(b) 

 
Fig. 11. The temperature control using PID control under the parameter mismatch case (-30% U): (a) the 

control variable (Tr) and (b) the manipulated variable (Tjsp). 
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(a) 
 

 
           (b) 

 
Fig. 12. The temperature control using NNDIC under the parameter mismatch case (-30% U): (a) the 

control variable (Tr) and (b) the manipulated variable (Tjsp) 
 

8. Conclusions 
 

In this paper, a dynamic optimization, neural network modeling and neural network based controls are 
proposed to provide effective control performance for the production of methyl methacrylate (MMA) 
production in an exothermic batch reactor. To control the temperature of the reactor, neural network 
based control approaches consisting of a neural network direct inverse control (NNDIC) and a neural 
network based model predictive control (NNMPC) have been formulated. For the neural network 
modeling, an optimal structure composes of 8 nodes in an input layer, 6 nodes in first hidden layer, 8 nodes 
in second hidden layer and 3 nodes in an output layer. An obtained neural network forward model is used 
to predict a dynamics behavior in the NNMPC algorithm. For a neural network inverse model, an optimal 
structure consists of 8 nodes in an input layer, 4 nodes in first hidden layer, 8 nodes in second hidden layer 
and a node in an output layer. In a dynamic optimization, a maximum product achieves at the case of 8 
intervals. The obtained temperature profile is applied as set points of the process. Robustness tests of three 
different controls have been studied with respect to changes in operating parameters. Comparisons of 
control performances among the PID, the NNDIC and the NNMPC indicated that the NNMPC gives the 
best control performance in the nominal case and plant/model mismatch cases. 
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10. Nomenclature 
 
A, B, C, D Correlation constants for each compound 
Ci  Concentration of component i (mol/m3) 
Cpi  Liquid heat capacity at 293.15 K (J/(mol K)) 
Ea  Activation energy (J/mol) 
k0  Frequency factor 
k1, k2 Reaction rate constants (m5.1/(mol1.7 min)) 
M  Control horizon 
MWi  Molecular weight of component i (kg/kmol) 
P  Prediction horizon 
Ri  Reaction rate of component i (mol/(m3min)) 
Tr  Reactor temperature (K) 
Tj  Jacket temperature (K) 
Tjsp  Set point of jacket temperature (K) 
Vj  Volume of jacket (m3) 
wj  Weight of neural network 
Wj  Weight for tuning of NNMPC 
ΔH  Heat of reaction (J/mol) 

    Density of component i (kmol/m3) 
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