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Abstract. This paper presents the idea of vector control for permanent magnet 
synchronous motor (PMSM) based on chaos theorem, using chaos controller. PMSM will 
demonstrate chaotic phenomena when its parameters fall into a certain area. To achieve 
this aim, the sub-system of controller has been designed by considering block diagram 
structure of vector control for PMSM and by applying the setting of Lyapunov exponents 
method. Also, asymptotical stability of closed loop system with given controller is shown, 
using the direct Lyapunov method. The performance of designed controller in chaotic 
mode is compared with conventional vector control methods. Also, the normal mode for 
PMSM is considered and the performance of controller is compared. Simulation results 
indicate that not only does this controller eliminate the chaos in chaotic mode and have 
good performance but also is able to control the system in normal mode by using almost 
the smaller control signal effort. 
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1. Introduction 
 
DC motors drives used in the field of variable speed drive until mid-1970s. DC drives was more 
controllable than AC drives. But Dc drives have some disadvantages such as lack of robustness, overload 
capability, narrow speed range, and frequent maintenance requirements, particularly due to brushes and 
commutators. For many years DC motors was used in the modern drive system. Recent developments in 
microprocessors, magnetic materials, and semiconductor technology have proposed a superior idea to use 
ac motors in high performance drive (HPD) systems. One of the most popular type of ac motor is the 
permanent magnet synchronous motor (PMSM) that extensively used in industrial applications because of 
its simple structure, high efficiency, high power density, and low manufacturing cost[1-2]. High 
performance drive systems need to accuracy and fast responses, quick recovery of speed from any 
disturbances and insensitivity to parameter variations because of using them in robotics, rolling mills, 
machine tools, etc. In these applications, if the closed loop vector control scheme is employed for PMSM, 
equivalent performance characteristics of a separately excited dc motor can be obtained [3]. With using 
vector control theory, the dynamic behavior of an ac motor can be obviously improved because speed and 
torque can be controlled separately.  

With using vector control theory in the PMSM drive system, not only the torque and flux components of 
stator current are decoupled which provides faster response but also makes the control task easy [4]. 
Proportional integral (PI) or proportional integral derivative (PID) has been widely used in conventional 
controllers. But if we don’t have an accurate system model, there is more difficulty to design the controller. 
Moreover, uncertainties and other factors such as noise, temperature, saturation, etc., affect the 
performance of these controllers for wide range of speed operations [5]. Also, some investigations showed 
that when systemic parameters falling into a certain area, the PMSM is experiencing chaotic behavior [6-9]. 
Intermittent ripples of torque and low-frequency oscillations of rotational speed is the backwash of chaos 
phenomena in PMSM which can extremely destroy the stabilization of the motor, even induce drive system 
collapse. PI or PID controllers don’t have good performance in this condition. Thus, it is indispensable to 
study the method of controlling or suppressing chaos in PMSM. 

Up to now, there are large numbers of control methods for chaos. Some of them use chaotic system’s 
behavior for controlling chaos like Ott-Grebogi-Yorke (OGY) and Time Delay Feedback (TDFC) methods, 
while others are classical methods like linear, nonlinear, adaptive and Fuzzy controllers, which are 
conventional methods in control theory[10-12]. The most popular method for controlling the chaos in 
motor systems is OGY [13]. The method is robust in theory but a critical drawback is lack of adjustable 
parameter in PMSM, so we can’t use this method for PMSM. Zhang et al. [14] suggested the entrainment 
and migration control strategy to control chaos in PMSM. However, this method does not allow the control 
objective to be any part of the trajectory of the controlled system and the control law cannot be affected 
until the states of the system enter into the domain of attractions, which may not be consistent with the 
requirement of the application. So, practically this method is not desirable. In time-delay feedback control 
(TDFC) method [15], the direct axis and the quadrature axis stator voltages are used as manipulated 
variables without an exogenous force. In practice, it is difficult to estimate time delay for TDFC with a 
given target. More recently, nonlinear feedback control method overcomes the disadvantages of TDFC 
method [16]. 

The proposed control method works by setting the Lyapunov exponents to their desired value. These 
Lyapunov exponents are one of the ubiquitous metrics of chaos in the literature [17-18]. Lyapunov 
exponents have been used to analyze and control chaos in different systems; for example see [19]. 
Conventionally, to design the controllers based on vector control, PI controllers are usually used in all parts 
of the controller, which cannot consider parametric uncertainties, nor can it control the chaos in many 
cases. With this in mind, in this work we introduce a controller based on vector control theory that can 
eliminate the chaos in PMSM by setting the Lyapunov exponents in the desired value. The paper is 
organized as follows. The principle of vector control theory is described in section 2. Section 3 focuses on 
the dimensionless mathematical model of PMSM. In section 4 vector control of PMSM based on chaos 
theory is derived to achieve the control objects. Finally, numerical simulations show the effectiveness of the 
proposed approach in section 5. 
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2. Vector Control of PMSM 
 
The control scheme of PMSM is relative simple. The proposed scheme is presented in Fig. 1. 
 

 
Fig. 1. Vector control scheme [20]. 
 

In this structure voltage source inverter is used to control the feeding currents [21]. The basic idea of 
vector control is as follows: decomposing the PMSM stator current isinto two components field current 
component id and its vertical torque current component iq, through the coordinate transformation.iq is 
equivalent of armature current in DC machine. So, the control scheme is similar to cascaded DC motor 
control. The PI speed controller provides the reference value for the torque-exciting current iq. Due to the 
permanent magnets at the rotor, the reference value for the field exciting current id is kept to zero to have 
maximum torque per ampere. We assume that motor operates in constant torque region and does not 
require the field weakening. 
 

3. Chaos in PMSM 
 
The dynamics of a smooth-air-gap PMSM can be modeled based on the d-qaxis [22]: 
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 (1) 

where 
r ,   qi , and di  are the state variables, which denotes motor angular frequency (rad/s) and 

quadrature-axis and direct-axis currents (A), respectively; qu and   du are the quadrature-axis and direct-axis 

stator voltage components (V), respectively; t is the time (s), LT denotes the load torque (N.m), L is the 

winding stator inductance (H), 
sR  stands for the stator winding resistance (Ω),  r is the permanent 

magnet flux (Wb), β is the viscous damping coefficient (N/rad/s),  j  is the polar moment of inertia (kg.m2), 

and pn denotes the number of pole pairs of the motor. 
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For investigation the chaos phenomena in the PMSM, we must change the variables and normalize 

them. Assume that τ= L/R, t = t /τ and k =β/( p r n τΨ ). The normalized state variables ω, iq and id are 

defined as follows: 

   ,                 ,            
qd

d q

ii
i i

k k
     (2) 

The dimensionless mathematical model of PMSM is given by 

 

   

  

  

q L

q

q d q

d
d q d

d
i T

dt

di
i i u

dt

di
i i u

dt


 

 




  




    



   


 (3) 

where /r kL   ; / j  ; 2 /L LT T j ; /q q su u kR ; /d d su u kR . 

In Eq (3), id , iq and ω denote scaled direct-axis current, scaled quadrature current and scaled motor 
angle speed, respectively; σ  and γ are the system parameters. In the practical model of the PMSM, the 
system parameters σ and γ have uncertainties. By using the modern nonlinear theory such as bifurcation 
and chaos, the nonlinear dynamical behaviors of system (1) have been studied accurately. The results of 
investigation have shown that with the systemic parameters σ and γ falling into a specific area, the PMSM 
endures chaotic behavior. For σ=5.46, γ=30, the PMSM will exhibit chaos. The typical chaotic attractor is 
shown in Fig. 2. 

 

 
Fig. 2. Typical chaotic attractor (σ = 5.46, γ = 30). 

 

4. Controller Design 
 
For designing the controller, we first give a lemma as follows [22]: 
 
Lemma: consider the continuous system (4): 

  x f x u   (4) 

In system (4) for setting the Lyapunov exponents in the desired value, we use the following control law: 

 
*

ol

u
J

x


   


 (5) 

 
*  = diag (

*

1 ,
*

2  , … ,
*  n )   n nR   is an orthogonal matrix where 

*

i  is desired Lyapunov exponent and olJ  

is open loop Jacobian matrix. 
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Remark: The control law (5) is designed for a specific class of systems where nu R . If we have 

  1

1 2 1  
T n

nu u u u R 

  , the control law is generalized in special conditions. First, we must arrange 

the dynamic equations as follows:  
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 (6) 

and if we have  1

1

0,
f

x





 then control law is generalized, and when putting it into the system (4), 

automatically renders the Lyapunov exponent in the first row negative. In this condition the Lyapunov 
exponent cannot be set in arbitrary value, and control law transforms into the following equation: 
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 (7) 

For PMSM, open loop Jacobian matrix is: 
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    ( ) 1

1
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q

J i

i

 

 



 
 

    
  

 (8) 

and we have 0  , so with respect to (6) and (7) we can control the chaos with setting the Lyapunov 
exponent in the desired value. Control inputs are derived as follows [19]: 
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 (9) 

*  q and
*  d  are set arbitrary negative Lyapunov exponents. Here, the aim is to eliminate the chaos and not 

to track desired speed *  . To this end, stator currents must be regulated. Based on vector control theory, a 
speed feedback loop and a current feedback loop are considered. According to this control technique, 
instead of using PI controllers, tracking objectives designed using nonlinear control theory in the 
mechanical sub-system of the PMSM drive. Therefore the reference currents of the PMSM motor is 
developed to meet necessary torque (or speed) requirements. Subsequent control voltages of the PMSM 
drive is then derived to force actual current to follow reference values; thus effectively meeting motion 

control objective which is embedded inside current tracking objectives. Assuming that 
*

 qi  and 
*  di are the time 

invariant constant values, the control law is modified as follows: 
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where *  
2

q

q

P

P

 


 (11) 

That 
 P and qP  are positive. Substitute (10) into (3), we have: 
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According to (12) after the controller (10) is put into effect, system (3) has a unique equilibrium ( *

di ,

* *

 , )qi   where * * L
q

T
i


   .Constant torque control strategy is derived from field oriented control, where 

the maximum possible torque is desired at all times like the dc motor. This is performed by making the 

torque producing current qi  equal to the supply current by setting *   0di  . 

 
4.1. Stability Analysis 
 
The problem of stability of the closed-loop system will be considered in this subsection. The tracking errors 
can be given as: 
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Case 1: Control chaos in PMSM with known parameters: 

To obtain *

qi , we can’t use this equation: 
* * L

q

T
i


  . Because as we can see in Fig (1), *

qi  have to 

depend on speed error in vector control structure. Taking the time derivative of speed error  

  * * q Le i T            (14) 

Assuming that reference speed is constant, to make the tracking error dynamic to zero, we must have: 
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Eq. (15) shows the dependence between *

qi  and speed error. We can restate the tracking error dynamics 

by substituting (13)and(10) into(3)and considering 
* * L

q

T
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We define the Lyapunov function as: 

 2 2 2

q q d dV P e P e P e     (17) 

 
where Pω, Pq and Pd are positive. Taking the time derivative of the Lyapunov function candidate and 
substituting (11) into the resulting equation yield: 
 

       * *2 2 2  q q q q q d d d dV P e e e P e e P e e         (18) 

Considering that ab
2 2

2 2

a b
  , we have: 

  2 2 2 * 2 * 2 2 * 2 * 22 2 2   2 2q q q q d d d q q q d d dV P e P e P e P e P e P e P P e P e                          (19) 
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We must have attention to this point that the terms * 2(2 )d d dP e  and * 2(2 )q q qP e  are negative, because 

*

d  and *

q  are arbitrary negative Lyapunov exponents. 

If we have   0P  and *2 q qP P   , then it is proved that 0V   ,and it will be guarantee the 

global asymptotic stability. Notice that 0P   is an obvious condition because σ and P  are positive. 

 
Case 2: Control chaos in PMSM with unknown parameters: 

Assume that γ and TL are unknown but don’t go through many changes; they have to be estimated 

adaptively. Define their estimated value as ̂ and ˆ
LT ; so the q-axis desired current have to be expressed 

with the estimated load torque as: 
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The control law is changed as follow: 
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Substituting (21) and (10) into (3) to obtain error dynamics: 

 

 

 *

*

ˆ( )

ˆ
ˆ

q L L

L
q q q

d d d

e e e T T

T
e e

e e

 

   




   

   









 (22) 

We define the Lyapunov function as: 
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where P  , qP , 
dP  , 

1  and 
2  are positive constant. Taking the time derivative of the Lyapunov function 

candidate and substituting (22) into the resulting equation yield: 
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Considering that  
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The following update laws can be derived: 

2
ˆ

q qP e    

 1
ˆ
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For eliminating the term
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, we must put the estimated value of ˆ
LT  in it, so we have: 
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2 2 2 * 2 * 21

 2 2 2 2q q q q q q d d dV P e P e P e P e P P e e P e      


    



 
      

 
 (27) 

Considering again that 
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So stability conditions are explained as:  
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 Then V  is negative semi definite; so we must use Barbalat’s lemma to show the asymptotically stability. 
Assume that: 

 * *1 1min ,  2 , 2q q q q d dP P P P P P P P   

 
    

 

    
        

    
 (30) 

Thus (25) becomes 2 2 2( )q dV e e e     and also we have: 

0V   ,    , ˆ, ˆ,   ,q d L Le e e T T L     , , ,q de e e L   

       2 2 2

0 0

1 1 1
( ) 0 0  

t t

q de e e dt V V V t V
  

         (31) 

Thus 2, ,q de e e L   and based on Barbalat’s lemma [23]. If , then 0, 0, 0q dt e e e    . So the 

equilibrium point ( *

di , * *

 , )qi   is asymptotically stable. 

Notice that in case (2), conditions for *

q  in control law will be (29) instead (11). This estimator can’t 

follow the severe changes in parameters and we must have  0LT   , 0   

 

5. Results and Discussion 
 
In this section, to examine the effectiveness of the chaos controller, numerical simulations are carried out 
for the PMSM system. and results will be compared with conventional vector control methods [23]. 
 

Chaotic mode: first we assume that the PMSM without control is originally in the chaotic state with 

parameters: σ=5.46, γ=20, 1LT  . Desired goal is
* *  5,  0di   . Then we simulate the underlying situations 

one by one. 
 

Situation 1: Assume that there are no uncertainties in the drive system, all the parameters are known. 
Both conventional controller and designed controller are examined. Results are shown in Figs. (3) and (4). 
To show the ability of designed controller, the controller in 6th second is put into effect. In Fig. (4), desired 

Lyapunov exponent is considered as : * *  11, 10d q      .Notice that in Fig. (3) we don’t try to set the 

Lyapunov exponents, we only use conventional controller for chaotic PMSM. These figures clearly show 
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that the proposed controller is able to stabilize the chaotic angle speed, q-axis and d-axis currents at the 
desired goal. 
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(d) 

Fig. 3. Performance of conventional controller: (a) Rotor speed; (b) q-axis current; (c) d-axis current; and 
(d) dynamics of Lyapunov exponents. 
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(c) 
 

 
(d) 

Fig.4. Performance of designed controller: (a) Rotor speed; (b) q-axis current; (c) d-axis current; and (d) 
dynamics of Lyapunov exponents. 

 
Situation 2: Assume that we know the PMSM is running in chaos, but the system parameter TL is unknown, 
and assume that there are a sudden step change of this parameter from 1 to 5 at t=8. So we use the 
designed controller proposed in case (2) to control the chaotic PMSM from the starting the motor. 

Parameters of controller in this situation are: 1 25,  10, 0.33, 5qP P     . 
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(b) 
 

 
(c) 
 

 
(d) 

Fig. 5. Step change in TL: (a) estimated TL; (b) Rotor speed; (c) q-axis current (d) d-axis current. 
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designed controller proposed in case (2) to control the chaotic PMSM from the starting the motor. 

Parameters of controller in this situation are: 1 25  ,  10 , 0.33 ,   5  qP P     . 
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(d) 

Fig. 6. Step change in γ: (a) estimated γ; (b) Rotor speed; (c) q-axis current; and (d) d-axis current. 
 

Normal mode: Now the performance of the controller in normal mode is compared with a 
conventional controller. Assume that the system parameter TL is unknown and there are a sudden step 
change of this parameter from 1 to 5 (N.m) at t=5 sec. Here dimensionless model of PMSM is not used 
because we don’t want to investigate chaotic PMSM, so mathematical model of PMSM in (1) is used and 

desired speed will be:
*  100 ( )

sec

rad
  . It’s clear that designed controller have better performance with less 

control signal effort. Figures 7 and 8 show the performance of conventional controller and designed 
controller, respectively. The motor parameters in normal mode (not chaotic mode) and PI gains used in the 
conventional controller are shown in Appendix. 
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(b) 

 

 
(c) 

Fig. 7. Performance of conventional method in normal case with step change in TL: (a) Rotor speed; (b) 
q-axis stator voltage; and (c) d-axis stator voltage. 
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(b) 

 

 
(c) 

Fig. 8. Performance of proposed controller in normal case with step change in TL: (a) Rotor speed; (b) q-
axis stator voltage; (c) d-axis stator voltage. 

 
Practical experiments can be a topic for more researches in future, and also this method can be 

examined on other motors which have chaotic behavior for a range of their parameters like brushless DC 
motors or induction motors and etc. It may be possible to combine chaos control and vector control with 
using other methods of controlling the chaos. 
 

6. Conclusion 
 
A nonlinear vector control method is designed for the chaotic permanent magnet synchronous motors. The 
controller is based on the setting the desired Lyapunov exponents approach and is used to prevent the 
motor drive system from chaos and make it track the desired speed command. The uncertainties of the 
system are also considered in the design. And the stability analysis for closed loop system is derived to 
prove the system reliability using direct Lyapunov method. Proposed controller has been examined in both 
chaotic and normal mode. In chaotic mode, simulation results prove that controller can eliminate the chaos; 
and also in unknown parameters case, was shown that designed controller can estimate the parametric 
uncertainties. In normal mode controller can control the system by using the smaller control signal effort. 
The system has the distinct advantages of smaller control signal effort and quick response. 
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Appendix 
 
The motor parameters in normal mode (not chaotic mode) and PI gains used in the conventional controller 
are shown in Table I [24]. 
 
Table I. System parameters. 

Base voltage  179.629 V 

Base current  10 A 

Base electric frequency 200 Hz 

Base Speed  6000 rpm 

Pole pair number (np) 2 

Stator inductance (L) 0.0029H 

viscous damping coefficient(β) 0.001(N/rad/s) 

polar moment of inertia (j) 0.003 (kg.m2) 

Stator resistance(R) 2.2Ω 

Magnetic flux constant (Ψ) 1 volts/rad/sec 

d-axis current loop Kp = 0.5, Ki = 0.1 

q-axis current loop Kp = 0.5, Ki = 0.05 

Speed loop Kp =40, Ki = 0.2 
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